Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Herd and Animal Selection for Original Sampling
2.3. Colostrum Sampling
2.4. Blood Sampling and Determination of Piglet Serum Immunoglobulins
2.5. Follow-up of the Study Pigs
2.6. Fecal Sampling of the Study Pigs
2.7. Study Pig Selection for Fecal Analysis
2.8. Determination of Fecal Lactic Acid Bacteria Composition
2.9. Statistical Analysis
3. Results
3.1. Sow Colostrum Quality, Piglet Immunoglobulins, and Pig Growth
3.2. Fecal Lactobacilli Count of Study Pigs
3.3. Diversity of the Fecal Lactobacilli Composition
4. Discussion
4.1. Colostrum and Serum Immunoglobulins
4.2. Growth of Study Pigs and Lactobacilli Count in Fecal Samples
4.3. Lactobacilli Diversity in Samples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Konstantinov, S.R.; Awati, A.; Williams, B.A.; Miller, B.G.; Jones, P.; Stokes, C.R.; Akkermans, A.D.; Smidt, H.; De Vos, W.M. Post-natal development of the porcine microbiota composition and activities. Environ. Microbiol. 2006, 8, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Ren, E.; Su, Y.; Zhu, W. Co-occurrence of early gut colonization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe 2018, 49, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Brade, W.; Distl, O. Die intestinale Mikrobiota bei Schweinen: Strukturen und Funktionen. Ber. Landwirtsch. Z. Agrarpolit. Landwirtsch. 2016, 49, 1–16. [Google Scholar] [CrossRef]
- Collado, M.C.; Rautava, S.; Aakko, J.; Isolauri, E.; Salminen, S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci. Rep. 2016, 6, 23129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynönen, U.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 2018, 8, 10437. [Google Scholar] [CrossRef]
- Husso, A.; Jalanka, J.; Alipour, M.J.; Huhti, P.; Kareskoski, M.; Pessa-Morikawa, T.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in horse. Sci. Rep. 2020, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Bian, G.; Ma, S.; Zhu, Z.; Su, Y.; Zoetendal, E.G.; Mackie, R.; Liu, J.; Mu, C.; Huang, R.; Smidt, H.; et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ. Microbiol. 2016, 18, 1566–1577. [Google Scholar] [CrossRef]
- Declerck, I.; Sarrazin, S.; Dewulf, J.; Maes, D. Sow and piglet factors determining variation of colostrum intake between and within litters. Animal 2017, 11, 1336–1343. [Google Scholar] [CrossRef] [Green Version]
- Le Dividich, J.; Charneca, R.; Thomas, F. Relationship between birth order, birth weight, colostrum intake, acquisition of passive immunity and pre-weaning mortality of piglets. Span. J. Agric. Res. 2017, 15, e0603. [Google Scholar] [CrossRef] [Green Version]
- Quesnel, H.; Brossard, L.; Valancogne, A.; Quiniou, N. Influence of some sow characteristics on within-litter variation of piglet birth weight. Animal 2008, 2, 1842–1849. [Google Scholar] [CrossRef] [Green Version]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Prod. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Cabrera, R.A.; Lin, X.; Campbell, J.M.; Moeser, A.J.; Odle, J. Influence of birth order, birth weight, colostrum and serum immunoglobulin G on neonatal piglet survival. J. Anim. Sci. Biotechnol. 2012, 3, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, C.V.; Sbardella, P.E.; Bernardi, M.L.; Coutinho, M.L.; Vaz, I.S., Jr.; Wentz, I.; Bortolozzo, F.P. Effect of birth weight and colostrum intake on mortality and performance of piglets after cross-fostering in sows of different parities. Prev. Vet. Med. 2014, 114, 259–266. [Google Scholar] [CrossRef]
- Hasan, S.; Orro, T.; Valros, A.; Junnikkala, S.; Peltoniemi, O.; Oliviero, C. Factors affecting sow colostrum yield and composition, and their impact on piglet growth and health. Livest. Sci. 2019, 227, 60–67. [Google Scholar] [CrossRef]
- Guevarra, R.B.; Hong, S.H.; Cho, J.H.; Kim, B.-R.; Shin, J.; Lee, J.H.; Na Kang, B.; Kim, Y.; Wattanaphansak, S.; Isaacson, R.E.; et al. The dynamics of the piglet gut microbiome during the weaning transition in association with health and nutrition. J. Anim. Sci. Biotechnol. 2018, 9, 54. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Huang, S.; Jiang, L.; Wang, W.; Li, T.; Zuo, B.; Li, Z.; Wang, J. Differences in the Gut Microbiota Establishment and Metabolome Characteristics Between Low- and Normal-Birth-Weight Piglets During Early-Life. Front. Microbiol. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Jiang, L.; Dai, Z.; Li, T.; Han, D.; Wang, J. Characterization of the Early Life Microbiota Development and Predominant Lactobacillus Species at Distinct Gut Segments of Low- and Normal-Birth-Weight Piglets. Front. Microbiol. 2019, 10, 797. [Google Scholar] [CrossRef]
