Potential Novel Biomarkers for Mastitis Diagnosis in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodological Approach in the Identification of References
3. Mastitis in Dairy Sheep
4. Conventional Approach to Mastitis Diagnosis
5. Promising Novel Inflammatory Markers of Mastitis in Sheep
6. Acute-Phase Proteins
7. miRNAs
8. Other Non-Coding RNAs
9. Cathelicidins
10. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olechnowicz, J.; Jaśkowski, J.M. Mastitis in Small Ruminants. Med. Weter. 2014, 70, 67–72. [Google Scholar]
- Martí-De Olives, A.; Peris, C.; Molina, M.P. Effect of Subclinical Mastitis on the Yield and Cheese-Making Properties of Ewe’s Milk. Small Rumin. Res. 2020, 184, 106044. [Google Scholar] [CrossRef]
- Fthenakis, G.C. Editorial: Research on Mastitis in Sheep. J. Dairy Res. 2019, 86, 253. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations. FAOSTAT Stat. Database 2020. Available online: http://www.fao.org/dairy-production-products/production/dairy-animals/en/ (accessed on 8 January 2021).
- Mazinani, M.; Rude, B. Population, World Production and Quality of Sheep and Goat Products. Am. J. Anim. Vet. Sci. 2020, 15, 291–299. [Google Scholar] [CrossRef]
- Sargison, N. The Critical Importance of Planned Small Ruminant Livestock Health and Production in Addressing Global Challenges Surrounding Food Production and Poverty Alleviation. N. Z. Vet. J. 2020, 68, 136–144. [Google Scholar] [CrossRef]
- Ferro, M.M.; Tedeschi, L.O.; Atzori, A.S. The Comparison of the Lactation and Milk Yield and Composition of Selected Breeds of Sheep and Goats. Transl. Anim. Sci. 2017, 1, 498–506. [Google Scholar] [CrossRef]
- Kalyankar, S.D.; Sarode, A.R.; Khedkar, C.D.; Deosarkar, S.S.; Pawshe, R.D. Sheep: Milk. In Encyclopedia of Food and Health; Elsevier: Amsterdam, The Netherlands, 2016; pp. 758–763. ISBN 978-0-12-384953-3. [Google Scholar]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development: Sheep Milk as Functional Food. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Szumacher-Strabel, M.; Potkański, A.; Cieślak, A.; Kowalczyk, J.; Czauderna, M. The effects of different amounts and types of fat on the level of conjugated linoleic acid in the meat and milk of sheep. J. Anim. Feed Sci. 2001, 10, 103–108. [Google Scholar] [CrossRef]
- Åkerfeldt, M.P.; Gunnarsson, S.; Bernes, G.; Blanco-Penedo, I. Health and Welfare in Organic Livestock Production Systems—A Systematic Mapping of Current Knowledge. Org. Agric. 2021, 11, 105–132. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 339, 2700. [Google Scholar]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in Small Ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Pulina, G.; Milán, M.J.; Lavín, M.P.; Theodoridis, A.; Morin, E.; Capote, J.; Thomas, D.L.; Francesconi, A.H.D.; Caja, G. Invited Review: Current Production Trends, Farm Structures, and Economics of the Dairy Sheep and Goat Sectors. J. Dairy Sci. 2018, 101, 6715–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruegg, P.L. Mastitis in Small Ruminants. AABP Proc. 2011, 44, 9. [Google Scholar]
- Conington, J.; Cao, G.; Stott, A.; Bünger, L. Breeding for Resistance to Mastitis in United Kingdom Sheep, a Review and Economic Appraisal. Vet. Rec. 2008, 162, 369–376. [Google Scholar] [CrossRef]
- Knuth, R.M.; Stewart, W.C.; Taylor, J.B.; Yeoman, C.J.; Bisha, B.; Page, C.M.; Rowley, C.M.; Lindsey, B.C.; Van Emon, M.L.; Murphy, T.W. Subclinical Mastitis in Sheep: Etiology and Association with Milk Somatic Cell Count and Ewe Productivity in Three Research Flocks in the Western United States1. Transl. Anim. Sci. 2019, 3, 1739–1743. [Google Scholar] [CrossRef] [Green Version]
