Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Genetic Characterization
2.2. Animals and Experimental Design
- -
- SI: LL, 21 cows; LV, 13 cows; VV, 2 cows;
- -
- EX: LL, 19 cows; LV, 10 cows, VV, 1 cow.
2.3. Data Collection and Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussions
4.1. GH p.L127V Polymorphism in Modicana Cows
4.2. GH Polymorphism Effects on Milk Yield, Composition and Fatty Acids Content
4.3. Feeding Effects on Milk Yield and Composition and Fatty Acid Profile
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Ethics Statement
References
- Dybus, A. Associations of growth hormone (GH) and prolactin (PRL) gene polymorphisms with milk production traits in Polish Black-and-White cattle. Anim. Sci. Pap. Rep. 2002, 20, 203–212. [Google Scholar]
- Moller, N.; Gjedsted, J.; Gormsen, L.; Fuglsang, J.; Djurhuus, C. Effects of growth hormone on lipid metabolism in humans. Growth Horm. Igf Res. 2003, 13 (Suppl. A), S18–S21. [Google Scholar] [CrossRef]
- Hua, G.H.; Chen, S.L.; Yu, J.N.; Cai, K.L.; Wu, C.J.; Li, Q.L.; Zhang, C.Y.; Liang, A.X.; Han, L.; Geng, L.Y.; et al. Polymorphism of the growth hormone gene and its association with growth traits in Boer goat bucks. Meat Sci. 2009, 81, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Wathes, D.C.; Clempson, A.M.; Pollott, G.E. Associations between lipid metabolism and fertility in the dairy cow. Reprod. Fertil. Dev. 2012, 25, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Vukasinovic, N.; Denise, S.K.; Freeman, A.E. Association of growth hormone loci with milk yield traits in Holstein bulls. J. Dairy Sci. 1999, 82, 788–794. [Google Scholar] [CrossRef]
- Barrera-Saldaña, H.A.; Ascacio-Martínez, J.A.; Sifuentes-Rincón, A.M.; Arellano-Vera, W.; Arbiza, S.I. Applications of biotechnology and genomics in goats. Small Rumin. Res. 2010, 89, 81–90. [Google Scholar] [CrossRef]
- Singh, U.; Deb, R.; Alyethodi, R.R.; Alex, R.; Kumar, S.; Chakraborty, S.; Dhama, K.; Sharma, A. Molecular markers and their applications in cattle genetic research: A review. BGM 2014, 6, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.F.; Quick, D.P.; Ewin, R.; Donelson, J.E.; Maurer, R.A. Nucleotide sequence of the bovine growth hormone chromosomal gene. Mol. Cell Endocrinol. 1983, 33, 81–95. [Google Scholar] [CrossRef]
- Hediger, R.; Johnson, S.E.; Barendse, W.; Drinkwater, R.D.; Moore, S.S.; Hetzel, J. Assignment of the growth hormone gene locus to 19q26-qter in cattle and to 11q25-qter in sheep by in situ hybridization. Genomics 1990, 8, 171–174. [Google Scholar] [CrossRef]
- Zhang, H.M.; Brown, D.R.; Denise, S.K.; Ax, R.L. Nucleotide sequence determination of a bovine somatotropin allele. Anim. Genet. 1992, 23, 578. [Google Scholar] [CrossRef]
- Schlee, P.; Graml, R.; Rottsmann, O.; Pirchner, F. Influence of growth-hormone genotypes on breeding values of Simmental bulls. J. Anim. Breed. Genet. 1994, 111, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.C.; Hauser, S.D.; Eppard, P.J.; Krivi, G.G.; Clark, J.H.; Bauman, D.E.; Collier, R.J. Variants of somatotropin in cattle: Gene frequencies in major dairy breeds and associated milk production. Domest. Anim. Endocrinol. 1993, 10, 325–333. [Google Scholar] [CrossRef]
