Sperm Cryopreservation in American Flamingo (Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Semen Collection
2.3. Semen Freezing
2.4. Semen Thawing
2.5. Assessment of Semen Variables
2.5.1. Sperm Motility
2.5.2. Membrane Integrity
2.5.3. DNA Fragmentation
2.5.4. Mitochondrial and Acrosomal Status
2.5.5. Sperm Head Morphometric Analysis
2.6. Statistical Analysis
3. Results
3.1. Experiment 1: Effect of DMA 6% and Me2SO 8% in the Cryopreservation
3.2. Experiment 2: Effect of Seminal Plasma in the Cryopreservation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The IUCN Red List of Threatened Species. Available online: http://www.redlist.org (accessed on 14 December 2020).
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; Martínez-Nevado, E.; Gimeno-Martínez, J.; López-Goya, A. Semen cryopreservation in black-footed (Spheniscus demersus) and gentoo (Pygoscelis papua) penguins: Effects of thawing temperature on semen characteristics. Anim. Reprod. Sci. 2019, 200, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Moreno, J.; Castaño, C.; Toledano-Díaz, A.; Coloma, M.A.; López-Sebastián, A.; Prieto, M.T.; Campo, J.L. Semen cryopreservation for the creation of a Spanish poultry breeds cryobank: Optimization of freezing rate and equilibration time. Poult. Sci. 2011, 90, 2047–2053. [Google Scholar] [CrossRef] [PubMed]
- Tselutin, K.; Seigneurin, F.; Blesbois, E. Comparison of cryoprotectants and methods of cryopreservation of fowl spermatozoa. Poult. Sci. 1999, 78, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Santiago-Moreno, J.; Bernal, B.; Pérez-Cerezales, S.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; Gutiérrez-Adán, A.; López-Sebastián, A.; Gil, M.G.; Woelders, H.; et al. Seminal plasma amino acid profile in different breeds of chicken: Role of seminal plasma on sperm cryoresistance. PLoS ONE 2019, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Abouelezz, F.M.K.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; López-Sebastián, A.; Campo, J.L.; Santiago-Moreno, J. Effect of the interaction between cryoprotectant concentration and cryopreservation method on frozen/thawed chicken sperm variables. Reprod. Domest. Anim. 2015, 50, 135–141. [Google Scholar] [CrossRef]
- Blesbois, E.; Seigneurin, F.; Grasseau, I.; Limouzin, C.; Besnard, J.; Gourichon, D.; Coquerelle, G.; Rault, P.; Tixier-Boichard, M. Semen cryopreservation for ex situ management of genetic diversity in chicken: Creation of the French avian cryobank. Poult. Sci. 2007, 86, 555–564. [Google Scholar] [CrossRef]
- Hammerstedt, R.H.; Graham, J.K. Cryopreservation of poultry sperm: The enigma of glycerol. Cryobiology 1992, 29, 26–38. [Google Scholar] [CrossRef]
- Long, J.A.; Kulkarni, G. An effective method for improving the fertility of glycerol-exposed poultry semen. Poult. Sci. 2004, 83, 1594–1601. [Google Scholar] [CrossRef]
- Rakha, B.A.; Ansari, M.S.; Akhter, S.; Zafar, Z.; Naseer, A.; Hussain, I.; Blesbois, E.; Santiago-Moreno, J. Use of dimethylsulfoxide for semen cryopreservation in Indian red jungle fowl (Gallus gallus murghi). Theriogenology 2018, 122, 61–67. [Google Scholar] [CrossRef]
