Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Semen Collection
2.2. Staining Methods
2.2.1. DiffQuick Staining
2.2.2. SpermBlue Staining
2.2.3. Eosin-Nigrosin Staining
2.2.4. Eosin-Gentian Staining
2.3. Morphometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Brito, L.F.; Greene, L.M.; Kelleman, A.; Knobbe, M.; Turner, R. Effect of method and clinician on stallion sperm morphology evaluation. Theriogenology 2011, 76, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Peña, F.; Saravia, F.; Garcia-Herreros, M.; Núñezmartínez, I.; A Tapia, J.; Wallgren, M.; Rodríguez-Martinez, H.; Johannisson, A. Identification of Sperm Morphometric Subpopulations in Two Different Portions of the Boar Ejaculate and Its Relation to Postthaw Quality. J. Androl. 2005, 26, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Saravia, F.; Núñez-Martínez, I.; Morán, J.; Soler, C.; Muriel, A.; Rodríguez-Martínez, H.; Peña, F. Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology 2007, 68, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, M.; Rodríguez, I.; Dorado, J.; Soler, C. Morphometric classification of Spanish thoroughbred stallion sperm heads. Anim. Reprod. Sci. 2008, 103, 374–378. [Google Scholar] [CrossRef] [PubMed]
- Maroto-Morales, A.; García-Álvarez, O.; Ramón, M.; Martínez-Pastor, F.; Fernández-Santos, M.R.; Soler, A.J.; Garde, J.J. Current status and potential of morphometric sperm analysis. Asian J. Androl. 2016, 18, 863–870. [Google Scholar] [CrossRef]
- Van Van Der Horst, G.; Maree, L.; Du Plessis, S.S. Current perspectives of CASA applications in diverse mammalian spermatozoa. Reprod. Fertil. Dev. 2018, 30, 875–888. [Google Scholar] [CrossRef] [Green Version]
- Gago, C.; Pérez-Sánchez, F.; Yeung, C.-H.; Tablado, L.; Cooper, T.G.; Soler, C. Standardization of sampling and staining methods for the morphometric evaluation of sperm heads in the Cynomolgus monkey (Macaca fascicularis) using computer-assisted image analysis. Int. J. Androl. 1998, 21, 169–176. [Google Scholar] [CrossRef]
- Yániz, J.; Soler, C.; Santolaria, P. Computer assisted sperm morphometry in mammals: A review. Anim. Reprod. Sci. 2015, 156, 1–12. [Google Scholar] [CrossRef]
- Waheed, M.M.; Ghoneim, I.; Abdou, M.S. Morphometric Characteristics of Spermatozoa in the Arabian Horse With Regard to Season, Age, Sperm Concentration, and Fertility. J. Equine Vet. Sci. 2015, 35, 244–249. [Google Scholar] [CrossRef]
- Czubaszek, M.; Andraszek, K.; Banaszewska, D.; Walczak-Jedrzejowska, R. The effect of the staining technique on morphological and morphometric parameters of boar sperm. PLoS ONE 2019, 14, e0214243. [Google Scholar] [CrossRef] [Green Version]
- Wysokińska, A.; Kondracki, S. Heterosis for morphometric characteristics of sperm cells from Duroc x Pietrain crossbred boars. Anim. Reprod. Sci. 2019, 211, 106217. [Google Scholar] [CrossRef] [PubMed]
- Rijsselaere, T.; Van Soom, A.; Hoflack, G.; Maes, D.; De Kruif, A. Automated sperm morphometry and morphology analysis of canine semen by the Hamilton-Thorne analyser. Theriogenology 2004, 62, 1292–1306. [Google Scholar] [CrossRef]