- Marogna, G.; Rolesu, S.; Lollai, S.; Tola, S.; Leori, G. Clinical Findings in Sheep Farms Affected by Recurrent Bacterial Mastitis. Small Rumin. Res. 2010, 88, 119–125. [Google Scholar] [CrossRef]
- Petridis, I.G.; Fthenakis, G.C. Mammary Involution and Relevant Udder Health Management in Sheep. Small Rumin. Res. 2019, 181, 66–75. [Google Scholar] [CrossRef]
- Bergonier, D.; Berthelot, X. New Advances in Epizootiology and Control of Ewe Mastitis. Livest. Prod. Sci. 2003, 79, 1–16. [Google Scholar] [CrossRef]
- Vasileiou, N.G.C.; Cripps, P.J.; Ioannidi, K.S.; Chatzopoulos, D.C.; Gougoulis, D.A.; Sarrou, S.; Orfanou, D.C.; Politis, A.P.; Gonzalez-Valerio, T.C.; Argyros, S.; et al. Extensive Countrywide Field Investigation of Subclinical Mastitis in Sheep in Greece. J. Dairy Sci. 2018, 101, 7297–7310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narenji Sani, R.; Mahdavi, A.; Moezifar, M. Prevalence and Etiology of Subclinical Mastitis in Dairy Ewes in Two Seasons in Semnan Province, Iran. Trop. Anim. Health Prod. 2015, 47, 1249–1254. [Google Scholar] [CrossRef] [PubMed]
- Ergün, Y.; Aslantaş, Ö.; Doğruer, G.; KïReçcï, E.; Saribay, M.K.; Ateş, C.T.; Ülkü, A.; DemïR, C. Prevalence and Etiology of Subclinical Mastitis in Awassi Dairy Ewes in Southern Turkey. Turk. J. Vet. Anim. Sci. 2009, 33, 477–483. [Google Scholar]
- Giannakopoulos, A.; Vasileiou, N.G.C.; Gougoulis, D.A.; Cripps, P.J.; Ioannidi, K.S.; Chatzopoulos, D.C.; Billinis, C.; Mavrogianni, V.S.; Petinaki, E.; Fthenakis, G.C. Use of Geographical Information System and Ecological Niche Modelling for Predicting Potential Space Distribution of Subclinical Mastitis in Ewes. Vet. Microbiol. 2019, 228, 119–128. [Google Scholar] [CrossRef]
- Zafalon, L.F.; Sanatna, R.C.M.; Pilon, L.E.; Júnior, C.A.F. Diagnosis of Subclinical Mastitis in Santa Inês and Morada Nova Sheep in Southeastern Brazil. Trop. Anim. Health Prod. 2016, 48, 967–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clements, A.C.; Taylor, D.J.; Fitzpatrick, J.L. Evaluation of Diagnostic Procedures for Subclinical Mastitis in Meat-Producing Sheep. J. Dairy Res. 2003, 70, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Albenzio, M.; Figliola, L.; Caroprese, M.; Marino, R.; Sevi, A.; Santillo, A. Somatic Cell Count in Sheep Milk. Small Rumin. Res. 2019, 176, 24–30. [Google Scholar] [CrossRef]
- Miglio, A.; Moscati, L.; Fruganti, G.; Pela, M.; Scoccia, E.; Valiani, A.; Maresca, C. Use of Milk Amyloid A in the Diagnosis of Subclinical Mastitis in Dairy Ewes. J. Dairy Res. 2013, 80, 496–502. [Google Scholar] [CrossRef]
- Gonzalo, C.; Ariznabarreta, A.; Carriedo, J.A.; San Primitivo, F. Mammary Pathogens and Their Relationship to Somatic Cell Count and Milk Yield Losses in Dairy Ewes. J. Dairy Sci. 2002, 85, 1460–1467. [Google Scholar] [CrossRef]
- Rosati, R.; Militello, G.; Boselli, C.; Giangolini, G.; Amatiste, S.; Brajon, G.; Casini, M.; Scatassa, M.; Bono, P.; Cannas, A.; et al. Cellule somatiche nel latte ovino e caprino: Definizione del valore medio nazionale e del valore fisiologico. Sci. Tecn. Latt.-Cas. 2005, 56, 1–21. [Google Scholar]
- El-Khabaz, K.A.S.; Hussein, H.A. Bacteriological, Cytological, and Hematological Changes Associated the Ovine Subclinical Mastitis. Assiut Vet. Med. J. 2015, 61, 236–241. [Google Scholar]
- Świderek, W.P.; Charon, K.M.; Winnicka, A.; Gruszczyńska, J.; Pierzchała, M. Physiological Threshold of Somatic Cell Count in Milk of Polish Heath Sheep and Polish Lowland Sheep. Ann. Anim. Sci. 2016, 16, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Spanu, C.; Berger, Y.M.; Thomas, D.L.; Ruegg, P.L. Impact of Intramammary Antimicrobial Dry Treatment and Teat Sanitation on Somatic Cell Count and Intramammary Infection in Dairy Ewes. Small Rumin. Res. 2011, 97, 139–145. [Google Scholar] [CrossRef]
