Effect of Complete Replacement of Dry-Rolled Corn with Unprocessed Rye on Growth Performance, Efficiency of Dietary Net Energy Use, and Carcass Traits of Finishing Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Management and Dietary Treatments
2.2. Growth Performance Calculations
2.3. Carcass Trait Determination
2.4. Efficiency of Dietary NE Use Calculations
2.5. Statistical Analysis
3. Results and Discussion
3.1. Cumulative Growth Performance (Day 1 to 77)
3.2. Growth Performance in the Finishing Period (Day 14 to 77)
3.3. Carcass Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia y Garcia, A.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows that Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Poffenbarger, H.; Artz, G.; Dahlke, G.; Edwards, W.; Hanna, M.; Russell, J.; Sellers, H.; Liebman, M. An economic analysis of integrated crop-livestock systems in Iowa, U.S.A. Agric. Syst. 2017, 157, 51–69. [Google Scholar] [CrossRef]
- Hansen, H.B.; Møller, B.; Andersen, S.B.; Jørgensen, J.R.; Hansen, Å. Grain characteristics, chemical composition, and functional properties of rye (Secale cereale L.) as influenced by genotype and harvest year. J. Agric. Food Chem. 2004, 52, 2282–2291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusche, W.C.; Walker, J.A.; Sexton, P.; Brattain, R.S.; Smith, Z.K. Evaluation of hybrid rye on growth performance, carcass traits, and efficiency of net energy utilization in finishing steers. Transl. Anim. Sci. 2020, 4. [Google Scholar] [CrossRef] [PubMed]
- NASEM. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy of Science, Engineering, and Medecine: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; Latimer, G.W.J., Ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 2016; p. 3172. [Google Scholar]
- Goering, H.K.; VanSoest, P.J. Forgae fiber analysis (Apparatus, reagents, procedures, and some application). In Agriculture Handbook No. 379; ARS, USDA: Washington, DC, USA, 1970. [Google Scholar]
- Preston, R.L. 2016 Feed Composition Table. BEEF Magazine. 2016. Available online: https://www.beefmagazine.com/sites/beefmagazine.com/files/2016-feedcomposition-tables-beef-magazine.pdf (accessed on 1 February 2019).
- USDA. Official United States Standard for Grades of Beef Carcasses Agric; USDA: Washington, DC, USA, 1997.
- Guiroy, P.J.; Tedeschi, L.O.; Fox, D.G.; Hutcheson, J.P. The effects of implant strategy on finished body weight of beef cattle. J. Anim. Sci. 2002, 80, 1791–1800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphey, C.E.; Hallett, D.K.; Tyler, W.E.; Pierce, J.C. Estimating Yields of Retail Cuts from Beef Carcass. J. Anim. Sci. 1960, 19 (Suppl. 1), 1240. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 5th ed.; National Academies Press: Washington, DC, USA, 1984. [Google Scholar]
- Lofgreen, G.P.; Garrett, W.N. A System for Expressing Net Energy Requirements and Feed Values for Growing and Finishing Beef Cattle. J. Anim. Sci. 1968, 27, 793–806. [Google Scholar] [CrossRef]
- Owens, F.N.; Hicks, R.B. Can net energy values be determined from animal performance measurements? A review of factors affecting application of the California Net Energy System. Transl. Anim. Sci. 2019, 3, 929–944. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: Daily gain, mature body weight, dry matter intake, and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Shen, Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J. Anim. Sci. 1998, 76, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A. Influence of flake thickness on the feeding value of steam-rolled wheat for feedlot cattle. J. Anim. Sci. 1994, 72, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A. Influence of processing on the comparative feeding value of barley for feedlot cattle. J. Anim. Sci. 1993, 71, 3–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathison, G.W. Effects of processing on the utilization of grain by cattle. Anim. Feed Sci. Technol. 1996, 58, 113–125. [Google Scholar] [CrossRef]
Item | Day 15 to 37 | Day 38 to 59 | Day 60 to 77 | |||
---|---|---|---|---|---|---|
DRC | RYE | DRC | RYE | DRC | RYE | |