- Luvoni, G.C.; Morselli, M.G. Canine epididymal spermatozoa: A hidden treasure with great potential. Reprod. Domest. Anim. 2017, 52, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trasler, J.M.; Hermo, L.; Robaire, B. Morphological Changes in the Testis and Epididymis of Rats Treated with Cyclophosphamide: A Quantitative Approach1. Biol. Reprod. 1988, 38, 463–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunkitti, P.; Bergqvist, A.-S.; Sjunnesson, Y.; Axnér, E. The ability of feline spermatozoa in different epididymal regions to undergo capacitation and acrosome reaction. Anim. Reprod. Sci. 2015, 161, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Soler, C.; Alambiaga, A.; A Martí, M.; García-Molina, A.; Valverde, A.; Contell, J.; Campos, M. Dog sperm head morphometry: Its diversity and evolution. Asian J. Androl. 2017, 19, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Van Der Horst, G.; Maree, L. SpermBlue®: A new universal stain for human and animal sperm which is also amenable to automated sperm morphology analysis. Biotech. Histochem. 2010, 84, 299–308. [Google Scholar] [CrossRef]
- Lange-Consiglio, A.; Antonucci, N.; Manes, S.; Corradetti, B.; Cremonesi, F.; Bizzaro, D. Morphometric characteristics and chromatin integrity of spermatozoa in three Italian dog breeds. J. Small Anim. Pract. 2010, 51, 624–627. [Google Scholar] [CrossRef]
- Chłopik, A.; Wysokińska, A. Canine spermatozoa—What do we know about their morphology and physiology? An overview. Reprod. Domest. Anim. 2019, 55, 113–126. [Google Scholar] [CrossRef]
- Sringam, S.; Kitiyanant, Y.; Lewin, L.M.; Saikhun, K. Semen quality and chromatin condensation in domestic cat sperm during passage through the epididymis. Kasetsart J. Nat. Sci. 2011, 45, 46–58. [Google Scholar]
- Núñez-Martinez, I.; Moran, J.M.; Peña, F. Identification of sperm morphometric subpopulations in the canine ejaculate: Do they reflect different subpopulations in sperm chromatin integrity? Zygote 2007, 15, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Urbano, M.; Ortiz, I.; Dorado, J.; Hidalgo, M. Identification of sperm morphometric subpopulations in cooled-stored canine sperm and its relation with sperm DNA integrity. Reprod. Domest. Anim. 2017, 52, 468–476. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.P.; Cancelli, C.H.B.; Grassi, T.L.M.; Oliveira, P.R.H.; Franciscato, D.A.; Carreira, J.; Koivisto, M.B. Evaluation of sperm head dimensions and chromatin integrity of epididymal sperm from domestic cats using the toluidine blue technique. Anim. Reprod. Sci. 2018, 197, 33–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijsselaere, T.; Van Soom, A.; Maes, D.; Niżański, W. Computer-Assisted Sperm Analysis in Dogs and Cats: An Update after 20 Years. Reprod. Domest. Anim. 2012, 47, 204–207. [Google Scholar] [CrossRef] [PubMed]
- García-Vázquez, F.A.; Gadea, J.; Matás, C.; Holt, W.V. Importance of sperm morphology during their transport and fertilization in mammals. Asian J. Androl. 2016, 18, 844–850. [Google Scholar] [CrossRef]
- Angrimani, D.; Losano, J.D.D.A.; Lucio, C.; Veiga, G.; Landim, F.; Nichi, M.; Vannucchi, C. Cytoplasmic droplet acting as a mitochondrial modulator during sperm maturation in dogs. Anim. Reprod. Sci. 2017, 181, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Filho, R.R.; Angrimani, D.S.R.; Brito, M.M.; Nichi, M.; Vannucchi, C.; Lucio, C.F. Susceptibility of epididymal sperm against reactive oxygen species in dogs. Anim. Biotechnol. 2019, 22, 1–8. [Google Scholar] [CrossRef]
- Gomendio, M.; Roldan, E.R.S. Sperm competition influences sperm size in mammals. Proc. R. Soc. B Boil. Sci. 1991, 243, 181–185. [Google Scholar] [CrossRef]
