Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, and Dietary Treatments
2.2. Feed Intake, Sampling and Analysis
2.3. Milk Sampling and Analysis
2.4. Calculation of Feed Efficiency Parameters
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition of Hazelnut Skin and Experimental Diets
3.2. Intake of Dry matter, Fatty Acids, Phenolic Compounds, and Tocopherols
3.3. Milk Yield and Milk Main Constituents
3.4. Milk Fatty Acid Profile
3.5. Milk Tocopherol Content
3.6. Feed Conversion Efficiency and Diet Cost
4. Discussion
4.1. Chemical Composition of Hazelnut Skin
4.2. Dry Matter Intake, Milk Yield, and Milk Main Constituents
4.3. Milk Fatty Acid Profile
4.4. Milk Tocopherol Content
4.5. Feed Conversion Efficiency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- INC (International Nut and Dried Fruits) Nuts and Dried Fruits. Statistical Yearbook 2018/2019. Available online: https://www.nutfruit.org/files/tech/1553521370_INC_Statistical_Yearbook_2018.pdf (accessed on 3 October 2019).
- FAOSTAT 2020. Available online: http://www.fao.org/faostat/en/#data (accessed on 13 July 2020).
- Ramalhosa, E.; Delgado, T.; Estevinho, L.; Pereira, J.A. Hazelnut (Corylus avellana L.) Cultivars and Antimicrobial Activity. In Nuts and Seeds in Health and Disease Prevention, 1st ed.; Preedy, C., Watson, R., Eds.; Academic Press: London, UK, 2011; pp. 627–636. [Google Scholar] [CrossRef]
- Shahidi, F.; Alasalvar, C.; Liyana-Pathirana, C.M. Antioxidant Phytochemicals in Hazelnut Kernel (Corylus avellana L.) and Hazelnut Byproducts. J. Agric. Food Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Esposito, T.; Sansone, F.; Franceschelli, S.; Del Gaudio, P.; Picerno, P.; Aquino, R.P.; Mencherini, T. Hazelnut (Corylus avellana L.) Shells Extract: Phenolic Composition, Antioxidant Effect and Cytotoxic Activity on Human Cancer Cell Lines. Int. J. Mol. Sci. 2017, 18, 392. [Google Scholar] [CrossRef]
- Pérez-Armada, L.; Rivas, S.; González, B.; Moure, A. Extraction of phenolic compounds from hazelnut shells by green processes. J. Food Eng. 2019, 255, 1–8. [Google Scholar] [CrossRef]
- Bottone, A.; Cerulli, A.; DʼUrso, G.; Masullo, M.; Montoro, P.; Napolitano, A.; Piacente, S. Plant Specialized Metabolites in Hazelnut (Corylus avellana) Kernel and Byproducts: An Update on Chemistry, Biological Activity, and Analytical Aspects. Planta Med. 2019, 85, 840–855. [Google Scholar] [CrossRef] [Green Version]
- Masullo, M.; Cerulli, A.; Mari, A.; de Souza Santos, C.C.; Pizza, C.; Piacente, S. LC-MS profiling highlights hazelnut (Nocciola di Giffoni PGI) shells as a byproduct rich in antioxidant phenolics. Food Res. Int. 2017, 101, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Şenol, H. Biogas potential of hazelnut shells and hazelnut wastes in Giresun City. Biotechnol. Rep. 2019, 24, e00361. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Karamać, M.; Kosińska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant Activity of Hazelnut Skin Phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef] [PubMed]
- Piccinelli, A.L.; Pagano, I.; Esposito, T.; Mencherini, T.; Porta, A.; Petrone, A.M.; Gazzerro, P.; Picerno, P.; Sansone, F.; Rastrelli, L.; et al. HRMS Profile of a Hazelnut Skin Proanthocyanidin-Rich Fraction with Antioxidant and Anti-Candida albicans Activities. J. Agr. Food Chem. 2016, 64, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Mattonai, M.; Licursi, D.; Antonetti, C.; Raspolli Galletti, A.M.; Ribechini, E. Py-GC/MS and HPLC-DAD characterization of hazelnut shell and cuticle: Insights into possible re-evaluation of waste biomass. J. Anal. Appl. Pyrolysis 2017, 127, 321–328. [Google Scholar] [CrossRef]
