Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Experimental Design and Sampling
2.3. Cortisol
2.4. RNA Extraction and cDNA Synthesis
2.5. Real-Time PCR
2.6. Immunohistochemistry (IHC)
2.7. Statistical Analysis
3. Results
3.1. Cortisol
3.2. Real-Time PCR Results
3.2.1. Stress Response
3.2.2. Fish Growth Markers
3.3. Immunohistochemistry
3.3.1. HSP70 Immunohistochemistry
3.3.2. IGF-I Immunohistochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2020. Sustainability in Action; FAO: Rome, Italy, 2020; p. 206. [Google Scholar] [CrossRef]
- Wendelaar Bonga, S.E. The stress response in fish. Physiol. Rev. 1997, 77, 591–625. [Google Scholar] [CrossRef] [PubMed]
- Iwama, G.K.; Thomas, P.T.; Forsyth, R.B.; Vijayan, M.M. Heat shock protein expression in fish. Rev. Fish Biol. Fish. 1998, 8, 35–56. [Google Scholar] [CrossRef]
- Olivotto, I.; Mosconi, G.; Maradonna, F.; Cardinali, M.; Carnevali, O. Diplodus sargus interrenal-pituitary response: Chemical communication in stressed fish. Gen. Comp. Endocrinol. 2002, 127, 66–70. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; Ricci, L.A.; Tokle, N.; Radaelli, R.; Pascoli, P.; Cossignani, L.; Palermo, F.; Mosconi, G.; Nozzi, V.; Raccanello, F.; et al. Malnutrition may affect common sole (Solea solea L.) growth, pigmentation and stress response: Molecular, biochemical and histological implications. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 161, 361–371. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; Grasso, L.; Maradonna, F.; Radaelli, G.; Ballarin, C.; Chemello, G.; Evjemo, J.O.; Carnevali, O.; Olivotto, I. Growth and stress factors in ballan wrasse (Labrus bergylta) larval development. Aquacult. Res. 2017, 48, 2567–2580. [Google Scholar] [CrossRef]
- Portz, D.E.; Woodley, C.M.; Cech, J.J. Stress-associated impacts of short-term holding on fishes. Rev. Fish Biol. Fish. 2006, 16, 125–170. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- Elhakeem, A.; Elshorbagy, W. Evaluation of the long-term variability of seawater salinity and temperature in response to natural and anthropogenic stressors in the Arabian Gulf. Mar. Pollut. Bull. 2013, 76, 355–359. [Google Scholar] [CrossRef]
- Olivotto, I.; Di Stefano, M.; Rosetti, S.; Cossignani, L.; Pugnaloni, A.; Giantomassi, F.; Carnevali, O. Live prey enrichment, with particular emphasis on HUFAs, as limiting factor in False percula clownfish (Amphiprion ocellaris, Pomacentridae) larval development and metamorphosis: Molecular and biochemical implications. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 159, 207–218. [Google Scholar] [CrossRef]
- Rosemore, B.J.; Welsch, C.A. The effects of rearing density, salt concentration, and incubation temperature on Japanese medaka (Oryzias latipes) embryo development. Zebrafish 2012, 9, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, K.; Starck, J.M. Developmental plasticity, modularity, and heterochrony during the phylotypic stage of the zebra fish, Danio rerio. J. Exp. Zool. B Mol. Dev. Evol. 2010, 314, 166–178. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.; Imsland, K.; Roth, B.; Schram, E.; Stefansson, S.O. Effects of chronic and periodic exposure to ammonia on growth and blood physiology in juvenile turbot (Scophthalmus maximus). Aquaculture 2009, 296, 45–50. [Google Scholar] [CrossRef]
- Randazzo, B.; Chemello, G.; Tortarolo, I.; Chiarello, G.L.; Zalas, M.; Santini, A.; Liberatore, M.; Liberatore, M.; Selli, E.; Olivotto, I. A novel photocatalytic purification system for fish culture. Zebrafish 2017, 14, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.A.; Beckman, B.R.; Dickhoff, W.W. The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-1, and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 2001, 123, 308–323. [Google Scholar] [CrossRef]