DRC 2, % | 59.59 | - | 60.09 | - | 60.27 | - |
Unprocessed rye, % | - | 59.68 | - | 60.00 | - | 60.18 |
CBCDS 3, % | 20.17 | 20.12 | 19.80 | 19.84 | - | - |
DDGS 4, % | - | - | - | - | 19.70 | 19.75 |
Grass hay, % | 8.37 | 8.35 | - | - | - | - |
Oat hay, % | - | - | 8.17 | 8.19 | 8.06 | 8.08 |
Meal supplement 5, % | 7.00 | 6.98 | 7.03 | 7.05 | 7.03 | 7.04 |
Liquid supplement 6, % | 4.87 | 4.86 | 4.92 | 4.93 | 4.95 | 4.95 |
Dry matter, % | 75.02 | 75.97 | 74.32 | 74.92 | 87.62 | 88.51 |
Crude protein, % | 12.86 | 15.79 | 12.97 | 15.71 | 13.69 | 16.43 |
NDF 7, % | 21.14 | 27.09 | 19.65 | 25.68 | 20.18 | 26.22 |
ADF 8, % | 9.84 | 13.41 | 8.78 | 12.40 | 9.25 | 12.87 |
Ash, % | 6.84 | 7.16 | 6.72 | 7.03 | 6.04 | 6.35 |
EE 9, % | 3.70 | 2.62 | 3.75 | 2.67 | 4.51 | 3.43 |
NEm 10, Mcal/kg | 2.02 | 1.84 | 2.03 | 1.84 | 2.06 | 1.88 |
NEg 11, Mcal/kg | 1.35 | 1.20 | 1.35 | 1.20 | 1.38 | 1.24 |
Item | Dietary Treatment | Standard Error of the Mean | p-Value | |
---|---|---|---|---|
Dry-Rolled Corn (DRC) | Unprocessed Rye (RYE) | |||
Pens, n | 4 | 4 | - | - |
Heifers, n | 28 | 28 | - | - |
Cumulative day 1 to 77 | ||||
Initial body weight (BW) 1, kg | 433 | 434 | 1.6 | 0.72 |
Final BW 2, kg | 576 | 537 | 8.8 | 0.01 |
Average daily gain (ADG), kg | 1.85 | 1.34 | 0.047 | 0.01 |
Dry matter intake (DMI), kg | 11.52 | 12.26 | 0.277 | 0.08 |
ADG/DMI (G:F) | 0.161 | 0.109 | 0.004 | 0.01 |
Finishing period (day 14 to 77) | ||||
BW 14 1, kg | 449 | 447 | 3.2 | 0.5 |
Final BW 2, kg | 576 | 537 | 8.8 | 0.01 |
ADG, kg | 2 | 1.42 | 0.037 | 0.01 |
DMI, kg | 12.35 | 13.22 | 0.339 | 0.08 |
G:F | 0.163 | 0.108 | 0.0054 | 0.01 |
Observed dietary NE, Mcal/kg | ||||
Maintenance | 2.33 | 1.73 | 0.067 | 0.01 |
Gain | 1.63 | 1.11 | 0.06 | 0.01 |
Observed-to-expected (O/E) NE 3 | ||||
O/E NEm | 1.14 | 0.93 | 0.033 | 0.01 |
O/E NEg | 1.2 | 0.91 | 0.041 | 0.01 |
Item | Dietary Treatment | SEM | p-Value | |
---|---|---|---|---|
Dry-Rolled Corn (DRC) | Unprocessed Rye (RYE) | |||
Pens, n | 4 | 4 | - | - |
Heifers, n | 28 | 27 | - | - |
Hot carcass weight (HCW), kg | 360 | 335 | 2.6 | 0.01 |
Dressing percentage 1, % | 61.68 | 60.64 | 0.477 | 0.12 |
Rib fat, cm | 1.32 | 1.19 | 0.069 | 0.14 |
Ribeye area cm2 | 87.4 | 85.79 | 1.535 | 0.37 |
Marbling 2 | 506 | 449 | 24.5 | 0.1 |
Yield grade | 2.98 | 2.72 | 0.032 | 0.01 |
Retail yield 3, % | 50.12 | 50.65 | 0.072 | 0.01 |
Estimated empty body fatness (EBF) 4, % | 30 | 28.54 | 0.296 | 0.02 |
Final BW at 28% EBF (AFBW) 4, kg | 535 | 523 | 1.4 | 0.01 |
Yield Grade distribution | ||||
Y1, % | 0 | 3.6 | 2.52 | 0.39 |
Y2, % | 42.8 | 59.5 | 13.78 | 0.13 |
Y3, % | 53.6 | 36.9 | 15.29 | 0.26 |
Y4, % | 3.6 | 0 | 2.52 | 0.39 |
Quality Grade distribution | ||||
Select, % | 10.7 | 33.3 | 9.85 | 0.16 |
Choice, | 35.7 | 40.5 | 12.82 | 0.81 |
Average choice, % | 35.7 | 22 | 10.85 | 0.44 |
Top choice, % | 10.7 | 4.2 | 5.66 | 0.47 |
Prime, % | 7.1 | 0 | 5.05 | 0.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buckhaus, E.M.; Rusche, W.C.; Smith, Z.K. Effect of Complete Replacement of Dry-Rolled Corn with Unprocessed Rye on Growth Performance, Efficiency of Dietary Net Energy Use, and Carcass Traits of Finishing Heifers. Animals 2021, 11, 99. https://doi.org/10.3390/ani11010099
Buckhaus EM, Rusche WC, Smith ZK. Effect of Complete Replacement of Dry-Rolled Corn with Unprocessed Rye on Growth Performance, Efficiency of Dietary Net Energy Use, and Carcass Traits of Finishing Heifers. Animals. 2021; 11(1):99. https://doi.org/10.3390/ani11010099
Chicago/Turabian StyleBuckhaus, Elizabeth M., Warren C. Rusche, and Zachary K. Smith. 2021. "Effect of Complete Replacement of Dry-Rolled Corn with Unprocessed Rye on Growth Performance, Efficiency of Dietary Net Energy Use, and Carcass Traits of Finishing Heifers" Animals 11, no. 1: 99. https://doi.org/10.3390/ani11010099
APA StyleBuckhaus, E. M., Rusche, W. C., & Smith, Z. K. (2021). Effect of Complete Replacement of Dry-Rolled Corn with Unprocessed Rye on Growth Performance, Efficiency of Dietary Net Energy Use, and Carcass Traits of Finishing Heifers. Animals, 11(1), 99. https://doi.org/10.3390/ani11010099