- Sorensen, P.; Grochowska, R.; Holm, L.; Henryon, M.; Lovendahl, P. Polymorphism in the bovine growth hormone gene affects endocrine release in dairy calves. J. Dairy Sci. 2002, 85, 1887–1893. [Google Scholar] [CrossRef] [Green Version]
- Vijayakumar, A.; Novosyadlyy, R.; Wu, Y.; Yakar, S.; LeRoith, D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm. Igf Res. 2010, 20, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Mastrangelo, S.; Ciani, E.; Ajmone Marsan, P.; Bagnato, A.; Battaglini, L.; Bozzi, R.; Carta, A.; Catillo, G.; Cassandro, M.; Casu, S.; et al. Conservation status and historical relatedness of Italian cattle breeds. Genet. Sel. Evol. 2018, 50, 35. [Google Scholar] [CrossRef] [Green Version]
- Ceriotti, G.; Marletta, D.; Caroli, A.; Erhardt, G. Milk protein loci polymorphism in taurine (Bos taurus) and zebu (Bos indicus) populations bred in hot climate. J. Anim. Breed. Genet. 2004, 121, 404–415. [Google Scholar] [CrossRef]
- Guastella, A.M.; Sorbolini, S.; Zuccaro, A.; Pintus, E.; Bordonaro, S.; Marletta, D.; Macciotta, N.P.P. Melanocortin 1 receptor (MC1R) gene polymorphisms in three Italian cattle breeds. Anim. Prod. Sci. 2011, 51, 1039–1043. [Google Scholar] [CrossRef]
- Valenti, B.; Criscione, A.; Moltisanti, V.; Bordonaro, S.; De Angelis, A.; Marletta, D.; Di Paola, F.; Avondo, M. 2018 Genetic polymorphisms at candidate genes affecting fat content and fatty acid composition in Modicana cows: Effects on milk production traits in different feeding systems. Animal 2019, 13, 1332–1340. [Google Scholar] [CrossRef]
- Komisarek, J.; Michalak, A.; Walendowska, A. The effects of polymorphisms in DGAT1, GH and GHR genes on reproduction and production traits in Jersey cows. Anim. Sci. Pap. Rep. 2011, 29, 29–36. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luna, P.; Juárez, M.; de la Fuente, M.A. Validation of a rapid milk fat separation method to determine the fatty acid profile by gas chromatography. J. Dairy Sci. 2005, 88, 3377–3381. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Beauchemin, V.R.; Thomas, M.G.; Franke, D.E.; Silver, G.A. Evaluation of DNA polymorphisms involving growth hormone relative to growth and carcass characteristics in Brahman steers. Genet. Mol. Res. 2006, 5, 438–447. [Google Scholar] [PubMed]
- Kemenes, P.A.; Correia de Almeida Regitano, L.; Rosa, A.J.M.; Packer, I.U.; Razook, A.G.; Figueiredo, L.A.; Silva, N.A.; Etchegaray, M.A.L.; Coutinho, L.L. κ-casein, β-lactoglobulin and growth hormone allele frequencies and genetic distances in Nelore, Gyr, Guzerà, Caracu, Charolais, Canchim and Santa Gertrudis cattle. Genet. Mol. Biol. 1999, 22, 539–541. [Google Scholar] [CrossRef]
- Curi, R.A.; Palmieri, D.A.; Suguisawa, L.; de Oliveira, H.N.; Silveira, A.C.; Lopes, C.R. Growth and carcass traits associated with GH1/Alu I and POU1F1/Hinf I gene polymorphisms in Zebu and crossbred beef cattle. Genet. Mol. Biol. 2006, 29, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Sabour, M.P.; Lin, C.Y.; Smith, C. Association of genetics variants of bovine growth hormone with milk production traits in Holstein cattle. J. Anim. Breed. Genet. 1997, 144, 435–442. [Google Scholar] [CrossRef]
- Akyüz, B.; Ağaoğlu, O.K.; Akçay, A.; Ağaoğlu, A.R. Effects of dgat1 and gh1 polymorphism on milk yield in holstein cows reared in Turkey. Slov. Vet. Res. 2015, 52, 185–191. [Google Scholar]