- Tas, N.G.; Gökmen, V. Bioactive compounds in different hazelnut varieties and their skins. J. Food Compost. Anal. 2015, 43, 203–208. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef]
- Košťálová, Z.; Hromádková, Z. Structural characterisation of polysaccharides from roasted hazelnut skins. Food Chem. 2019, 286, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Ozyurt, V.H.; Otles, S. Hazelnut testa as a by-product: Nutritional composition, antioxidant activity, phenolic compound profile and dietary fiber content. J. Fac. Pharm. Ankara 2018, 42, 38–57. [Google Scholar] [CrossRef]
- Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rolle, L.; et al. The effect of hazelnut roasted skin from different cultivars on the quality attributes, polyphenol content and texture of fresh egg pasta. J. Sci. Food Agric. 2015, 95, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT Food Sci. Technol. 2015, 63, 1145–1154. [Google Scholar] [CrossRef] [Green Version]
- Longato, E.; Meineri, G.; Peiretti, P.G.; Gai, F.; Viuda-Martos, M.; Pérez-Álvarez, J.A.; Amarowicz, R.; Fernández-López, J. Effects of hazelnut skin addition on the cooking, antioxidant and sensory properties of chicken burgers. J. Food Sci. Technol. 2019, 56, 3329–3336. [Google Scholar] [CrossRef]
- Cikrikci, S.; Demirkesen, I.; Mert, B. Production of hazelnut skin fibres and utilisation in a model bakery product. Qual. Assur. Saf. Crop. 2016, 8, 195–206. [Google Scholar] [CrossRef]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in Feeding and Nutrition of Dairy Small Ruminants? Animals 2019, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Kasapidou, E.; Sossidou, E.; Mitlianga, P. Fruit and Vegetable Co-Products as Functional Feed Ingredients in Farm Animal Nutrition for Improved Product Quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Candellone, A.; Peiretti, P.G.; Binello, A.; Bergagna, S.; Meineri, G. Effect of linseed diet and hazelnut skin supplementation on oxidative status and blood serum metabolites in rabbits. Prog. Nutr. 2019, 21, 631–640. [Google Scholar] [CrossRef]
- Cetinkaya, N.; Kuleyin, Y.S. Evaluation of Hazelnut Hulls as an Alternative Forage Resource for Ruminant Animals. Int. J. Agric. Biosyst. Eng. 2016, 10, 319–322. [Google Scholar] [CrossRef]
- Caccamo, M.; Valenti, B.; Luciano, G.; Priolo, A.; Rapisarda, T.; Belvedere, G.; Marino, V.M.; Esposto, S.; Taticchi, A.; Servili, M.; et al. Hazelnut as Ingredient in Dairy Sheep Diet: Effect on Sensory and Volatile Profile of Cheese. Front. Nutr. 2019, 6, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campione, A.; Natalello, A.; Valenti, B.; Luciano, G.; Rufino-Moya, P.J.; Avondo, M.; Morbidini, L.; Pomente, C.; Krol, B.; Wilk, M.; et al. Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes. Animals 2020, 10, 588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 16th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th revised ed.; Subcommittee on Dairy Cattle Nutrition, Committee on Animal Nutrition, Board on Agriculture and Natural Resources National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Dabbou, S.; Gai, F.; Renna, M.; Rotolo, L.; Dabbou, S.; Lussiana, C.; Kovitvadhi, A.; Brugiapaglia, A.; De Marco, M.; Helal, A.N.; et al. Inclusion of bilberry pomace in rabbit diets: Effects on carcass characteristics and meat quality. Meat Sci. 2017, 124, 77–83. [Google Scholar] [CrossRef]