- Zhang, D.; Ji, H.; Liu, H.; Wang, S.; Wang, J.; Wang, Y. Changes in the diversity and composition of gut microbiota of weaned piglets after oral administration of Lactobacillus or an antibiotic. Appl. Microbiol. Biotechnol. 2016, 100, 10081–10093. [Google Scholar] [CrossRef]
- Sommanustweechai, A.; Tangcharoensathien, V.; Yeung, S. Patterns of antibiotic use in global pig production: A systematic review. Vet. Anim. Sci. 2019, 7, 100058. [Google Scholar] [CrossRef]
- Vondruskova, H.; Slamova, R.; Trckova, M.; Zraly, Z.; Pavlik, I. Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Veterinární Medicína 2010, 55, 199–224. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roselli, M.; Pieper, R.; Rogel-Gaillard, C.; De Vries, H.; Bailey, M.; Smidt, H.; Lauridsen, C. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim. Feed. Sci. Technol. 2017, 233, 104–119. [Google Scholar] [CrossRef] [Green Version]
- Bogere, P.; Choi, Y.; Heo, J. Probiotics as alternatives to antibiotics in treating post-weaning diarrhoea in pigs: Review paper. S. Afr. J. Anim. Sci. 2019, 49, 403–416. [Google Scholar] [CrossRef] [Green Version]
- Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev. 2017, 279, 70–89. [Google Scholar] [CrossRef] [PubMed]
- Dowarah, R.; Verma, A.; Agarwal, N.; Patel, B.; Singh, P. Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livest. Sci. 2017, 195, 74–79. [Google Scholar] [CrossRef]
- Valeriano, V.; Balolong, M.; Kang, D.-K. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Koutsomanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Hilbert, F.; Lindqvist, R.; et al. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 12: Suitability of taxonomic units notified to EFSA until March 2020. EFSA J. 2020, 18, e06174. [Google Scholar] [CrossRef]
- Gaukroger, C.H.; Stewart, C.J.; Edwards, S.A.; Walshaw, J.; Adams, I.P.; Kyriazakis, I. Changes in Faecal Microbiota Profiles Associated With Performance and Birthweight of Piglets. Front. Microbiol. 2020, 11, 917. [Google Scholar] [CrossRef]
- Hasan, S.M.K.; Junnikkala, S.; Valros, A.; Peltoniemi, O.; Oliviero, C. Validation of Brix refractometer to estimate colostrum immunoglobulin G content and composition in the sow. Animal 2016, 10, 1728–1733. [Google Scholar] [CrossRef] [Green Version]
- Devillers, N.; Van Milgen, J.; Prunier, A.; Le Dividich, J. Estimation of colostrum intake in the neonatal pig. Anim. Sci. 2004, 78, 305–313. [Google Scholar] [CrossRef]
- Vallet, J.L.; Miles, J.; Rempel, L. A simple novel measure of passive transfer of maternal immunoglobulin is predictive of preweaning mortality in piglets. Vet. J. 2013, 195, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Schnier, S.; Middendorf, L.; Janssen, H.; Brüning, C.; Rohn, K.; Visscher, C. Immunocrit, serum amino acid concentrations and growth performance in light and heavy piglets depending on sow’s farrowing system. Porc. Health Manag. 2019, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Morton, J.M.; Langemeier, A.J.; Rathbun, T.J.; Davis, D.L. Immunocrit, colostrum intake, and preweaning body weight gain in piglets after split suckling based on birth weight or birth order1. Transl. Anim. Sci. 2019, 3, 1460–1465. [Google Scholar] [CrossRef]
- Holman, D.B.; Brunelle, B.W.; Trachsel, J.; Allen, H.K. Meta-analysis To Define a Core Microbiota in the Swine Gut. mSystems 2017, 2, e00004-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, J.; Xun, P.; Wang, X.; He, K.; Tang, Q.; Zhang, T.; Wang, Y.; Tang, W.; Lu, L.; Yan, W.; et al. Impact of Postnatal Antibiotics and Parenteral Nutrition on the Gut Microbiota in Preterm Infants During Early Life. J. Parenter. Enter. Nutr. 2020, 44, 639–654. [Google Scholar] [CrossRef]
- Kim, H.B.; Isaacson, R.E. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet. Microbiol. 2015, 177, 242–251. [Google Scholar] [CrossRef]