- Kern, G.; Traulsen, I.; Kemper, N.; Krieter, J. Analysis of somatic cell counts and risk factors associated with occurrence of bacteria in ewes of different primary purposes. Livest. Sci. 2013, 157, 2–3. [Google Scholar] [CrossRef]
- Al-Graibawi, M.A.A.; Yousif, A.A. Histopathological and Immunohistochemical Evaluation of Gangrenous Mastitis in Ewes. Biochem. Cell. Arch. 2021, 21, 483–490. [Google Scholar]
- Ruegg, P.L. A 100-Year Review: Mastitis Detection, Management, and Prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oget, C.; Tosser-Klopp, G.; Rupp, R. Genetic and Genomic Studies in Ovine Mastitis. Small Rumin. Res. 2019, 176, 55–64. [Google Scholar] [CrossRef]
- Świderek, W.P.; Gruszczyńska, J.; Winnicka, A. Polymorphism of Selected Regions of Ovar-MHC and the Health Status of the Ovine Mammary Gland. Animals 2020, 10, 2325. [Google Scholar] [CrossRef] [PubMed]
- Sutera, A.M.; Moscarelli, A.; Mastrangelo, S.; Sardina, M.T.; Di Gerlando, R.; Portolano, B.; Tolone, M. Genome-Wide Association Study Identifies New Candidate Markers for Somatic Cells Score in a Local Dairy Sheep. Front. Genet. 2021, 12, 643531. [Google Scholar] [CrossRef]
- Banos, G.; Bramis, G.; Bush, S.J.; Clark, E.L.; McCulloch, M.E.B.; Smith, J.; Schulze, G.; Arsenos, G.; Hume, D.A.; Psifidi, A. The Genomic Architecture of Mastitis Resistance in Dairy Sheep. BMC Genom. 2017, 18, 624. [Google Scholar] [CrossRef]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis Detection: Current Trends and Future Perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef]
- Gurjar, A.; Gioia, G.; Schukken, Y.; Welcome, F.; Zadoks, R.; Moroni, P. Molecular Diagnostics Applied to Mastitis Problems on Dairy Farms. Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 565–576. [Google Scholar] [CrossRef]
- Wierzchosławski, K.; Kwit, K.; Pejsak, Z.; Pomorska-Mól, M. Selected serum acute-phase proteins in peripartum sows and evaluation of their diagnostic usefulness. Anim. Reprod. Sci. 2018, 191, 44–55. [Google Scholar] [CrossRef]
- Srikok, S.; Patchanee, P.; Boonyayatra, S.; Chuammitri, P. Potential Role of MicroRNA as a Diagnostic Tool in the Detection of Bovine Mastitis. Prev. Vet. Med. 2020, 182, 105101. [Google Scholar] [CrossRef]
- Katsafadou, A.I.; Vasileiou, N.G.C.; Fthenakis, G.C. Use of Proteomics in the Study of Mastitis in Ewes. Pathogens 2019, 8, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, H.; Shimada, N.; Yoshioka, M. Current Research on Acute Phase Proteins in Veterinary Diagnosis: An Overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Pomorska-Mól, G. Białka ostrej fazy w weterynarii: Przydatność w diagnostyce i monitoringu stanu zdrowia. Med. Weter. 2010, 66, 822–826. [Google Scholar]
- Gabay, C.; Kushner, I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999, 340, 448–454. [Google Scholar] [CrossRef]
- Ramadori, G.; Christ, B. Cytokines and the Hepatic Acute-Phase Response. Semin. Liver Dis. 1999, 19, 141–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallquist, N.A.; Klasing, K.C. Serotransferrin, Ovotransferrin and Metallothionein Levels during an Immune Response in Chickens. Comp. Biochem. Physiol. Part B Comp. Biochem. 1994, 108, 375–384. [Google Scholar] [CrossRef]
- Putnam, F.W. Haptoglobin. In Plasma Proteins; Putnam, F.W., Ed.; Academic Press: New York, NY, USA, 1975; Volume 2, pp. 1–50. [Google Scholar]