- Renna, M.; Gasmi-Boubaker, A.; Lussiana, C.; Battaglini, L.M.; Belfayez, K.; Fortina, R. Fatty Acid Composition of the Seed Oils of Selected Vicia L. Taxa from Tunisia. Ital. J. Anim. Sci. 2014, 13, 308–316. [Google Scholar] [CrossRef]
- Iussig, G.; Renna, M.; Gorlier, A.; Lonati, M.; Lussiana, C.; Battaglini, L.M.; Lombardi, G. Browsing ratio, species intake, and milk fatty acid composition of goats foraging on alpine open grassland and grazable forestland. Small Rumin. Res. 2015, 132, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Ravetto Enri, S.; Probo, M.; Renna, M.; Caro, E.; Lussiana, C.; Battaglini, L.M.; Lombardi, G.; Lonati, M. Temporal variations in leaf traits, chemical composition and in vitro true digestibility of four temperate fodder tree species. Anim. Prod. Sci. 2020, 60, 643–658. [Google Scholar] [CrossRef]
- Cairoli, C. Determinazione Della Vitamina E Tramite HPLC-MS in Latte Vaccino (English: Determination of Vitamin E in Bovine Milk by HPLC-MS). Master’s Thesis, Dept. of Chemistry, University of Torino, Torino, Italy, 15 December 2017. [Google Scholar]
- Plozza, T.; Trenerry, V.C.; Caridi, D. The simultaneous determination of vitamins A, E and ß-carotene in bovine milk by high performance liquid chromatography–ion trap mass spectrometry (HPLC–MSn). Food Chem. 2012, 134, 559–563. [Google Scholar] [CrossRef]
- Lanina, S.A.; Toledo, P.; Sampels, S.; Kamal-Eldin, A.; Jastrebova, J.A. Comparison of reversed-phase liquid chromatography–massspectrometry with electrospray and atmospheric pressure chemical ionization for analysis of dietary tocopherols. J. Chromatogr. A. 2007, 1157, 159–170. [Google Scholar] [CrossRef]
- Cornale, P.; Renna, M.; Lussiana, C.; Bigi, D.; Chessa, S.; Mimosi, A. The Grey Goat of Lanzo Valleys (Fiurinà): Breed characteristics, genetic diversity, and quantitative-qualitative milk traits. Small Rumin. Res. 2014, 116, 1–13. [Google Scholar] [CrossRef]
- Orth, R. Sample day and lactation report. In DHIA 200 Fact Sheet A-2; Mid-States Dairy Records Processing Center (DRPC): Ames, IA, USA, 1992. [Google Scholar]
- Ertl, P.; Klocker, H.; Hortenhuber, S.; Knaus, W.; Zollitsch, W. The net contribution of dairy production to human food supply: The case of Austrian dairy farms. Agric. Syst. 2015, 137, 119–125. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Re-defining efficiency of feed use by livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Sauvant, D.; Delaby, L.; Noziere, P. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; p. 640. [Google Scholar]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanović, S.; Avramović, N.; Dojčinović, B.; Trifunović, S.; Novaković, M.; Tešević, V.; Mandić, B. Chemical Composition, Total Phenols and Flavonoids Contents and Antioxidant Activity as Nutritive Potential of Roasted Hazelnut Skins (Corylus avellana L.). Foods 2020, 9, 430. [Google Scholar] [CrossRef] [Green Version]
- Chang, S.K.; Alasalvar, C.; Bolling, B.W.; Shahidi, F. Nuts and their co-products: The impact of processing (roasting) on phenolics, bioavailability and health benefits—A comprehensive review. J. Funct. Foods 2016, 26, 88–122. [Google Scholar] [CrossRef]
- Kornsteriner, M.; Wagner, K.H.; Elmadfa, I. Tocopherols and total phenolics in 10 different nut types. Food Chem. 2006, 98, 381–387. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date. Molecules 2020, 25, 43. [Google Scholar] [CrossRef] [Green Version]