- Dario, C.; Carnicella, D.; Bufano, G. A note on the growth hormone (GH1-AluI) polymorphism in Podolian cattle in Southern Italy. Anim. Sci. Pap. Rep. 2005, 23, 43–49. [Google Scholar]
- Korkmaz Agaoglu, O.; Akyuz, B. Growth hormone gene polymorphism in four cattle breeds in Turkey. Kafkas Univ. Vet Fak. Derg. 2013, 19, 419–422. [Google Scholar]
- Di Stasio, L.; Sartore, S.; Albera, A. Lack of association of GH1 and POU1F1 gene variants with meat production traits in Piemontese cattle. Anim. Genet. 2002, 33, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Dybus, A.; Kmiec, M.; Bogdan, W.; Wierzbicki, H. Polymorphism of the growth hormone gene in Limousine cattle. Czech J. Anim. Sci. 2002, 47, 76–79. [Google Scholar]
- Shariflou, M.R.; Moran, C.; Nicholas, F.W. Association of the Leu127 variant of the bovine growth hormone (bGH) gene with increased yield of milk, fat, and protein in Australian Holstein-Friesians. Aust. J. Agric. Res. 2000, 51, 515–522. [Google Scholar] [CrossRef]
- Čítek, J.; Řehout, V.; Bláhová, B.; Pávková, J.; Panicke, L. The genetic divergence among cattle breeds on candidate loci. FBN Dummerstorf Schr. 2005, 15, 43–48. [Google Scholar]
- Cowie, A.T.; Forsyth, I.A.; Hart, I.C. Hormonal Control of Lactation; Springer: Berlin, Germany, 1980. [Google Scholar]
- Dario, C.; Carnicella, D.; Ciotola, F.; Peretti, V.; Bufano, G. Polymorphism of Growth Hormone GH1-AluI in Jersey Cows and Its Effect on Milk Yield and Composition January. Asian-Aust. J. Anim. Sci. 2008, 21, 1–5. [Google Scholar] [CrossRef]
- Heidari, M.; Azari, M.A.; Hasani, S.; Khanahmadi, A.; Zerehdaran, S. Effect of polymorphic variants of GH, Pit-1, and β-LG genes on milk production of Holstein cows. Russ. J. Genet. 2012, 48, 417–421. [Google Scholar] [CrossRef]
- Dybus, A. Associations between Leu/Val polymorphism of growth hormone gene and milk production traits in Black and White cattle. Arch. Tierz. Dummerstorf. 2002, 45, 421–428. [Google Scholar]
- Kovács, K.; Völgyi-Csík, J.; Zsolnai, A.; Györkös, I.; Fésüs, L. Associations between the AluI polymorphism of growth hormone gene and production and reproduction traits in a Hungarian Holstein-Friesian bull dam population. Arch. Anim. Breed. 2006, 49, 236–249. [Google Scholar] [CrossRef]
- Moravčíková, N.; Trakovická, A.; Hazuchová, E. The association of bovine growth hormone gene polymorphism with milk performance traits in Slovak Spotted cows. Scient. Pap. Anim. Sci. Biotech. 2012, 45, 206–210. [Google Scholar]
- Hadi, Z.; Atashi, H.; Dadpasand, M.; Derakhshandeh, A.; Ghahramani Seno, M.M. The relationship between growth hormone polymorphism and growth hormone receptor genes with milk yield and reproductive performance in Holstein dairy cows. Iran. J. Vet. Res. 2015, 16, 244–248. [Google Scholar]
- Yardibi, H.; Hosturk, G.T.; Paya, I.; Kaygisiz, F.; Ciftioglu, G.; Mengi, A.; Oztabak, K. Associations of growth hormone gene polymorphisms with milk production traits in South Anatolian and East Anatolian Red Cattle. J. Anim. Vet. Adv. 2009, 8, 1040–1044. [Google Scholar]