- Davis, K.B.; Peterson, B.C. The effect of temperature, stress, and cortisol on plasma IGF-I and IGFBPs in sunshine bass. Gen. Comp. Endocrinol. 2006, 149, 219–225. [Google Scholar] [CrossRef]
- Breves, J.P.; Hirano, T.; Grau, E.G. Ionoregulatory and endocrine responses to disturbed salt and water balance in Mozambique tilapia exposed to confinement and handling stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 155, 294–300. [Google Scholar] [CrossRef]
- Bertotto, D.; Poltronieri, C.; Negrato, E.; Richard, J.; Pascoli, F.; Simontacchi, C.; Radaelli, G. Whole body cortisol and expression of HSP70, IGF-I and MSTN in early development of sea bass subjected to heat shock. Gen. Comp. Endocrinol. 2011, 174, 44–50. [Google Scholar] [CrossRef]
- Sinha, A.K.; Liew, H.J.; Diricx, M.; Kumar, V.; Darras, V.M.; Blust, R.; De Boeck, G. Combined effects of high environmental ammonia, starvation and exercise on hormonal and ion-regulatory response in goldfish (Carassius auratus L.). Aquat. Toxicol. 2012, 15, 114–115. [Google Scholar] [CrossRef]
- Castillo, J.; Codina, M.; Martinez, M.L.; Navarro, I.; Gutiérrez, J. Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 286, 935–941. [Google Scholar] [CrossRef]
- Lee, C.Y.; Hu, S.Y.; Gong, H.Y.; Chen, M.H.C.; Lu, J.K.; Wu, J.L. Suppression of myostatin with vector-based RNA interference causes a double-muscle effect in transgenic zebrafish. Biochem. Biophys. Res. Commun. 2009, 387, 766–771. [Google Scholar] [CrossRef]
- Moriyama, S.; Ayson, F.G.; Kawauchi, H. Growth regulation by insulin-like growth factor-I in fish. Biosci. Biotech. Biochem. 2000, 64, 1553–1562. [Google Scholar] [CrossRef]
- Falcinelli, S.; Randazzo, B.; Vargas Abúndez, J.A.; Cangiotti, G.; Olivotto, I.; Carnevali, O. Kluyveromyces fragilis RNA extract supplementation promotes growth, modulates stress and inflammatory response in zebrafish. Aquacult. Res. 2018, 49, 1521–1534. [Google Scholar] [CrossRef]
- Peter, R.E.; Marchant, T.A. The endocrinology of growth in carp and related species. Aquaculture 1995, 129, 299–321. [Google Scholar] [CrossRef]
- Reinecke, M.; Collet, C. The phylogeny of the insulin-like growth factors. Int. Rev. Cytol. 1998, 183, 1–94. [Google Scholar] [CrossRef]
- Duan, C. Nutritional and developmental regulation of insulin-like growth factor in fish. J. Nutr. 1998, 128, 306S–314S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duguay, S.J.; Lai-Zhang, J.; Steiner, D.F.; Funkenstein, B.; Chan, S.J. Developmental and tissue-regulated expression of IGF-I and IGF-II mRNAs in Sparus aurata. J. Mol Endocrinol. 1996, 16, 123–132. [Google Scholar] [CrossRef]
- Funkenstein, B.; Almuly, R.; Chan, S.J. Localization of IGF-I and IGF-I receptor mRNA in Sparus aurata larvae. Gen. Comp. Endocrinol. 1997, 107, 291–303. [Google Scholar] [CrossRef]
- Patruno, M.; Maccatrozzo, L.; Funkenstein, B.; Radaelli, G. Cloning and expression of insulin-like growth factors I and II in the shi drum (Umbrina cirrosa). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 137, 137–151. [Google Scholar] [CrossRef]
- Patruno, M.; Sivieri, S.; Poltronieri, C.; Sacchetto, R.; Maccatrozzo, L.; Martinello, T.; Funkenstein, B.; Radaelli, G. Real-time polymerase chain reaction in situ hybridization and immunohistochemical localization of insulin-like growth factor-I and myostatin during development of Dicentrarchus labrax (Pisces: Osteichthyes). Cell Tissue Res. 2008, 331, 643–658. [Google Scholar] [CrossRef]