- Król, K.; Gantner, M.; Piotrowska, A.; Hallmann, E. Effect of Climate and Roasting on Polyphenols and Tocopherols in the Kernels and Skin of Six Hazelnut Cultivars (Corylus avellana L.). Agriculture 2020, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A review. Animals 2019, 9, 856. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Alves, S.P.; Cappucci, A.; Cook, S.R.; Duarte, A.; Caldeira, R.M.; McAllister, T.A.; Bessa, R.J.B. Effects of Condensed and Hydrolyzable Tannins on Rumen Metabolism with Emphasis on the Biohydrogenation of Unsaturated Fatty Acids. J. Agric. Food Chem. 2018, 66, 3367–3377. [Google Scholar] [CrossRef] [PubMed]
- Tseu, R.J.; Junior, F.P.; Carvalho, R.F.; Sene, G.A.; Tropaldi, C.B.; Peres, A.H.; Rodrigues, P.H.M. Effect of tannins and monensin on feeding behaviour, feed intake, digestive parameters and microbial efficiency of nellore cows. Ital. J. Anim. Sci. 2020, 19, 262–273. [Google Scholar] [CrossRef] [Green Version]
- Frutos, P.; Hervás, G.; Natalello, A.; Luciano, G.; Fondevila, M.; Priolo, A.; Toral, P.G. Ability of tannins to modulate ruminal lipid metabolism and milk and meat fatty acid profiles. Anim. Feed Sci. Technol. 2020, in press. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Jenkins, T.C. A 100-Year Review: Fat feeding of dairy cows. J. Dairy Sci. 2017, 100, 10061–10077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tas, N.G.; Gökmen, V. Maillard reaction and caramelization during hazelnut roasting: A multiresponse kinetic study. Food Chem. 2017, 221, 1911–1922. [Google Scholar] [CrossRef]
- Mahesh, M.S.; Thakur, S.S.; Kumar, R.; Malik, T.A.; Gami, R. Nitrogen fractionation of certain conventional- and lesser-known by-products for ruminants. Anim. Nutr. 2017, 3, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Renna, M.; Cornale, P.; Lussiana, C.; Battaglini, L.M.; Turille, G.; Mimosi, A. Milk yield, gross composition and fatty acid profile of dual-purpose Aosta Red Pied cows fed separate concentrate-forage versus total mixed ration. Anim. Sci. J. 2014, 85, 37–45. [Google Scholar] [CrossRef]
- Wu, D.; Xu, L.; Tang, S.; Guan, L.; He, Z.; Guan, Y.; Tan, Z.; Han, X.; Zhou, C.; Kang, J.; et al. Influence of Oleic Acid on Rumen Fermentation and Fatty Acid Formation In Vitro. PLoS ONE 2016, 11, e0156835. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Pauselli, M.; Viti, C.; Minieri, S.; Pallara, G.; Roscini, V.; Rapaccini, S.; Trabalza Marinucci, M.; Lupi, P.; Conte, G.; et al. Milk fatty acid composition, rumen microbial population, and animal performances in response to diets rich in linoleic acid supplemented with chestnut or quebracho tannins in dairy ewes. J. Dairy Sci. 2015, 98, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Sales-Campos, H.; de Souza, P.R.; Peghini, B.C.; da Silva, J.S.; Cardoso, C.R. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Jahreis, G.; Dawczynski, C. Trans and conjugated fatty acids in dairy products: Cause for concern? In Milk and Dairy Foods. Their Functionality in Human Health and Disease; Givens, D.I., Ed.; Elsevier: Cambridge, MA, USA, 2020; pp. 87–120. [Google Scholar] [CrossRef]
- Guillocheau, E.; Penhoat, C.; Drouin, G.; Godet, A.; Catheline, D.; Legrand, P.; Rioux, V. Current intakes of trans-palmitoleic (trans-C16:1 n-7) and trans-vaccenic (trans-C18:1 n-7) acids in France are exclusively ensured by ruminant milk and ruminant meat: A market basket investigation. Food Chem. X 2020, 5, 100081. [Google Scholar] [CrossRef] [PubMed]