- Gurtovenko, A.A.; Anwar, J. Modulating the structure and properties of cell membranes: The molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B 2007, 111, 10453–10460. [Google Scholar] [CrossRef] [Green Version]
- Mandumpal, J.B.; Kreck, C.A.; Mancera, R.L. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions. Phys. Chem. Chem. Phys. 2011, 13, 3839–3842. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Singh, R.P.; Pukazhenthi, B.; Keefer, C.L.; Songsasen, N. Cryopreservation effects on sperm function and fertility in two threatened crane species. Cryobiology 2018, 82, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Chalah, T.; Seigneurin, F.; Blesbois, E.; Brillard, J.P. In vitro comparison of fowl sperm viability in ejaculates frozen by three different techniques and relationship with subsequent fertility in vivo. Cryobiology 1999, 39, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.M.; Long, J.A.; Gee, G.; Wildt, D.E.; Donoghue, A.M. Comparative cryopreservation of avian spermatozoa: Effects of freezing and thawing rates on turkey and sandhill crane sperm cryosurvival. Anim. Reprod. Sci. 2012, 131, 1–8. [Google Scholar] [CrossRef]
- López-Pérez, A.; Pérez-Clariget, R. Ram seminal plasma improves pregnancy rates in ewes cervically inseminated with ram semen stored at 5 °C for 24 h. Theriogenology 2012, 77, 395–399. [Google Scholar] [CrossRef]
- Berger, T.; Clegg, E.D. Effect of male accessory gland secretions on sensitivity of porcine sperm acrosomes to cold shock, initiation of motility and loss of cytoplasmic droplets. J. Anim. Sci. 1985, 60, 1295–1302. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Parrilla, I.; Almiñana, C.; del Olmo, D.; Roca, J.; Martínez, E.A.; Vázquez, J.M. Seminal Plasma Proteins as Modulators of the Sperm Function and Their Application in Sperm Biotechnologies. Reprod. Domest. Anim. 2012, 47, 12–21. [Google Scholar] [CrossRef]
- Coloma, M.A.; Toledano-Díaz, A.; López-Sebastián, A.; Santiago-Moreno, J. The influence of washing Spanish ibex (Capra pyrenaica) sperm on the effects of cryopreservation in dependency of the photoperiod. Theriogenology 2010, 73, 900–908. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Blesbois, E. Functional aspects of seminal plasma in bird reproduction. Int. J. Mol. Sci. 2020, 21, 5664. [Google Scholar] [CrossRef]
- Mann, T.; Lutwak-Mann, C.; Mann, T.; Lutwak-Mann, C. Biochemistry of Seminal Plasma and Male Accessory Fluids; Application to Andrological Problems. Male Reprod. Funct. Semen 1981, 269–336. [Google Scholar] [CrossRef]
- Cecil, H.C.; Bakst, M.R. Testosterone concentrations in blood and seminal plasma of turkeys classified as high or low semen producers. Poult. Sci. 1988, 67, 1461–1464. [Google Scholar] [CrossRef]
- Lelono, A.; Riedstra, B.; Groothuis, T. Ejaculate testosterone levels affect maternal investment in red jungle fowl (Gallus gallus gallus). Sci. Rep. 2019, 9, 12126. [Google Scholar] [CrossRef] [PubMed]