- Reinecke, M.; Schmid, A.; Ermatinger, R.; Loffin-Cueni, D. Insulin-like growth factor I in the teleost Oreochromis mossambicus the tilapia: Gene sequence tissue expression and cellular localization. Endocrinology 1997, 138, 3613–3619. [Google Scholar] [CrossRef]
- Reinecke, M.; Björnsson, B.T.; Dickhoff, W.W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutiérrez, J. Growth hormone and insulin-like growth factors in fish: Where we are and where to go. Gen. Comp. Endocrinol. 2005, 142, 20–24. [Google Scholar] [CrossRef]
- Radaelli, G.; Domeneghini, C.; Arrighi, S.; Bosi, G.; Patruno, M.; Funkenstein, B. Localization of IGF-I, IGF-I receptor and IGFBP-2 in developing Umbrina cirrosa (Pisces: Osteichthyes). Gen. Comp. Endocrinol. 2003, 130, 232–244. [Google Scholar] [CrossRef]
- Carnevali, O.; Cardinali, M.; Maradonna, F.; Parisi, M.; Olivotto, I.; Polzonetti-Magni, A.M.; Mosconi, G. Hormonal regulation of hepatic IGF-I and IGF-II gene expression in the marine teleost Sparus aurata. Mol. Reprod. Dev. 2005, 71, 12–18. [Google Scholar] [CrossRef]
- Wood, A.W.; Duan, C.; Bern, H.A. Insulin-like growth factor signaling in fish. Int. Rev. Cytol. 2005, 243, 215–285. [Google Scholar] [CrossRef] [PubMed]
- Radaelli, G.; Poltronieri, C.; Bertotto, D.; Funkenstein, B.; Simontacchi, C. Cellular localization of insulin-like growth factor-II protein in the sea bass (Dicentrarchus labrax) from hatching to adult. Histol. Histopathol. 2008, 23, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Maccatrozzo, L.; Bargelloni, L.; Cardazzo, B.; Rizzo, G.; Patarnello, T. A novel second myostatin gene is present in teleost fish. FEBS Lett. 2001, 509, 36–40. [Google Scholar] [CrossRef] [Green Version]
- Maccatrozzo, L.; Bargelloni, L.; Radaelli, G.; Mascarello, F.; Patarnello, T. Characterization of the myostatin gene in the gilthead sea bream (Sparus aurata): Sequence genomic structure and expression pattern. Mar Biotechnol. 2001, 3, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Roberts, S.B.; Goetz, F.W. Differential skeletal muscle expression of myostatin across teleost species and the isolation of multiple myostatin isoforms. FEBS Lett. 2001, 491, 212–216. [Google Scholar] [CrossRef] [Green Version]
- Radaelli, G.; Rowlerson, A.; Mascarello, F.; Patruno, M.; Funkenstein, B. Myostatin precursor is present in several tissues in teleost fish: A comparative immunolocalization study. Cell Tissue Res. 2003, 311, 239–250. [Google Scholar] [CrossRef]
- Funkenstein, B.; Balas, V.; Skopal, T.; Radaelli, G.; Rowlerson, A. Long-term culture of muscle explants from Sparus aurata. Tissue Cell 2006, 38, 399–415. [Google Scholar] [CrossRef]
- Garikipati, D.K.; Gahr, S.A.; Roalson, E.H.; Rodgers, B.D. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): Genomic organization differential expression and pseudogenization. Endocrinology 2007, 148, 2106–2115. [Google Scholar] [CrossRef] [Green Version]
- Schreck, C.B. Stress and compensation in teleostean fishes: Response to social and physical factors. In Stress and Fish; Pickering, A.D., Ed.; Academic Press: London, UK, 1981; pp. 295–321. [Google Scholar]