- Den Hartigh, L.J. Conjugated Linoleic Acid Effects on Cancer, Obesity, and Atherosclerosis: A Review of Pre-Clinical and Human Trials with Current Perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ran-Ressler, R.R.; Glahn, R.P.; Bae, S.; Brenna, J.T. Branched-chain fatty acids in the neonatal gut and estimated dietary intake in infancy and adulthood. In The Importance of Immunonutrition; Makrides, M., Ochoa, J.B., Szajewska, H., Eds.; Karger Publishers: Basel, Switzerland, 2013; pp. 133–143. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Roseblade, A.; Rawling, T. Expansion of the structure-activity relationship of branched chain fatty acids: Effect of unsaturation and branching group size on anticancer activity. Chem. Phys. Lipids 2020, 104952, in press. [Google Scholar] [CrossRef]
- Gómez Candela, C.; Bermejo López, L.M.; Loria Kohen, V. Importance of a balanced omega 6/omega 3 ratio for the maintenance of health. Nutritional recommendations. Nutr. Hosp. 2011, 26, 323–329. [Google Scholar] [CrossRef]
- Baldi, A.; Pinotti, L. Lipophilic Microconstituents of Milk. In Bioactive Components of Milk; Bösze, Z., Ed.; Springer: New York, NY, USA, 2008; pp. 109–125. [Google Scholar] [CrossRef]
- Politis, I. Reevaluation of vitamin E supplementation of dairy cows: Bioavailability, animal health and milk quality. Animal 2012, 6, 1427–1434. [Google Scholar] [CrossRef] [Green Version]
- Havemose, M.S.; Weisbjerg, M.R.; Bredie, W.L.P.; Poulsen, H.D.; Nielsen, J.H. Oxidative Stability of Milk Influenced by Fatty Acids, Antioxidants, and Copper Derived from Feed. J. Dairy Sci. 2006, 89, 1970–1980. [Google Scholar] [CrossRef]
- Weiss, W.P.; Spears, J.W. Vitamin and trace mineral effects on immune function of ruminants. In Ruminant Physiology. Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress, 1st ed.; Sejrsen, K., Hvelplund, T., Nielsen, M.O., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 473–496. [Google Scholar]
- Sahlin, A.; House, J.D. Enhancing the vitamin content of meat and eggs: Implications for the human diet. Can. J. Anim. Sci. 2006, 86, 181–195. [Google Scholar] [CrossRef]
- Jensen, R.J. E—Fat-soluble vitamins in bovine milk. In Handbook of Milk Composition; Jensen, R.G., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 718–726. [Google Scholar] [CrossRef]
- Nozière, P.; Grolier, P.; Durand, D.; Ferlay, A.; Pradel, P.; Martin, B. Variations in Carotenoids, Fat-Soluble Micronutrients, and Color in Cows’ Plasma and Milk Following Changes in Forage and Feeding Level. J. Dairy Sci. 2006, 89, 2634–2648. [Google Scholar] [CrossRef] [Green Version]
- Kalač, P. Effects of Forage Feeding on Milk: Bioactive Compounds and Flavor, 1st ed.; Academic Press: London, UK, 2017; pp. 59–85. [Google Scholar]
- Marino, V.M.; Schadt, I.; Carpino, S.; Caccamo, M.; La Terra, S.; Guardiano, C.; Licitra, G. Effect of Sicilian pasture feeding management on content of α-tocopherol and β-carotene in cow milk. J. Dairy Sci. 2014, 97, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Agabriel, C.; Cornu, A.; Journal, C.; Sibra, C.; Grolier, P.; Martin, B. Tanker Milk Variability According to Farm Feeding Practices: Vitamins A and E, Carotenoids, Color, and Terpenoids. J. Dairy Sci. 2007, 90, 4884–4896. [Google Scholar] [CrossRef]
- Slots, T.; Butler, G.; Leifert, C.; Kristensen, T.; Skibsted, L.H.; Nielsen, J.H. Potentials to differentiate milk composition by different feeding strategies. J. Dairy Sci. 2009, 92, 2057–2066. [Google Scholar] [CrossRef] [Green Version]