- Al-Essawe, E.M.; Wallgren, M.; Wulf, M.; Aurich, C.; Macías-García, B.; Sjunnesson, Y.; Morrell, J.M. Seminal plasma influences the fertilizing potential of cryopreserved stallion sperm. Theriogenology 2018, 115, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Blesbois, E.; Hermier, D. Effects of high-density lipoproteins on storage at 4 degrees C of fowl spermatozoa. J. Reprod. Fertil. 1990, 90, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, T.J. Influence of seminal plasma on the fecundity of chicken spermatozoa. Theriogenology 1988, 3, 711–720. [Google Scholar] [CrossRef]
- Douard, V.; Hermier, D.; Labbe, C.; Magistrini, M.; Blesbois, E. Role of seminal plasma in damage to turkey spermatozoa during in vitro storage. Theriogenology 2005, 63, 126–137. [Google Scholar] [CrossRef]
- Burrows, W.H.; Quinn, J.P. The Collection of Spermatozoa from the Domestic Fowl and Turkey. Poult. Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Woelders, H.; Zuidberg, C.A.; Hiemstra, S.J. Animal genetic resources conservation in The Netherlands and Europe: Poultry perspective. Poult. Sci. 2006, 85, 216–222. [Google Scholar] [CrossRef]
- Long, J.A.; Purdy, P.H.; Zuidberg, K.; Hiemstra, S.J.; Velleman, S.G.; Woelders, H. Cryopreservation of turkey semen: Effect of breeding line and freezing method on post-thaw sperm quality, fertilization, and hatching. Cryobiology 2014, 68, 371–378. [Google Scholar] [CrossRef]
- Woelders, H. Cryopreservation of avian semen. In Cryopreservation and Freeze-Drying Protocols, 4th ed.; Wolkers, W.F., Oldenhof, H., Eds.; Springer: Basel, Switzerland, 2021; pp. 379–399. ISBN 978-1-0716-0783-1. [Google Scholar]
- Chalah, T.; Brillard, J.P. Comparison of assessment of fowl sperm viability by eosin-nigrosin and dual fluorescence (SYBR-14/PI). Theriogenology 1998, 50, 487–493. [Google Scholar] [CrossRef]
- Galarza, D.A.; Ladrón de Guevara, M.; Beltrán-Breña, P.; Sánchez-Calabuig, M.J.; Rizos, D.; López-Sebastián, A.; Santiago-Moreno, J. Influence of sperm filtration and the addition of glycerol to UHT skimmed milk- and TEST-based extenders on the quality and fertilizing capacity of chilled ram sperm. Theriogenology 2019, 133, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Bernal, B.; Galarza, D.A.; Pérez-Cerezales, S.; Castaño, C.; Toledano-Díaz, A.; Esteso, M.C.; Gil, M.G.; Dávila, S.; López-Sebastián, A.; Santiago-Moreno, J. Simultaneous assessment of plasma, acrosomal and mitochondrial membranes in rooster sperm. Reprod. Domest. Anim. 2019, 54, 106–134. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Castaño, C.; Coloma, M.A.; Gómez-Brunet, A.; Toledano-Díaz, A.; López-Sebastián, A.; Campo, J.L. Use of the hypo-osmotic swelling test and aniline blue staining to improve the evaluation of seasonal sperm variation in native Spanish free-range poultry. Poult. Sci. 2009, 88, 2661–2669. [Google Scholar] [CrossRef] [PubMed]