- Björndahl, L.; Söderlund, I.; Kvist, U. Evaluation of the one-step eosin-nigrosin staining technique for human sperm vitality assessment. Hum. Reprod. 2003, 18, 813–816. [Google Scholar] [CrossRef] [Green Version]
- Wysokińska, A.; Kondracki, S. Assessment of changes in sperm cell membrane integrity occurring during the storage of semen from genetically different males using two diagnostic methods. Can. J. Anim. Sci. 2014, 94, 601–606. [Google Scholar] [CrossRef] [Green Version]
- Kondracki, S.; Wysokińska, A.; Kania, M.; Górski, K. Application of two staining methods for sperm morphometric evaluation in domestic pigs. J. Vet. Res. 2017, 61, 345–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banaszewska, D.; Andraszek, K.; Czubaszek, M.; Biesiada–Drzazga, B. The effect of selected staining techniques on bull sperm morphometry. Anim. Reprod. Sci. 2015, 159, 17–24. [Google Scholar] [CrossRef]
- Łacka, K.; Kondracki, S.; Iwanina, M.; Wysokińska, A. Assessment of stallion semen morphology using two different staining methods, microscopic techniques, and sample sizes. J. Vet. Res. 2016, 60, 99–104. [Google Scholar] [CrossRef] [Green Version]
- Andraszek, K.; Banaszewska, D.; Biesiada-Drzazga, B. The use of two staining methods for identification of spermatozoon structure in roosters. Poult. Sci. 2018, 97, 2575–2581. [Google Scholar] [CrossRef]
- Sousa, A.P.M.; Tavares, R.S.; De La Calle, J.F.V.; Figueiredo, H.; Almeida, V.; Santos, T.A.; Ramalho-Santos, J. Dual use of Diff-Quik-like stains for the simultaneous evaluation of human sperm morphology and chromatin status. Hum. Reprod. 2008, 24, 28–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maree, L.; Du Plessis, S.S.; Menkveld, R.; Van Der Horst, G. Morphometric dimensions of the human sperm head depend on the staining method used. Hum. Reprod. 2010, 25, 1369–1382. [Google Scholar] [CrossRef]
- Soler, C.C.; Gadea, B.; Soler, A.; Fernández-Santos, M.; Esteso, M.; Nunez, J.; Moreira, P.N.; Núñez, M.; Gutierrez, R.G.; Sancho, M.; et al. Comparison of three different staining methods for the assessment of epididymal red deer sperm morphometry by computerized analysis with ISAS®. Theriogenology 2005, 64, 1236–1243. [Google Scholar] [CrossRef]
- Malo, A.F.; Gomendio, M.; Garde, J.J.; Lang-Lenton, B.; Soler, A.J.; Roldan, E.R.S. Sperm design and sperm function. Biol. Lett. 2006, 2, 246–249. [Google Scholar] [CrossRef] [Green Version]
Item. | Epididymal Segment | p-Value | ||
---|---|---|---|---|
Caput | Corpus | Cauda | ||
Number of Analyzed Cells | 800 | 800 | 800 | |
Head | ||||
Length (µm) | 6.28 ± 0.05 a | 6.32 ± 0.05 a | 6.11 ± 0.05 b | 0.01 |
Width (µm) | 3.70 ± 0.03 a | 3.67 ± 0.02 a | 3.63 ± 0.02 a | 0.56 |
Area (µm2) | 18.67 ± 0.18 a | 18.69 ± 0.13 a | 18.12 ± 0.13 b | 0.02 |
Perimeter (µm) | 16.90 ± 0.08 ab | 17.01 ± 0.08 a | 16.70 ± 0.07 b | 0.04 |
Tail | ||||
Length (µm) | 54.62 ± 0.34 a | 55.04 ± 0.35 a | 53.31 ± 0.30 b | 0.01 |
Sperm total length (µm) | 60.89 ± 0.35 a | 61.36 ± 0.35 a | 59.42 ± 0.31 b | 0.00 |
Shape indices | ||||
Ellipticity | 1.72 ± 0.02 a | 1.73 ± 0.02 a | 1.69 ± 0.02 a | 0.44 |
Elongation | 0.26 ± 0.01 a | 0.26 ± 0.00 a | 0.25 ± 0.00 a | 0.33 |
Rugosity | 0.82 ± 0.01 a | 0.81 ± 0.00 a | 0.82 ± 0.00 a | 0.46 |
Regularity | 0.99 ± 0.01 a | 0.98 ± 0.01 a | 0.96 ± 0.01 a | 0.68 |