- Maharani, D.; Jung, Y.; Jung, W.Y.; Jo, C.; Ryoo, S.H.; Lee, S.H.; Yeon, S.H.; Lee, J.H. Association of five candidate genes with fatty acid composition in Korean cattle. Mol. Biol. Rep. 2012, 39, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M.; Barbano, D.M.; Bauman, D.E.; Hartnell, G.F.; Nemeth, M.A. Effect of a Prolonged-Release Formulation of N-methionyl Bovine Somatotropin (Sometribove) on Milk Fat. J. Dairy Sci. 1992, 75, 1794–1809. [Google Scholar] [CrossRef]
- Lough, D.S.; Muller, L.D.; Kensinger, R.S.; Griel, L.C., Jr.; Azzara, C.D. Effect of exogenous bovine somatotropin on mammary lipid metabolism and milk yield in lactating dairy cows. J. Dairy Sci. 1989, 72, 1469–1476. [Google Scholar] [CrossRef]
- Marty, B.J.; Block, E. Effects of dietary fat supplementation and recombinant bovine somatotropin on milk production nutritional status and lipid metabolism of dairy cows. Can. J. Anim. Sci. 1992, 72, 633–649. [Google Scholar] [CrossRef]
- Apps, P.; Giesecke, W.; Petzer, I.M.; Corné Willemse, J. Effects of recombinant bovine somatotropin on fatty acid composition of milk from cows in late lactation. S. Afr. J. Anim. Sci. 1993, 23, 27–30. [Google Scholar]
- Eppard, P.J.; Bauman, D.E.; McCutcheon, S.N. Effect of dose of bovine growth hormone on lactation of dairy cows. J. Dairy Sci. 1985, 68, 1109–1115. [Google Scholar] [CrossRef]
- Nogalski, Z.; Wroński, M.; Sobczuk-Szul, M.; Mochol, M.; Pogorzelska, P. The effect of body energy reserve mobilization on the fatty acid profile of milk in high-yielding cows. Asian-Australas. J. Anim. Sci. 2012, 25, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Arnould, V.M.R.; Reding, R.; Bormann, J.; Gengler, N.; Soyeurt, H. Review: Milk composition as management tool of sustainability. Biotechnol. Agron. Soc. Environ. 2013, 17, 613–621. [Google Scholar]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and animal factors influencing milk fat composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Villeneuve, M.-P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.F.; Vuillemard, J.C.; Fortin, J.; Chouinard, P.Y. Milk volatile organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Masucci, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Di Francia, A. Fatty acid and sensory profile of Caciocavallo cheese as affected by managemebnt system. J. Dairy Sci. 2014, 97, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitman, J.; Wood, D.L.; Tyrrwil, H.F.; Bauman, D.E.; Peel, C.J.; Brown, A.C.G.; Reynolds, P.J. Blood and milk lipid responses induced by growth hormone administration in lactating cows. J. Dairy Sci. 1984, 67, 2873–2880. [Google Scholar] [CrossRef]
Growth Hormone GH p.L127V | ||||||
---|---|---|---|---|---|---|
N | LL | LV | VV | L | V | |
SI Farm | 118 | 73 | 43 | 2 | 0.80 | 0.20 |
(0.62) | (0.36) | (0.02) | ||||
EX Farm | 70 | 47 | 21 | 2 | 0.82 | 0.18 |
(0.67) | (0.30) | (0.03) | ||||
Total | 188 | 120 | 64 | 4 | 0.81 | 0.19 |
(0.64) | (0.34) | (0.02) |
GH Genotype (G) | Feeding System (S) | Significance | SEM | |||||
---|---|---|---|---|---|---|---|---|
LL | LV | EX | SI | G | S | G × S | ||
Milk yield kg/d | 9.49 | 9.72 | 8.59 | 10.6 | 0.680 | 0.001 | 0.188 | 3.67 |
Fat % | 4.09 | 3.90 | 4.00 | 3.99 | 0.250 | 0.962 | 0.856 | 0.287 |
Protein % | 3.64 | 3.67 | 3.57 | 3.74 | 0.643 | 0.010 | 0.990 | 0.063 |
Lactose % | 4.45 | 4.46 | 4.57 | 4.33 | 0.871 | 0.001 | 0.227 | 0.034 |