- Villaverde-Morcillo, S.; Esteso, M.C.; Castaño, C.; Toledano Díaz, A.; López-Sebastián, A.; Campo, J.L.; Santiago-Moreno, J. Influence of Staining Method on the Values of Avian Sperm Head Morphometric Variables. Reprod. Domest. Anim. 2015, 50, 750–755. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Gadea, B.; Soler, A.J.; Fernández-Santos, M.R.; Esteso, M.C.; Núñez, J.; Moreira, P.N.; Núñez, M.; Gutiérrez, R.; Sancho, M.; et al. Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. Theriogenology 2005, 64, 1236–1243. [Google Scholar] [CrossRef]
- Esteso, M.C.; Soler, A.J.; Fernández-Santos, M.R.; Quintero-Moreno, A.A.; Garde, J.J. Functional significance of the sperm head morphometric size and shape for determining freezability in Iberian red deer (Cervus elaphus hispanicus) epididymal sperm samples. J. Androl. 2006, 27, 662–670. [Google Scholar] [CrossRef]
- O’Brien, E.; Esteso, M.C.; Castaño, C.; Toledano-Díaz, A.; Bóveda, P.; Martínez-Fresneda, L.; López-Sebastián, A.; Martínez-Nevado, E.; Guerra, R.; López Fernández, M.; et al. Effectiveness of ultra-rapid cryopreservation of sperm from endangered species, examined by morphometric means. Theriogenology 2019, 129, 160–167. [Google Scholar] [CrossRef]
- Santiago-Moreno, J.; Esteso, M.; Villaverde-Morcillo, S.; Toledano-Déaz, A.; Castaño, C.; Velázquez, R.; López-Sebastián, A.; Goya, A.; Martínez, J. Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J. Androl. 2016, 18, 882–888. [Google Scholar] [CrossRef]
- Purdy, P.H. A review on goat sperm cryopreservation. Small Rumin. Res. 2006, 63, 215–225. [Google Scholar] [CrossRef]
- Blanco, J.M.; Long, J.A.; Gee, G.; Donoghue, A.M.; Wildt, D.E. Osmotic tolerance of avian spermatozoa: Influence of time, temperature, cryoprotectant and membrane ion pump function on sperm viability. Cryobiology 2008, 56, 8–14. [Google Scholar] [CrossRef]
- Maggio, B.; Lucy, J.A. Interactions of water-soluble fusogens with phospholipids in monolayers. FEBS Lett. 1978, 94, 301–304. [Google Scholar] [CrossRef] [Green Version]
- Iaffaldano, N.; Di Iorio, M.; Rosato, M.P. The cryoprotectant used, its concentration, and the equilibration time are critical for the successful cryopreservation of rabbit sperm: Dimethylacetamide versus dimethylsulfoxide. Theriogenology 2012, 78, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Bentley, L.G.; Ansah, G.A.; Buckland, R.B. Seminal plasma proteins of a line of chickens selected for fertility of frozen-thawed semen and the control line. Poult. Sci. 1984, 63, 1444–1445. [Google Scholar] [CrossRef] [PubMed]
- Farshad, A.; Hosseini, Y. The cryoprotective effects of amino acids supplementation on cooled and post-thaw Markhoz bucks semen quality. Small Rumin. Res. 2013, 114, 258–263. [Google Scholar] [CrossRef]
- Anchordoguy, T.; Carpenter, J.F.; Loomis, S.H.; Crowe, J.H. Mechanisms of interaction of amino acids with phospholipid bilayers during freezing. Biochim. Biophys. Acta Biomembr. 1988, 946, 299–306. [Google Scholar] [CrossRef]