- Havemose, M.S.; Weisbjerg, M.R.; Bredie, W.L.P.; Nielsen, J.H. Influence of feeding different types of roughage on the oxidative stability of milk. Int. Dairy J. 2004, 14, 563–570. [Google Scholar] [CrossRef]
- Čolović, D.; Rakita, S.; Banjac, V.; Đuragić, O.; Čabarkapa, I. Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. Food Rev. Int. 2019, 35, 363–389. [Google Scholar] [CrossRef]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Guil-Guerrero, J.; Ramos, L.; Moreno, C.; Zúñiga-Paredes, J.; Carlosama-Yépez, M.; Ruales, P. Plant-food by-products to improve farm-animal health. Anim. Feed Sci. Technol. 2016, 220, 121–135. [Google Scholar] [CrossRef]
- Beitz, D.C. Contributions of animal products to healthy diets. In Proceedings of the Cornell Nutrition Conference for Feed Manufacture, East Syracuse, NY, USA, 18–20 October 2005; Cornell University Press: Ithaca, NY, USA, 2005; pp. 117–126. [Google Scholar]
- Hayes, K.C.; Pronczuk, A.; Perlman, D. Vitamin E in fortified cow milk uniquely enriches human plasma lipoproteins. Am. J. Clin. Nutr. 2001, 74, 211–218. [Google Scholar] [CrossRef]
- Eisler, M.C.; Lee, M.R.F.; Tarlton, J.F.; Martin, G.B.; Beddington, J.; Dungait, J.A.J.; Greathead, H.; Lui, J.; Mathew, S.; Miller, H.; et al. Steps to sustainable livestock. Nature 2014, 507, 32–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schader, C.; Muller, A.; El-Hage Scialabba, N.; Hecht, J.; Isensee, A.; Erb, K.-H.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F.; et al. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 20150891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertl, P.; Zebeli, Q.; Zollitsch, W.; Knaus, W. Feeding of by-products completely replaced cereals and pulses in dairy cows and enhanced edible feed conversion ratio. J. Dairy Sci. 2015, 98, 1225–1233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, D.; Yan, T.; Trevisi, E.; Krizsan, S.J. Effect of grain- or by-product-based concentrate fed with early- or late- harvested first-cut grass silage on dairy cow performance. J. Dairy Sci. 2018, 101, 7133–7145. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, J.; Spörndly, R.; Lindberg, M.; Holtenius, K. Replacing human-edible feed ingredients with by-products increases net food production efficiency in dairy cows. J. Dairy Sci. 2018, 101, 7146–7155. [Google Scholar] [CrossRef] [Green Version]
- Bonanno, A.; Di Grigoli, A.; Todaro, M.; Alabiso, M.; Vitale, F.; Di Trana, A.; Giorgio, D.; Settanni, L.; Gaglio, R.; Laddomada, B.; et al. Improvement of Oxidative Status, Milk and Cheese Production, and Food Sustainability Indexes by Addition of Durum Wheat Bran to Dairy Cows’ Diet. Animals 2019, 9, 698. [Google Scholar] [CrossRef] [Green Version]
Feedstuffs | Diets 1,2 | |||||
---|---|---|---|---|---|---|
Parameter | Hay 1st Cut | Hay 2nd Cut | Concentrate 3 | HS | CTRL | HAZ |
Main nutrients (g/kg DM) unless otherwise stated) | ||||||
DM (g/kg) | 893 | 881 | 882 | 955 | 887 | 890 |
Ash | 79 | 119 | 75 | 23 | 87 | 85 |
CP | 77 | 127 | 192 | 62 | 121 | 115 |
RDP (% CP) | 66.8 | 69.5 | 70.1 | 8.0 | 69.2 | 67.3 |
EE | 23 | 27 | 34 | 224 | 27 | 37 |
NDF | 603 | 528 | 275 | 530 | 492 | 504 |
ADF | 379 | 354 | 127 | 492 | 301 | 319 |
ADL | 41 | 44 | 23 | 240 | 37 | 37 |
NSC 4 | 217 | 199 | 425 | 160 | 273 | 259 |
NEL (Mcal/kg DM) | 1.15 | 1.29 | 1.48 | 2.58 | 1.28 | 1.33 |
Fatty acids (g/kg DM) | ||||||
C12:0 | 0.13 | 0.28 | 0.01 | n.d. | 0.13 | 0.13 |
C14:0 | 0.16 | 0.20 | 0.06 | 0.14 | 0.14 | 0.14 |
C16:0 | 2.50 | 3.34 | 5.19 | 13.64 | 3.46 | 3.91 |