- Yudt, M.R.; Cidlowski, J.A. The glucocorticoid receptor: Coding a diversity of proteins and responses through a single gene. Mol. Endocrinol. 2002, 16, 1719–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heitzer, M.D.; Wolf, I.M.; Sanchez, E.R.; Witchel, S.F.; DeFranco, D.B. Glucocorticoid receptor physiology. Rev. Endocr. Metab. Disord. 2007, 8, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Krug, R.G.; Poshusta, T.L.; Skuster, K.J.; Berg, M.R.; Gardner, S.L.; Clark, K.J. A transgenic zebrafish model for monitoring glucocorticoid receptor activity. Genes Brain Behav. 2014, 13, 478–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morimoto, R.I.; Tissieres, A.; Georgopoulos, C. Stress Proteins in Biology and Medicine; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1990; p. 450. [Google Scholar] [CrossRef]
- Feder, M.E.; Hofmann, G.E. Heat-shock proteins, molecular chaperones, and the stress response: Evolutionary and ecological physiology. Ann. Rev. Physiol. 1999, 61, 243–282. [Google Scholar] [CrossRef] [Green Version]
- Zarantoniello, M.; Bruni, L.; Randazzo, B.; Vargas, A.; Gioacchini, G.; Truzzi, C.; Annibaldi, A.; Riolo, P.; Parisi, G.; Cardinaletti, G.; et al. Partial Dietary Inclusion of Hermetia illucens (Black Soldier Fly) Full-Fat Prepupae in Zebrafish Feed: Biometric, Histological, Biochemical, and Molecular Implications. Zebrafish 2018, 15, 519–532. [Google Scholar] [CrossRef]
- Smith, T.R.; Tremblay, G.C.; Bradley, T.M. Hsp70 and a 54 kDa protein (Osp54) are induced in salmon (Salmo salar) in response to hyperosmotic stress. J. Exp. Zool. 1999, 284, 286–298. [Google Scholar] [CrossRef]
- Basu, N.; Nakano, T.; Grau, E.G.; Iwama, G.K. The effects of cortisol on heat shock protein 70 levels in two fish species. Gen. Comp. Endocrinol. 2001, 24, 97–105. [Google Scholar] [CrossRef]
- Larsen, P.F.; Nielsen, E.E.; Williams, T.D.; Loeschcke, V. Intraspecific variation in expression of candidate genes for osmoregulation, heme biosynthesis and stress resistance suggests local adaptation in European flounder (Platichthys flesus). Heredity 2008, 101, 247–259. [Google Scholar] [CrossRef]
- Sung, Y.Y.; Roberts, R.J.; Bossier, P. Enhancement of Hsp70 synthesis protects common carp, Cyprinus carpio L., against lethal ammonia toxicity. J. Fish Dis. 2012, 35, 563–568. [Google Scholar] [CrossRef]
- Qin, C.; Zhao, D.; Gong, Q.; Qi, Z.; Zou, Y.; Yue, X.; Xie, B. Effects of pathogenic bacterial challenge after acute sublethal ammonia-N exposure on heat shock protein 70 expression in Botia reevesae. Fish Shellfish Immunol. 2013, 35, 1044–1047. [Google Scholar] [CrossRef] [PubMed]
- Piccinetti, C.C.; Montis, C.; Bonini, M.; Laurà, R.; Guerrera, M.C.; Radaelli, G.; Vianello, F.; Santinelli, V.; Maradonna, F.; Nozzi, V.; et al. Transfer of Silica-Coated Magnetic (Fe3O4) Nanoparticles through Food: A Molecular and Morphological Study in Zebrafish. Zebrafish 2014, 11, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Maradonna, F.; Gioacchini, G.; Falcinelli, S.; Bertotto, D.; Radaelli, G.; Olivotto, I.; Carnevali, O. Probiotic supplementation promotes calcification in Danio rerio larvae: A molecular study. PLoS ONE 2013, 8, e83155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eissa, N.; Wang, H.P. Transcriptional stress responses to environmental and husbandry stressors in aquaculture species. Rev. Aquac. 2016, 8, 61–88. [Google Scholar] [CrossRef]
- Jia, R.; Liu, B.-L.; Han, C.; Huang, B.; Lei, J.-L. Effects of ammonia exposure on stress and immune response in juvenile turbot (Scophthalmus maximus). Aquac. Res. 2017, 48, 3149–3162. [Google Scholar] [CrossRef]
- Wang, J.; Hou, X.; Xue, X.; Zhu, X.; Chen, Y.; Yang, Z. Interactive effects of temperature and salinity on the survival, oxidative stress, and Na+/K+–ATPase activity of newly hatched obscure puffer (Takifugu obscurus) larvae. Fish Physiol. Biochem. 2019, 45, 93–103. [Google Scholar] [CrossRef]