- Heber, U.; Tyankova, L.; Santarius, K.A. Stabilization and inactivation of biological membranes during freezing in the presence of amino acids. Biochim. Biophys. Acta Biomembr. 1971, 241, 578–592. [Google Scholar] [CrossRef]
- Withers, L.A.; King, P.J. Proline: A Novel Cryoprotectant for the Freeze Preservation of Cultured Cells of Zea mays. Am. Soc. Plant Biol. 1979, 64, 675–678. [Google Scholar] [CrossRef]
- Blesbois, E.; De Reviers, M. Effect of different fractions of seminal plasma on the fertilizing ability of fowl spermatozoa stored in vitro. J. Reprod. Fertil. 1992, 95, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Angrimani, D.S.R.; Lucio, C.F.; Veiga, G.A.L.; Silva, L.C.G.; Regazzi, F.M.; Nichi, M.; Vannucchi, C.I. Sperm maturation in dogs: Sperm profile and enzymatic antioxidant status in ejaculated and epididymal spermatozoa. Andrologia 2014, 46, 814–819. [Google Scholar] [CrossRef]
- Strzezek, R.; Koziorowska-Gilun, M.; Kowalówka, M.; Strzezek, J. Characteristics of antioxidant system in dog semen. Pol. J. Vet. Sci. 2009, 12, 55–60. [Google Scholar]
- Kovalski, N.N.; de Lamirande, E.; Gagnon, C. Reactive oxygen species generated by human neutrophils inhibit sperm motility: Protective effect of seminal plasma and scavengers. Fertil. Steril. 1992, 58, 809–816. [Google Scholar] [CrossRef]
- Baumber, J.; Vo, A.; Sabeur, K.; Ball, B.A. Generation of reactive oxygen species by equine neutrophils and their effect on motility of equine spermatozoa. Theriogenology 2002, 57, 1025–1033. [Google Scholar] [CrossRef]
- Piehl, L.L.; Fischman, M.L.; Hellman, U.; Cisale, H.; Miranda, P.V. Boar seminal plasma exosomes: Effect on sperm function and protein identification by sequencing. Theriogenology 2013, 79, 1071–1082. [Google Scholar] [CrossRef]
- Park, K.H.; Kim, B.J.; Kang, J.; Nam, T.S.; Lim, J.M.; Kim, H.T.; Park, J.K.; Kim, Y.G.; Chae, S.W.; Kim, U.H. Ca2+ signaling tools acquired from prostasomes are required for progesterone-induced sperm motility. Sci. Signal. 2011, 4, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ronquist, K.G.; Ek, B.; Morrell, J.; Stavreus-Evers, A.; Ström Holst, B.; Humblot, P.; Ronquist, G.; Larsson, A. Prostasomes from four different species are able to produce extracellular adenosine triphosphate (ATP). Biochim. Biophys. Acta Gen. Subj. 2013, 1830, 4604–4610. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, K.G.; Ek, B.; Stavreus-Evers, A.; Larsson, A.; Ronquist, G. Human prostasomes express glycolytic enzymes with capacity for ATP production. Am. J. Physiol. Endocrinol. Metab. 2013, 304, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.E.; Buffone, M.G.; Knee, G.R.; Rossato, M.; Bonanni, G.; Masiero, S.; Ferasin, S.; Gerton, G.L.; Moss, S.B.; Williams, C.J. Effects of extracellular adenosine 5′-triphosphate on human sperm motility. Reprod. Sci. 2007, 14, 655–666. [Google Scholar] [CrossRef]