C16:1 t3 | 0.17 | 0.28 | n.d. | n.d. | 0.15 | 0.15 |
C16:1 c9 | 0.01 | 0.01 | 0.03 | 0.07 | 0.02 | 0.02 |
C18:0 | 0.29 | 0.35 | 1.00 | 4.36 | 0.51 | 0.68 |
C18:1 c9 | 0.69 | 0.51 | 10.70 | 171.48 | 3.49 | 11.89 |
C18:1 c11 | 0.06 | 0.06 | 0.45 | 4.05 | 0.17 | 0.36 |
C18:2 c9c12 | 2.42 | 2.69 | 10.04 | 23.95 | 4.65 | 5.40 |
C18:3 c6c9c12 | 0.03 | 0.04 | 0.01 | n.d. | 0.03 | 0.03 |
C18:3 c9c12c15 | 3.43 | 5.70 | 0.86 | 0.35 | 3.24 | 3.20 |
C20:0 | 0.16 | 0.12 | 0.09 | 0.26 | 0.13 | 0.14 |
C20:1 c9 | n.d. | n.d. | n.d. | 0.32 | 0.00 | 0.02 |
C22:0 | 0.14 | 0.14 | 0.10 | 0.10 | 0.13 | 0.13 |
Σ SFA | 3.38 | 4.42 | 6.45 | 18.49 | 4.50 | 5.13 |
Σ MUFA | 0.92 | 0.86 | 11.18 | 175.92 | 3.82 | 12.42 |
Σ PUFA | 5.88 | 8.43 | 10.90 | 24.30 | 7.91 | 8.62 |
TFA | 10.18 | 13.71 | 28.54 | 218.71 | 16.23 | 26.18 |
α-tocopherol | 23.93 | 25.26 | 35.68 | 153.74 | 27.58 | 33.76 |
δ-tocopherol | 2.05 | 7.31 | 1.17 | 67.28 | 3.04 | 6.47 |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Parameter | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
DM intake (kg/head/day) | ||||
Hays | 11.81 | 10.46 | *** | *** |
Concentrate | 5.30 | 5.36 | - 3 | - 3 |
Total | 17.07 | 15.81 | *** | *** |
FA intake (g/head/day) | ||||
C16:0 | 60.21 | 64.17 | *** | *** |
C18:0 | 8.99 | 11.85 | *** | *** |
C18:1 c9 | 64.06 | 217.56 | *** | *** |
C18:2 c9c12 | 82.74 | 93.42 | *** | *** |
C18:3 c9c12c15 | 53.78 | 47.81 | *** | *** |
Σ Other FA 4 | 14.93 | 17.67 | *** | *** |
Σ SFA | 78.04 | 85.07 | *** | *** |
Σ MUFA | 69.83 | 226.78 | *** | *** |
Σ PUFA | 136.90 | 141.57 | *** | *** |
TFA | 284.77 | 453.42 | *** | *** |
Tocopherols intake (mg/head/day) | ||||
α-tocopherol | 476.17 | 560.32 | *** | *** |
δ-tocopherol | 50.04 | 109.67 | *** | *** |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Parameter | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
Milk yield (kg/head × day) | 18.14 | 18.34 | ns | ns |
ECM 3 (kg/head × day) | 18.27 | 18.70 | ns | 0.08 |
Milk composition (g/kg) | ||||
Fat | 34.99 | 35.97 | ns | 0.06 |
Protein | 32.76 | 31.95 | 0.08 | ** |
Casein | 25.64 | 25.18 | ns | ns |
Lactose | 47.94 | 48.40 | ns | ns |
Component yield (g/head × day) | ||||
Fat | 625.62 | 657.69 | ns | * |
Protein | 588.16 | 581.81 | ns | ns |
Casein | 460.69 | 458.60 | ns | ns |
Lactose | 873.94 | 890.04 | ns | ns |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Fatty Acid | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
C4:0 | 25.31 | 26.96 | * | ns |
C5:0 | 0.10 | 0.08 | *** | ns |
C6:0 | 19.14 | 17.77 | *** | ns |
C7:0 | 0.12 | 0.06 | *** | ns |
C8:0 | 10.74 | 8.91 | *** | * |
C10:0 | 25.09 | 17.97 | *** | ** |
C12:0 | 30.31 | 20.54 | *** | ** |
C13:0 | 0.79 | 0.46 | *** | *** |
C14:0 | 107.05 | 84.48 | *** | ** |
C16:0 | 243.98 | 187.63 | *** | ** |
C17:0 | 4.66 | 4.16 | *** | ns |
C18:0 | 67.55 | 111.00 | *** | *** |
C19:0 | 0.21 | 0.36 | *** | *** |
C20:0 | 0.98 | 1.02 | ns | ns |
C22:0 | 0.38 | 0.30 | *** | ns |
C13 iso | 0.33 | 0.28 | *** | *** |
C13 anteiso | 0.79 | 0.52 | *** | * |
C14 iso | 1.60 | 1.45 | *** | ns |
C15 iso | 2.77 | 2.24 | *** | *** |
C15 anteiso | 5.11 | 4.08 | *** | ns |
C16 iso | 3.36 | 2.83 | *** | *** |
C17 iso | 2.98 | 2.69 | *** | ns |
C17 anteiso | 5.06 | 4.39 | *** | ns |
C18 iso | 0.08 | 0.04 | *** | * |
C18 anteiso | 1.56 | 1.36 | *** | ns |
Σ SFA | 578.57 | 515.72 | *** | * |
Σ BCFA | 23.64 | 19.86 | *** | ns |
Σ iso BCFA | 11.13 | 9.52 | *** | ns |
Σ anteiso BCFA | 12.52 | 10.34 | *** | ns |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Fatty Acid | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