Casein % | 2.78 | 2.78 | 2.75 | 2.81 | 0.952 | 0.338 | 0.560 | 0.046 |
GH Genotype (G) | Feeding System (S) | Significance | SEM | |||||
---|---|---|---|---|---|---|---|---|
LL | LV | EX | SI | G | S | G × S | ||
4:0 | 1.99 | 2.18 | 2.24 | 1.94 | 0.084 | 0.006 | 0.387 | 0.129 |
6:0 | 1.61 | 1.78 | 1.82 | 1.58 | 0.041 | 0.006 | 0.210 | 0.076 |
8:0 | 1.14 | 1.25 | 1.26 | 1.13 | 0.046 | 0.021 | 0.176 | 0.035 |
10:0 | 2.74 | 3.01 | 2.93 | 2.81 | 0.062 | 0.400 | 0.142 | 0.220 |
12:0 | 3.32 | 3.57 | 3.28 | 3.61 | 0.104 | 0.038 | 0.166 | 0.261 |
12:1 | 0.20 | 0.21 | 0.17 | 0.24 | 0.699 | 0.001 | 0.177 | 0.001 |
14:0 | 11.1 | 11.7 | 10.7 | 12.1 | 0.114 | 0.001 | 0.316 | 1.337 |
15:0 iso | 0.40 | 0.40 | 0.36 | 0.45 | 0.891 | 0.001 | 0.195 | 0.003 |
15:0 anteiso | 0.79 | 0.80 | 0.77 | 0.82 | 0.839 | 0.063 | 0.353 | 0.007 |
14:1 c9 | 0.90 | 0.90 | 0.68 | 1.12 | 0.918 | 0.001 | 0.915 | 0.070 |
15:0 | 1.58 | 1.59 | 1.58 | 1.59 | 0.830 | 0.661 | 0.081 | 0.014 |
16:0 | 29.2 | 28.9 | 26.8 | 31.3 | 0.708 | 0.001 | 0.861 | 7.784 |
17:0 iso | 0.47 | 0.46 | 0.44 | 0.48 | 0.360 | 0.003 | 0.374 | 0.002 |
17:0 anteiso | 0.59 | 0.56 | 0.46 | 0.70 | 0.350 | 0.001 | 0.164 | 0.008 |
16:1 c9 | 1.47 | 1.28 | 1.17 | 1.59 | 0.023 | 0.001 | 0.596 | 0.077 |
17:0 | 0.76 | 0.73 | 0.79 | 0.69 | 0.307 | 0.002 | 0.173 | 0.011 |
18:0 | 9.15 | 9.16 | 9.96 | 8.36 | 0.980 | 0.001 | 0.519 | 1.643 |
18:1 t11 | 1.42 | 1.45 | 2.12 | 0.75 | 0.757 | 0.001 | 0.594 | 0.096 |
18:1 c9 | 20.9 | 19.3 | 19.9 | 20.2 | 0.016 | 0.679 | 0.038 | 4.734 |
18:2 c9c12 | 1.65 | 1.64 | 1.63 | 1.66 | 0.819 | 0.583 | 0.095 | 0.041 |
20:0 | 0.22 | 0.20 | 0.20 | 0.22 | 0.223 | 0.137 | 0.541 | 0.002 |
18:3 c9c12c15 | 0.81 | 0.81 | 1.14 | 0.49 | 0.988 | 0.001 | 0.702 | 0.016 |
18:2 c9t11 | 0.69 | 0.66 | 0.93 | 0.42 | 0.584 | 0.001 | 0.908 | 0.018 |
SFA | 60.7 | 61.9 | 59.4 | 63.2 | 0.259 | 0.001 | 0.551 | 0.570 |
MUFA | 24.6 | 22.9 | 23.4 | 24.2 | 0.013 | 0.247 | 0.053 | 0.334 |
PUFA | 3.61 | 3.70 | 4.37 | 2.94 | 0.491 | <0.001 | 0.659 | 0.115 |
UFA | 30.2 | 28.5 | 30.5 | 28.2 | 0.035 | 0.005 | 0.104 | 0.409 |
UFA/SFA | 0.50 | 0.47 | 0.52 | 0.45 | 0.141 | 0.001 | 0.313 | 0.080 |
AI | 2.76 | 3.08 | 2.73 | 3.10 | 0.061 | 0.033 | 0.149 | 0.086 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordonaro, S.; Tumino, S.; Marletta, D.; De Angelis, A.; Di Paola, F.; Avondo, M.; Valenti, B. Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals 2020, 10, 1651. https://doi.org/10.3390/ani10091651
Bordonaro S, Tumino S, Marletta D, De Angelis A, Di Paola F, Avondo M, Valenti B. Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals. 2020; 10(9):1651. https://doi.org/10.3390/ani10091651
Chicago/Turabian StyleBordonaro, Salvatore, Serena Tumino, Donata Marletta, Anna De Angelis, Fortunato Di Paola, Marcella Avondo, and Bernardo Valenti. 2020. "Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows" Animals 10, no. 9: 1651. https://doi.org/10.3390/ani10091651
APA StyleBordonaro, S., Tumino, S., Marletta, D., De Angelis, A., Di Paola, F., Avondo, M., & Valenti, B. (2020). Effect of GH p.L127V Polymorphism and Feeding Systems on Milk Production Traits and Fatty Acid Composition in Modicana Cows. Animals, 10(9), 1651. https://doi.org/10.3390/ani10091651