- Galhardo, L.; Oliveira, R.F. Psychological stress and welfare in fish. Ann. Rev. Biomed. Sci. 2009, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Simontacchi, C.; Negrato, E.; Pazzaglia, M.; Bertotto, D.; Poltronieri, C.; Radaelli, G. Whole-body concentrations of cortisol and sex steroids in white sturgeon (Acipenser transmontanus, Richardson 1836) during early development and stress response. Aquacult. Int. 2009, 17, 7–14. [Google Scholar] [CrossRef]
- Eissa, N.; Wang, H.P. Physiological stress response of Yellow Perch subjected to repeated handlings and salt treatments at different temperatures. N. Am. J. Aquac. 2013, 75, 449–454. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Ni, Q.; Liu, H.; Wu, F.; Wang, X. Effects of stocking density on growth, stress, and immune responses of juvenile Chinese sturgeon (Acipenser sinensis) in a recirculating aquaculture system. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019, 219, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Wang, H.P.; Yao, H.; Shen, Z.G.; Shaheen, A.A.; Abou-ElGheit, E.N. Expression of Hsp70, Igf1, and three oxidative stress biomarkers in response to handling and salt treatment at different water temperatures in yellow perch, Perca flavescens. Front. Physiol. 2017, 8, 683. [Google Scholar] [CrossRef] [PubMed]
- Zarantoniello, M.; Zimbelli, A.; Randazzo, B.; Compagni, M.D.; Truzzi, C.; Antonucci, M.; Riolo, P.; Loreto, N.; Osimani, A.; Milanović, V.; et al. Black Soldier Fly (Hermetia illucens) reared on roasted coffee by-product and Schizochytrium sp. as a sustainable terrestrial ingredient for aquafeeds production. Aquaculture 2020, 518, 734659. [Google Scholar] [CrossRef]
- Chadwick, J.G.; Nislow, K.H., Jr.; McCormick, S.D. Thermal onset of cellular and endocrine stress responses correspond to ecological limits in brook trout, an iconic cold-water fish. Conserv. Physiol. 2015, 3, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wen, X.; Zhu, D.; Aweya, J.J.; Li, S. Protective effects of Sargassum horneri against ammonia stress in juvenile black sea bream, Acanthopagrus schlegelii. J. Appl. Phycol. 2019, 31, 1445–1453. [Google Scholar] [CrossRef]
- Mirghaed, A.T.; Fayaz, S.; Hoseini, S.M. Effects of dietary 1,8-cineole supplementation on serum stress and antioxidant markers of common carp (Cyprinus carpio) acutely exposed to ambient ammonia. Aquaculture 2019, 509, 8–15. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, X.; Wang, Z.; Meng, Z.; Huang, B.; Guan, C. Physiological response of juvenile turbot (Scophthalmus maximus L) during hyperthermal stress. Aquaculture 2020, 529, 735645. [Google Scholar] [CrossRef]
- Vargas-Chacoff, L.; Arjona, F.J.; Ruiz-Jarabo, I.; Páscoa, I.; Gonçalves, O.; Martín del Río, M.P.; Mancera, J.M. Seasonal variation in osmoregulatory and metabolic parameters in earthen pond-cultured gilthead sea bream Sparus auratus. Aquac. Res. 2009, 40, 1279–1290. [Google Scholar] [CrossRef]
- Vargas-Chacoff, L.; Arjona, F.J.; Ruiz-Jarabo, I.; García-Lopez, A.; Flik, G.; Mancera, J.M. Water temperature affects osmoregulatory responses in gilthead sea bream (Sparus aurata L.). J. Therm. Biol. 2020, 88, 102526. [Google Scholar] [CrossRef]
- Aluru, N.; Vijayan, M.M. Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol. Genom. 2007, 31, 483–491. [Google Scholar] [CrossRef]