- Rodríguez-Miranda, E.; Buffone, M.G.; Edwards, S.E.; Ord, T.S.; Lin, K.; Sammel, M.D.; Gerton, G.L.; Moss, S.B.; Williams, C.J. Extracellular Adenosine 5′-Triphosphate Alters Motility and Improves the Fertilizing Capability of Mouse Sperm. Biol. Reprod. 2008, 79, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Luria, A.; Rubinstein, S.; Lax, Y.; Breitbart, H. Extracellular adenosine triphosphate stimulates acrosomal exocytosis in bovine spermatozoa via P2 purinoceptor. Biol. Reprod. 2002, 66, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Olli, K.E.; Li, K.; Galileo, D.S.; Martin-DeLeon, P.A. Plasma membrane calcium ATPase 4 (PMCA4) co-ordinates calcium and nitric oxide signaling in regulating murine sperm functional activity. J. Cell. Physiol. 2018, 233, 11–22. [Google Scholar] [CrossRef]
- Nguyen, T.M.D.; Duittoz, A.; Praud, C.; Combarnous, Y.; Blesbois, E. Calcium channels in chicken sperm regulate motility and the acrosome reaction. FEBS J. 2016, 283, 1902–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sperm Variables | 8% Me2SO | 6% DMA | ||
---|---|---|---|---|
Fresh | Thawed | Fresh | Thawed | |
Motility (%) | 37.5 ± 9.9 | 10.0 ± 3.1 | 42.5 ± 9.0 | 17.0 ± 7.0 |
Score | 2.2 ± 0.6 | 1.7 ± 0.3 | 2.5 ± 0.5 | 1.4 ± 0.4 |
Viability (%) | 78.6 ± 2.3 | 43.6 ± 3.5 | 80.1 ± 3.1 | 48.2 ± 3.8 |
DNA damage (Tunel + %) | - | 17.2 ± 3.5 | - | 16.5 ± 5.7 |
Static (%) | 67.6 ± 9.2 | 82.7 ± 4.2 | 61.2 ± 9.2 | 85.1 ± 5.2 |
No progressive motility (%) | 23.2 ± 6.2 | 12.7 ± 2.8 | 27.7 ± 6.3 | 9.5 ± 3.2 |
Progressive motility (%) | 9.2 ± 3.9 | 4.6 ± 1.5 | 11.1 ± 3.9 | 5.4 ± 3.4 |
VCL (µm/s) | 36.3 ± 8.0 | 33.1 ± 5.9 | 40.0 ± 7.7 | 29.4 ± 11.2 |
VSL (µm/s) | 22.5 ± 6.4 | 22.1 ± 4.6 | 26.1 ± 6.1 | 22.1 ± 10.0 |
VAP (µm/s) | 28.2 ±7.3 | 25.9 ± 5.0 | 31.8 ± 6.9 | 24.8 ± 10.4 |
LIN (%) | 47.8 ± 8.0 | 58.7 ± 7.5 | 53.4 ± 7.7 | 48.5 ± 11.0 |
STR (%) | 64.7 ± 8.6 | 75.7 ± 8.7 | 69.6 ± 8.5 | 61.1 ± 12.2 |
WOB (%) | 64.0 ± 8.4 | 69.2 ± 8.1 | 67.7 ± 8.3 | 59.2 ± 11.3 |
ALH (µm) | 1.8 ± 0.4 | 1.6 ± 0.3 | 2.0 ± 0.4 | 1.1 ± 0.4 |
BCF (Hz) | 5.9 ± 1.3 | 6.3 ± 1.2 | 6.9 ± 1.2 | 4.5 ± 1.5 |
Acrosome integrity (%) | 91.8 ± 2.0 | 73.9 ± 3.6 | 91.8 ± 2.0 | 63.0 ± 3.0 |
Semen Variables | Fresh | Thawed | |
---|---|---|---|
With Seminal Plasma | Without Seminal Plasma | ||
Motility (%) | 51.4 ± 7.5 | 11.4 ± 3.4 | 9.0 ± 3.1 |
Score | 2.2 ± 0.2 | 2.2 ± 0.2 | 1.9 ± 0.3 |
Viability (%) | 78.0 ± 4.5 | 44.0 ± 5.0 | 45.4 ± 2.8 |
DNA damage (Tunel + %) | 12.1 ± 3.4 | 32.9 ± 3.8 | 29.1 ± 4.0 |
Mito+, Acro+ (%) | - | 29.6 ± 4.1 | 35.9 ± 4.3 |
Mito+, Acro− (%) | - | 49.5 ± 3.8 | 45.9 ± 4.5 |
Mito−, Acro+ (%) | - | 4.3 ± 1.4 | 3.9 ± 1.9 |
Mito−, Acro− (%) | - | 16.6 ± 2.3 | 14.3 ± 2.8 |
Static (%) | 56.5 ± 8.3 | 87.6 ± 2.0 | 88.9 ± 2.8 |
No progressive motility (%) | 34.5 ± 6.3 | 9.3 ± 1.4 | 9.0 ± 2.1 |
Progressive motility (%) | 9.0 ± 3.9 | 3.1 ± 0.7 | 2.1 ± 0.8 |
VCL (µm/s) | 39.3 ± 5.7 | 35.0 ± 3.0 | 29.5 ± 4.1 |
VSL (µm/s) | 20.1 ± 4.0 | 22.4 ± 2.5 a | 16.6 ± 3.3 b |
VAP (µm/s) | 28.2 ± 5.0 | 26.9 ± 2.7 | 21.6 ± 3.8 |
LIN (%) | 47.0 ± 3.6 | 62.7 ± 2.7 A | 52.0 ± 4.4 B |
STR (%) | 67.6 ± 3.1 | 82.4 ± 1.6 A | 73.8 ± 3.2 B |
WOB (%) | 68.4 ± 2.7 | 75.8 ± 1.9 a | 69.4 ± 3.6 b |