- Unno, T.; Kim, J.-M.; Guevarra, R.B.; Nguyen, S.G. Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota. J. Microbiol. Biotechnol. 2015, 25, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Mu, C.; Bian, G.; Su, Y.; Zhu, W. Differential Effects of Breed and Nursing on Early-Life Colonic Microbiota and Immune Status as Revealed in a Cross-Fostering Piglet Model. Appl. Environ. Microbiol. 2019, 85, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bin, P.; Li, Y.; Liu, S.; Chen, S.; Xia, Y.; Liu, J.; Wu, H.; Zhu, G. Intestinal microbiota mediates Enterotoxigenic Escherichia coli-induced diarrhea in piglets. BMC Vet. Res. 2018, 14, 385. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, C.; Liu, L.; Zhang, M. Lactobacillus reuteri KT260178 Supplementation Reduced Morbidity of Piglets through Its Targeted Colonization, Improvement of Cecal Microbiota Profile, and Immune Functions. Probiot. Antimicrob. Proteins 2020, 12, 194–203. [Google Scholar] [CrossRef]
Variables, Univariate | Test | p-Value |
---|---|---|
Sow parity, categorical | ANOVA | 0.27 |
Colostrum quality, % | Spearman correlation | 0.59 |
* Piglet size at birth, small/large | t-test | 0.04 * |
* Colostrum intake, g | Pearson correlation | 0.19 * |
Cross-fostering, yes/no | t-test | 0.28 |
Piglet serum immunoglobulins, ratio | Spearman correlation | 0.48 |
* Bodyweight of a pig at fecal sampling points, kg | Pearson correlation | 0.08 * |
* Average daily gain between fecal sampling points, g | Pearson correlation | 0.09 * |
Parameter | Herd 1 | Herd 2 | ||||
---|---|---|---|---|---|---|
Small | Large | Total | Small | Large | Total | |
n | 6 | 8 | 14 | 6 | 10 | 16 |
Average (SD) | Average (SD) | Average (SD) | Average (SD) | Average (SD) | Average (SD) | |
Birth BW, kg | 1.1 (0.0) | 1.6 (0.2) | 1.1 (0.1) | 1.6 (0.1) | ||
Pre-weaning ADG, g | 203.2 (32.5) | 208.0 (42.4) | 206.0 (9.9) | 161.1 (35.7) | 208.2 (45.2) | 190.8 (11.7) |
Weaning BW, kg | 6.0 (1.0) | 6.5 (0.9) | 4.7 (1.0) | 6.3 (1.1) | ||
Post-weaning ADG, g | 322.2 (110.7) | 376.8 (80.6) | 353.4 (25.4) | 280.1 (106.7) | 330.2 (91.4) | 311.4 (24.3) |
Post-weaning BW, kg | 19.9 (5.7) | 22.7 (3.5) | 16.1 (4.9) | 20.4 (4.5) | ||
Finishing ADG, g | 821.4 (41.6) | 907.3 (113.1) | 870.5 (26.1) | 987.1 (97.5) | 1044.1 (132.5) | 1022.8 (30.1) |
Finishing BW, kg | 91.3 (7.4) | 101.6 (12.4) | 119.0 (13.8) | 127.3 (15.3) | ||
Slaughter BW, kg | 114.4 (11.9) | 113.0 (8.5) | 117.1 (16.9) | 123.0 (13.0) |
Fecal Sampling Point 1 | |||||
---|---|---|---|---|---|
Herd, body weight category | Median, CFU/mL | Min, CFU/mL | Max, CFU/mL | 25th percentile, CFU/mL | 75th percentile, CFU/mL |
H1, S | 1.74 × 109 | 1.00 × 108 | 7.50 × 109 | 3.10 × 108 | 3.40 × 109 |
H2, S | 3.45 × 109 | 0.00 | 2.18 × 1010 | 2.60 × 108 | 6.00 × 109 |
H1, L | 1.30 × 109 | 1.00 × 108 | 1.34 × 1010 | 2.60 × 108 | 3.45 × 109 |
H2, L | 1.35 × 108 | 0.00 | 1.40 × 109 | 1.00 × 107 | 8.00 × 108 |
Fecal Sampling Point 2 | |||||
H1, S | 1.40 × 109 | 2.40 × 108 | 3.80 × 1010 | 2.90 × 108 | 3.80 × 109 |
H2, S | 4.50 × 108 | 0.00 | 1.60 × 109 | 2.00 × 107 | 1.20 × 109 |
H1, L | 7.65 × 108 | 0.00 | 1.10 × 1011 | 1.00 × 108 | 5.65 × 109 |
H2, L | 1.50 × 107 | 0.00 | 1.00 × 109 | 6.00 × 106 | 3.00 × 108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, E.; Sali, V.; Heponiemi, P.; Salminen, S.; Valros, A.; Junnikkala, S.; Heinonen, M. Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs. Animals 2021, 11, 113. https://doi.org/10.3390/ani11010113
König E, Sali V, Heponiemi P, Salminen S, Valros A, Junnikkala S, Heinonen M. Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs. Animals. 2021; 11(1):113. https://doi.org/10.3390/ani11010113
Chicago/Turabian StyleKönig, Emilia, Virpi Sali, Paulina Heponiemi, Seppo Salminen, Anna Valros, Sami Junnikkala, and Mari Heinonen. 2021. "Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs" Animals 11, no. 1: 113. https://doi.org/10.3390/ani11010113
APA StyleKönig, E., Sali, V., Heponiemi, P., Salminen, S., Valros, A., Junnikkala, S., & Heinonen, M. (2021). Herd-Level and Individual Differences in Fecal Lactobacilli Dynamics of Growing Pigs. Animals, 11(1), 113. https://doi.org/10.3390/ani11010113