Item | Staining Method | p-Value | |||
---|---|---|---|---|---|
EG | EN | DQ | SB | ||
Number of Analyzed Cells | 600 | 600 | 600 | 600 | |
Head | |||||
Length (µm) | 6.17 ± 0.06 a | 6.06 ± 0.06 a | 6.39 ± 0.06 b | 6.27 ± 0.06 b | 0.00 |
Width (µm) | 3.78 ± 0.03 a | 3.69 ± 0.03 b | 3.70 ± 0.03 ab | 3.53 ± 0.02 c | 0.00 |
Area (µm2) | 18.92 ± 0.18 a | 18.11 ± 0.18 b | 18.46 ± 0.17 ab | 18.42 ± 0.15 ab | 0.02 |
Perimeter (µm) | 16.93 ± 0.10 a | 16.67 ± 0.09 a | 16.85 ± 0.09 a | 16.97 ± 0.08 a | 0.11 |
Tail | |||||
Length (µm) | 55.25 ± 0.27 a | 53.06 ± 0.53 b | 53.94 ± 0.32 b | 54.75 ± 0.37 a | 0.00 |
Sperm total length (µm) | 61.43 ± 0.28 a | 59.12 ± 0.53 b | 60.33 ± 0.34 ab | 61.02 ± 0.38 a | 0.00 |
Shape indices | |||||
Ellipticity | 1.64 ± 0.02 a | 1.66 ± 0.02 a | 1.74 ± 0.02 b | 1.79 ± 0.02 b | 0.00 |
Elongation | 0.24 ± 0.01 a | 0.24 ± 0.01 a | 0.27 ± 0.01 b | 0.28 ± 0.01 b | 0.00 |
Rugosity | 0.83 ± 0.00 a | 0.82 ± 0.01 ab | 0.82 ± 0.00 ab | 0.80 ± 0.01 b | 0.00 |
Regularity | 0.97 ± 0.01 a | 0.97 ± 0.01 a | 1.01 ± 0.01 b | 0.95 ± 0.01 a | 0.00 |
Item | Epididymal Segment | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Caput | Corpus | Cauda | ||||||||
DQ | EG | EN | DQ | EG | EN | DQ | EG | EN | ||
Head | ||||||||||
Length (µm) | EG | 0.56 * | - | 0.30 | 0.41 * | - | 0.45 * | 0.71 * | - | 0.72 * |
EN | 0.33 * | 0.30 | - | 0.62 * | 0.45 * | - | 0.57 * | 0.72 * | - | |
SB | 0.31 * | 0.31 * | 0.02 | 0.46 * | 0.22 | 0.29 | −0.16 | −0.10 | −0.24 | |
Width (µm) | EG | 0.24 | - | −0.21 | 0.06 | - | −0.13 | −0.12 | - | −0.07 |
EN | 0.21 | −0.21 | - | −0.03 | −0.13 | - | −0.01 | −0.07 | - | |
SB | −0.01 | −0.09 | 0.11 | −0.30 | −0.11 | 0.10 | −0.03 | 0.01 | −0.07 | |
Area (µm2) | EG | 0.44 * | - | −0.02 | 0.16 | - | 0.07 | −0.02 | - | 0.01 |
EN | −0.03 | −0.02 | - | 0.05 | 0.07 | - | 0.02 | 0.01 | - | |
SB | 0.07 | 0.23 | −0.09 | 0.27 | 0.30 | 0.04 | 0.01 | 0.21 | 0.13 | |
Perimeter (µm) | EG | 0.41 * | - | -0.03 | −0.09 | - | 0.08 | 0.29 | - | 0.18 |
EN | 0.04 | −0.03 | - | 0.26 | 0.08 | - | 0.24 | 0.18 | - | |
SB | 0.18 | 0.35 * | 0.08 | 0.34 * | 0.28 | 0.01 | −0.09 | 0.15 | 0.29 | |
Tail | ||||||||||
Length (µm) | EG | −0.24 | - | −0.41 * | 0.39 * | - | 0.27 | 0.26 | - | 0.06 |
EN | 0.30 | −0.41 * | - | 0.06 | 0.27 | - | −0.12 | 0.06 | - | |
SB | 0.18 | −0.25 | −0.01 | 0.23 | 0.28 | 0.34 * | 0.05 | 0.24 | 0.07 | |
Sperm total length (µm) | EG | −0.09 | - | −0.28 | 0.45 * | - | 0.21 | 0.32 * | - | 0.10 |
EN | 0.38 * | −0.28 | - | 0.06 | 0.21 | - | −0.06 | 0.10 | - | |
SB | 0.19 | −0.27 | 0.02 | 0.24 | 0.23 | 0.40* | 0.06 | 0.30 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wysokińska, A.; Wójcik, E.; Chłopik, A. Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods. Animals 2021, 11, 227. https://doi.org/10.3390/ani11010227
Wysokińska A, Wójcik E, Chłopik A. Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods. Animals. 2021; 11(1):227. https://doi.org/10.3390/ani11010227
Chicago/Turabian StyleWysokińska, Anna, Ewa Wójcik, and Angelika Chłopik. 2021. "Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods" Animals 11, no. 1: 227. https://doi.org/10.3390/ani11010227
APA StyleWysokińska, A., Wójcik, E., & Chłopik, A. (2021). Evaluation of the Morphometry of Sperm from the Epididymides of Dogs Using Different Staining Methods. Animals, 11(1), 227. https://doi.org/10.3390/ani11010227