ALH (µm) | 2.5 ± 0.3 | 1.5 ± 0.3 | 1.3 ± 0.3 |
BCF (Hz) | 6.5 ± 1.0 | 6.0 ± 1.1 | 5.1 ± 1.3 |
Acrosome integrity (%) | - | 55.6 ± 2.7 b | 66.9 ± 3.8 a |
Cryoresistance Ratio | 8% Me2SO | 6% DMA |
---|---|---|
Motility | 17.0 ± 6.1 | 40.2 ± 19.1 |
Score | 49.7 ± 13.7 | 51.5 ± 19.2 |
Viability | 56.3 ± 5.0 | 56.2 ± 8.0 |
Static | 153.3 ± 31.7 | 183.8 ± 40.3 |
No progressive motility | 71.3 ± 25.4 | 94.5 ± 55.7 |
Progressive motility | 70.8 ± 27.7 | 122.5 ± 72.6 |
VCL | 70.6 ± 16.5 | 106.5 ± 44.1 |
VSL | 96.3 ± 28.1 | 170.6 ± 73.5 |
VAP | 80.1 ± 21.0 | 129.4 ± 52.8 |
LIN | 102.9 ± 22.2 | 89.0 ± 24.8 |
STR | 92.1 ± 16.8 | 76.2 ± 19.6 |
WOB | 86.8 ± 15.5 | 75.0 ± 18.5 |
ALH | 48.5 ± 12.8 | 32.4 ± 13.5 |
BCF | 63.7 ± 16.6 | 44.9 ± 18.5 |
Acrosome integrity | 82.2 ± 6.0 | 70.3 ± 1.5 |
Cryoresistance Ratio | With Seminal Plasma | Without Seminal Plasma |
---|---|---|
Motility | 27.4 ± 9.0 | 26.3 ± 13.2 |
Score | 112.7 ± 19.9 | 85.3 ± 9.6 |
Viability | 56.1 ± 6.0 | 60.6 ± 5.7 |
Tunel+ | 472.7 ± 166.8 | 599.7 ± 265.9 |
Static | 244.4 ± 84.3 | 241.6 ± 78.4 |
No progressive motility | 46.9 ± 12.8 | 51.1 ± 21.5 |
Progressive motility | 138.7 ± 87.6 a | 54.9 ± 30.7 b |
VCL | 106.0 ± 18.0 a | 89.3 ± 20.4 b |
VSL | 152.8 ± 32.2 a | 112.6 ± 37.7 b |
VAP | 122.5 ± 25.7 a | 98.1 ± 30.0 b |
LIN | 139.4 ± 8.2 A | 113.2 ± 8.2 B |
STR | 124.0 ± 4.8 A | 110.0 ± 3.5 B |
WOB | 111.7 ± 3.1 a | 102.0 ± 5.1 b |
ALH | 74.2 ± 28.6 | 64.3 ± 27.7 |
BCF | 103.2 ± 27.6 | 87.5 ± 32.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millán de la Blanca, M.G.; Martínez-Nevado, E.; Castaño, C.; García, J.; Bernal, B.; Toledano-Díaz, A.; Esteso, M.C.; Bóveda, P.; Martínez-Fresneda, L.; López-Sebastián, A.; et al. Sperm Cryopreservation in American Flamingo (Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal. Animals 2021, 11, 203. https://doi.org/10.3390/ani11010203
Millán de la Blanca MG, Martínez-Nevado E, Castaño C, García J, Bernal B, Toledano-Díaz A, Esteso MC, Bóveda P, Martínez-Fresneda L, López-Sebastián A, et al. Sperm Cryopreservation in American Flamingo (Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal. Animals. 2021; 11(1):203. https://doi.org/10.3390/ani11010203
Chicago/Turabian StyleMillán de la Blanca, María Gemma, Eva Martínez-Nevado, Cristina Castaño, Juncal García, Berenice Bernal, Adolfo Toledano-Díaz, Milagros Cristina Esteso, Paula Bóveda, Lucía Martínez-Fresneda, Antonio López-Sebastián, and et al. 2021. "Sperm Cryopreservation in American Flamingo (Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal" Animals 11, no. 1: 203. https://doi.org/10.3390/ani11010203
APA StyleMillán de la Blanca, M. G., Martínez-Nevado, E., Castaño, C., García, J., Bernal, B., Toledano-Díaz, A., Esteso, M. C., Bóveda, P., Martínez-Fresneda, L., López-Sebastián, A., & Santiago-Moreno, J. (2021). Sperm Cryopreservation in American Flamingo (Phoenicopterus Ruber): Influence of Cryoprotectants and Seminal Plasma Removal. Animals, 11(1), 203. https://doi.org/10.3390/ani11010203