C10:1 c9 | 2.98 | 2.16 | *** | * |
C12:1 c9 | 0.78 | 0.59 | *** | ns |
C14:1 t | 0.01 | 0.02 | ns | 0.07 |
C14:1 c9 + C15:0 | 18.52 | 14.15 | *** | ns |
C16:1 t | 0.50 | 0.68 | *** | *** |
C16:1 c9 | 7.98 | 5.91 | *** | ns |
C17:1 t | 0.39 | 0.36 | * | ns |
C18:1 t5 | 0.11 | 0.55 | *** | *** |
C18:1 t6–9 | 2.74 | 7.20 | *** | *** |
C18:1 t10–11 | 11.28 | 18.04 | *** | *** |
C18:1 t12–14 + c6–8 | 3.14 | 6.94 | *** | *** |
C18:1 c9 | 128.65 | 200.69 | *** | *** |
C18:1 c11 | 3.37 | 4.30 | *** | *** |
C18:1 c12 | 1.34 | 1.56 | *** | *** |
C18:1 c14 + t16 | 2.19 | 3.70 | *** | *** |
C20:1 t | 0.20 | 0.20 | ns | 0.06 |
C20:1 c9 | 0.84 | 0.85 | ns | ns |
C20:1 c11 | 0.25 | 0.30 | *** | *** |
Σ MUFA | 166.75 | 254.04 | *** | *** |
Σ C18:1 | 152.81 | 242.98 | *** | *** |
Σ C18:1 t | 19.46 | 36.43 | *** | *** |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Fatty Acid | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
C18:2 t,t NMID + t9t12 | 0.59 | 1.00 | *** | *** |
C18:2 c9t13 + t8c12 | 0.44 | 0.48 | 0.09 | *** |
C18:2 c9t12 | 0.72 | 1.18 | *** | *** |
C18:2 c,c MID + t8c13 | 0.74 | 1.12 | *** | ** |
C18:2 t11c15 | 1.70 | 1.48 | *** | *** |
C18:2 t9c12 | 0.69 | 0.58 | *** | ns |
C18:2 c9c12 | 9.13 | 9.96 | ** | ns |
C18:2 c9c15 | 0.15 | 0.13 | ** | ns |
C18:3 c6c9c12 | 0.07 | 0.06 | ** | * |
C18:3 c9c12c15 | 4.81 | 4.17 | *** | *** |
C18:2 c9t11 + t7c9 + t8c10 | 4.00 | 5.05 | *** | *** |
C18:2 t10c12 | 0.08 | 0.09 | 0.06 | ** |
C18:2 t11c13 + c9c11 | 0.09 | 0.10 | ns | ** |
C18:2 t9t11 | 0.07 | 0.06 | ** | 0.09 |
C20:2 c,c n6 | 0.10 | 0.09 | ns | ns |
C20:3 n6 | 0.29 | 0.26 | * | ns |
C20:4 n6 | 0.44 | 0.38 | *** | ns |
C20:5 n3 | 0.27 | 0.22 | *** | 0.08 |
C22:5 n3 | 0.24 | 0.21 | *** | ** |
Σ PUFA | 24.62 | 26.60 | *** | * |
Σ C18:2 | 5.03 | 5.96 | *** | *** |
Σ C18:2 t | 9.12 | 11.13 | *** | *** |
Σ CLA | 4.25 | 5.30 | *** | *** |
Σ n3 | 7.17 | 6.21 | *** | *** |
Σ n6 | 16.50 | 22.00 | *** | *** |
Σ n6/Σ n3 | 2.34 | 3.61 | *** | *** |
Dietary Treatment | Effects 2 | |||
---|---|---|---|---|
Parameter | CTRL (n = 13) | HAZ (n = 13) | DT | SD |
Feed efficiency 3 | 1.07 | 1.19 | ** | * |
heFCE | ||||
CP, g/g edible | 0.86 | 1.04 | *** | ns |
GE, MJ/MJ edible | 0.87 | 1.08 | *** | ns |
NFP | ||||
CP, g/d | −83.33 | 23.44 | *** | ns |
GE, MJ/d | −8.05 | 3.96 | *** | ns |
Diet cost (€/head × day) | 3.47 | 3.18 | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Renna, M.; Lussiana, C.; Malfatto, V.; Gerbelle, M.; Turille, G.; Medana, C.; Ghirardello, D.; Mimosi, A.; Cornale, P. Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows. Animals 2020, 10, 1653. https://doi.org/10.3390/ani10091653
Renna M, Lussiana C, Malfatto V, Gerbelle M, Turille G, Medana C, Ghirardello D, Mimosi A, Cornale P. Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows. Animals. 2020; 10(9):1653. https://doi.org/10.3390/ani10091653
Chicago/Turabian StyleRenna, Manuela, Carola Lussiana, Vanda Malfatto, Mathieu Gerbelle, Germano Turille, Claudio Medana, Daniela Ghirardello, Antonio Mimosi, and Paolo Cornale. 2020. "Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows" Animals 10, no. 9: 1653. https://doi.org/10.3390/ani10091653
APA StyleRenna, M., Lussiana, C., Malfatto, V., Gerbelle, M., Turille, G., Medana, C., Ghirardello, D., Mimosi, A., & Cornale, P. (2020). Evaluating the Suitability of Hazelnut Skin as a Feed Ingredient in the Diet of Dairy Cows. Animals, 10(9), 1653. https://doi.org/10.3390/ani10091653