- Faught, E.; Vijayan, M.M. Mechanisms of cortisol action in fish hepatocytes. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2016, 199, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Cara, J.B.; Aluru, N.; Moyano, F.J.; Vijayan, M.M. Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 142, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Todgham, A.E.; Schulte, P.M.; Iwama, G.K. Cross-tolerance in the tidepool sculpin: The role of heat shock proteins. Physiol. Biochem. Zool. 2005, 78, 133–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poltronieri, C.; Negrato, E.; Bertotto, D.; Majolini, D.; Simontacchi, C.; Radaelli, G. Immunohistochemical localization of constitutive and inducible Heat Shock Protein 70 in carp (Cyprinus carpio) and trout (Oncorhynchus mykiss) exposed to transport stress. Eur. J. Histochem. 2008, 52, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Nakano, K.; Takemura, A.; Nakamura, S.; Nakano, Y.; Iwama, G.K. Changes in the cellular and organismal stress responses of the subtropical fish, the Indo-Pacific sergeant, Abudefduf vaigiensis, due to the 1997-1998 El Niño/Southern Oscillation. Environ. Biol. Fishes 2004, 70, 321–329. [Google Scholar] [CrossRef]
- Zhang, C.N.; Li, X.F.; Tian, H.Y.; Zhang, D.D.; Jiang, G.Z.; Lu, K.L.; Liu, G.X.; Liu, W.B. Effects of fructooligosaccharide on immune response, antioxidant capability and HSP70 and HSP90 expressions of blunt snout bream (Megalobrama amblycephala) under high ammonia stress. Fish Physiol. Biochem. 2015, 41, 203–217. [Google Scholar] [CrossRef]
- Tort, L.; Teles, M. Genomic Responses to Stress Challenges in Fish. In Functional Genomics in Aquaculture; Saroglia, M., Liu, Z.J., Eds.; Wiley-Blackwell: Oxford, UK, 2012; pp. 147–168. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleosts: Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- Link, K.; Berishvili, G.; Shved, N.; D’Cotta, H.; Baroiller, J.F.; Reinecke, M.; Eppler, E. Seawater and freshwater challenges affect the insulin-like growth factors IGF-I and IGF-II in liver and osmoregulatory organs of the tilapia. Mol. Cell. Endocrinol. 2010, 327, 40–46. [Google Scholar] [CrossRef]
- Pujante, I.M.; Martos-Sitcha, J.A.; Moyano, F.J.; Ruiz-Jarabo, I.; Martínez-Rodríguez, G.; Mancera, J.M. Starving/re-feeding processes induce metabolic modifications in thick-lipped grey mullet (Chelon labrosus, Risso 1827). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2015, 180, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Peterson, B.C.; Small, B.C. Effects of exogenous cortisol on the GH/IGF-I/IGFBP network in channel catfish. Domest. Anim. Endocrinol. 2005, 28, 391–404. [Google Scholar] [CrossRef]
- Cao, Y.B.; Chen, X.Q.; Wang, S.; Chen, X.C.; Wang, Y.X.; Chang, J.P.; Du, J.Z. Growth hormone and insulin-like growth factor of naked carp (Gymnocypris przewalskii) in Lake Qinghai: Expression in different water environments. Gen. Comp. Endocrinol. 2009, 161, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Saera-Vila, A.; Calduch-Giner, J.A.; Prunet, P.; Pérez-Sánchez, J. Dynamics of liver GH/IGF axis and selected stress markers in juvenile gilthead sea bream (Sparus aurata) exposed to acute confinement. Differential stress response of growth hormone receptors. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 154, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, C.H.; Yang, F.F.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L. Effect of acute ammonia exposure on expression of GH/IGF axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus). Fish Physiol. Biochem. 2015, 41, 495–507. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, B.; Vijayan, M.M. Stress and Growth. In Fish Physiology; Schreck, C.B., Tort, L., Farrell, A.P., Brauner, C.J., Eds.; Elsevier Inc.: London, UK, 2016; Volume 35, pp. 167–205. [Google Scholar] [CrossRef]
- Pierce, A.L.; Breves, J.P.; Moriyama, S.; Hirano, T.; Grau, E.G. Differential regulation of Igf1 and Igf2 mRNA levels in tilapia hepatocytes: Effects of insulin and cortisol on GH sensitivity. J. Endocrinol. 2011, 211, 201–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nipkow, M.; Wirthgen, E.; Luft, P.; Rebl, A.; Hoeflich, A.; Goldammer, T. Characterization of igf1 and igf2 genes during maraena whitefish (Coregonus maraena) ontogeny and the effect of temperature on embryogenesis and igf expression. Growth Horm. IGF Res. 2018, 40, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Gabillard, J.-C.; Weil, C.; Rescan, P.Y.; Navarro, I.; Gutierrez, J.; Le Bail, P.Y. Does the GH/IGF system mediate the effect of water temperature on fish growth? A review. Cybium 2005, 29, 107–117. [Google Scholar]
- Gabillard, J.C.; Weil, C.; Rescan, P.Y.; Navarro, I.; Gutiérrez, J.; Le Bail, P.Y. Environmental temperature increases plasma GH levels independently of nutritional status in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 2003, 133, 17–26. [Google Scholar] [CrossRef]
- Gabillard, J.C.; Weil, C.; Rescan, P.Y.; Navarro, I.; Gutiérrez, J.; Le Bail, P.Y. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 2003, 133, 233–242. [Google Scholar] [CrossRef]
- Garikipati, D.K.; Gahr, S.A.; Rodgers, B.D. Identification characterization and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes. J. Endocrinol. 2006, 190, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Funkenstein, B.; Balas, V.; Rebhan, Y.; Pliatner, A. Characterization and functional analysis of the 5′ flanking region of Sparus aurata myostatin-1 gene. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 55–62. [Google Scholar] [CrossRef]
- De Santis, C.; Jerry, D.R. Differential tissue-regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Mol. Cell. Endocrinol. 2011, 335, 158–165. [Google Scholar] [CrossRef]
- Galt, N.J.; McCormick, S.D.; Froehlich, J.M.; Biga, P.R. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids. Gen Comp Endocrinol. 2016, 237, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, C.; Maccatrozzo, L.; Simontacchi, C.; Bertotto, D.; Funkenstein, B.; Radaelli, G. Quantitative RT-PCR analysis and immunohistochemical localization of HSP70 in sea bass Dicentrarchus labrax exposed to transport stress. Eur. J. Histochem. 2007, 51, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Perrot, V.; Moiseeva, E.B.; Gozes, Y.; Chan, S.J.; Ingleton, P.; Funkenstein, B. Ontogeny of the insulin-like growth factor system (IGF-I, IGF-II, and IGF-IR) in gilthead seabream (Sparus aurata): Expression and cellular localization. Gen. Comp. Endocrinol. 1999, 116, 445–460. [Google Scholar] [CrossRef]
- Radaelli, G.; Patruno, M.; Maccatrozzo, L.; Funkenstein, B. Expression and cellular localization of insulin-like growth factor-II protein and mRNA in Sparus aurata during development. J. Endocrinol. 2003, 178, 285–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radaelli, G.; Poltronieri, C.; Simontacchi, C.; Negrato, E.; Pascoli, F.; Libertini, A.; Bertotto, D. Immunohistochemical localization of IGF-I, IGF-II and MSTN proteins during development of triploid sea bass (Dicentrarchus labrax). Eur. J. Histochem. 2010, 54, 74–80. [Google Scholar] [CrossRef] [Green Version]
- Fiocchi, E.; Civettini, M.; Carbonara, P.; Zupa, W.; Lembo, G.; Manfrin, A. Development of molecular and histological methods to evaluate stress oxidative biomarkers in sea bass (Dicentrarchus labrax). Fish Physiol Biochem. 2020, 46, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Giari, L.; Simoni, E.; Manera, M.; Dezfuli, B.S. Histocytological responses of Dicentrarchus labrax (L.) following mercury exposure. Ecotoxicol. Environ. Saf. 2008, 70, 400–410. [Google Scholar] [CrossRef]
- Boscolo Papo, M.; Bertotto, D.; Quaglio, F.; Vascellari, M.; Pascoli, F.; Negrato, E.; Binato, G.; Radaelli, G. Histopathology and stress biomarkers in the clam Venerupis philippinarum from the Venice Lagoon (Italy). Fish Shellfish Immunol. 2014, 39, 42–50. [Google Scholar] [CrossRef]
- Iger, Y.; Abraham, M. Rodlet cells in the epidermis of fish exposed to stressors. Tissue Cell 1997, 29, 431–438. [Google Scholar] [CrossRef]
- Manera, M.; Dezfuli, B.S. Rodlet cells in teleosts: A new insight into their nature and functions. J. Fish. Biol. 2004, 65, 597–619. [Google Scholar] [CrossRef]
- Dezfuli, B.S.; Simoni, E.; Giari, L.; Manera, M. Effects of experimental terbuthylazine exposure on the cells of Dicentrarchus labrax (L.). Chemosphere 2006, 64, 1684–1694. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, C.; Laurà, R.; Bertotto, D.; Negrato, E.; Simontacchi, C.; Guerrera, M.C.; Radaelli, G. Effects of exposure to overcrowding on rodlet cells of the teleost fish Dicentrarchus labrax (L.). Vet. Res. Commun. 2009, 33, 619–629. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|
gr | 5′- GCCTTTTGGCATGTACTCAAACC -3′ | 5′- GGACGACTCTCCATACCTGTTC -3′ |
hsp70 | 5′- GTACGGTCTGGACAAAGGCA -3′ | 5′- GGTTCTCTTGGCCCTCTCAC -3′ |
igf1 | 5′- AGCCCAGAGACCCTGTGC -3′ | 5′- CAGCTCACAGCTTTGGAAGCA -3′ |
igf2 | 5′- TGGGATCGTAGAGGAGTGTTGT -3′ | 5′- CTGTAGAGAGGTGGCCGACA -3′ |
mstn | 5′- GGCCTGGACTGTGATGAGAA -3′ | 5′- GCATGTTGATGGGTGACATC -3′ |
β-act | 5′- GGTACCCATCTCCTGCTCCAA -3′ | 5′- GAGCGTGGCTACTCCTTCACC -3′ |
18s | 5′- GTGAGGTTTCCCGTGTTGAG -3′ | 5′- GACCATAAACGGTGCCAACT -3′ |
Tissue | Ctrl | Salinity Stress | Temperature Stress | Ammonia Stress | ||||
---|---|---|---|---|---|---|---|---|
HSP70 | IGF-I | HSP70 | IGF-I | HSP70 | IGF-I | HSP70 | IGF-I | |
Skin | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Muscle | − | − | − | − | − | − | − | − |
Gills | + | ++ | ++ | ++ | ++ | ++ | ++ | ++ |
Stomach | +/− | ++ | + | ++ | ++ | ++ | + | ++ |
Intestine | +/− | ++ | + | ++ | + | ++ | ++ | ++ |
Liver | +/− | ++ | ++ | ++ | ++ | ++ | + | ++ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarantoniello, M.; Bortoletti, M.; Olivotto, I.; Ratti, S.; Poltronieri, C.; Negrato, E.; Caberlotto, S.; Radaelli, G.; Bertotto, D. Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study. Animals 2021, 11, 97. https://doi.org/10.3390/ani11010097
Zarantoniello M, Bortoletti M, Olivotto I, Ratti S, Poltronieri C, Negrato E, Caberlotto S, Radaelli G, Bertotto D. Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study. Animals. 2021; 11(1):97. https://doi.org/10.3390/ani11010097
Chicago/Turabian StyleZarantoniello, Matteo, Martina Bortoletti, Ike Olivotto, Stefano Ratti, Carlo Poltronieri, Elena Negrato, Stefano Caberlotto, Giuseppe Radaelli, and Daniela Bertotto. 2021. "Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study" Animals 11, no. 1: 97. https://doi.org/10.3390/ani11010097
APA StyleZarantoniello, M., Bortoletti, M., Olivotto, I., Ratti, S., Poltronieri, C., Negrato, E., Caberlotto, S., Radaelli, G., & Bertotto, D. (2021). Salinity, Temperature and Ammonia Acute Stress Response in Seabream (Sparus aurata) Juveniles: A Multidisciplinary Study. Animals, 11(1), 97. https://doi.org/10.3390/ani11010097