- Gruys, E.; Toussaint, M.J.M.; Niewold, T.A.; Koopmans, S.J. Acute Phase Reaction and Acute Phase Proteins. J. Zhejiang Univ. Sci. 2005, 6, 1045–1056. [Google Scholar] [CrossRef] [Green Version]
- Eckersall, P.D.; Saini, P.K.; McComb, C. The acute phase response of acid soluble glycoprotein, alpha(1)-acid glyco- protein, ceruloplasmin, haptoglobin and C-reactive protein, in the pig. Vet. Immunol. Immunopathol. 1996, 51, 377–385. [Google Scholar] [CrossRef]
- Pomorska-Mól, M.; Urbaniak, K.; Markowska-Daniel, I. Porcine Acute Phase Protein Response to Experimental Infection with Bordetella Bronchiseptica. Bull. Vet. Inst. Pulawy 2011, 55, 371–375. [Google Scholar]
- Pomorska-Mól, M.; Markowska-Daniel, I.; Kwit, K. Experimental Immunology Acute Phase Protein Response in Pigs Experimentally Co-Infected with Swine Influenza Virus and Bordetella Bronchiseptica. Cent. Eur. J. Immunol. 2012, 3, 221–226. [Google Scholar] [CrossRef]
- Miglio, A.; Moscati, L.; Scoccia, E.; Maresca, C.; Antognoni, M.T.; Felici, A. Reference Values for Serum Amyloid A, Haptoglobin, Lysozyme, Zinc and Iron in Healthy Lactating Lacaune Sheep. Acta Vet. Scand. 2018, 60, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malle, E.; Steinmetz, A.; Raynes, J.G. Serum Amyloid A (SAA): An Acute Phase Protein and Apolipoprotein. Atherosclerosis 1993, 102, 131–146. [Google Scholar] [CrossRef]
- Urieli-Shoval, S.; Linke, R.P.; Matzner, Y. Expression and Function of Serum Amyloid A, a Major Acute-Phase Protein, in Normal and Disease States. Curr. Opin. Hematol. 2000, 7, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Fournier, T.; Medjoubi-N, N.; Porquet, D. Alpha-1-Acid Glycoprotein. Biochim. Biophys. Acta 2000, 1482, 157–171. [Google Scholar] [CrossRef]
- O’Reilly, E.L.; Eckersall, P.D. Acute Phase Proteins: A Review of Their Function, Behaviour and Measurement in Chickens. World’s Poult. Sci. J. 2014, 70, 27–44. [Google Scholar] [CrossRef] [Green Version]
- Israili, Z.H.; Dayton, P.G. Human alpha-1-glycoprotein and its interactions with drugs. Drug Metab. Rev. 2001, 33, 161–235. [Google Scholar] [CrossRef]
- Eckersall, P.D. Proteins, Proteomics, and the Dysproteinemias. In Clinical Biochemistry of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 2008; pp. 117–155. ISBN 978-0-12-370491-7. [Google Scholar]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute Phase Proteins in Ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Hussein, H.A.; Abd El-Razik, K.A.E.-H.; Gomaa, A.M.; Elbayoumy, M.K.; Abdelrahman, K.A.; Hosein, H.I. Milk Amyloid A as a Biomarker for Diagnosis of Subclinical Mastitis in Cattle. Vet. World 2018, 11, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Dalanezi, F.M.; Schmidt, E.M.S.; Joaquim, S.F.; Guimarães, F.F.; Guerra, S.T.; Lopes, B.C.; Cerri, R.L.A.; Chadwick, C.; Langoni, H. Concentrations of Acute-Phase Proteins in Milk from Cows with Clinical Mastitis Caused by Different Pathogens. Pathogens 2020, 9, 706. [Google Scholar] [CrossRef] [PubMed]
- Pomorska-Mól, M.; Wierzchosławski, K.; Włodarek, J.; Gogulski, M.; Pejsak, Z. Dynamics of Pro- and Anti-Inflammatory Cytokine Changes in Serum and Assessment of Their Diagnostic Utility during Lactation Impairment in Pigs. Res. Vet. Sci. 2020, 128, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Reczyńska, D.; Zalewska, M.; Czopowicz, M.; Kaba, J.; Zwierzchowski, L.; Bagnicka, E. Acute Phase Protein Levels as An Auxiliary Tool in Diagnosing Viral Diseases in Ruminants—A Review. Viruses 2018, 10, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iliev, P.; Georgieva, T. Acute Phase Proteins in Sheep and Goats–Function, Reference Ranges and Assessment Methods: An Overview. BJVM 2018, 21, 1–16. [Google Scholar] [CrossRef]
- El-Deeb, W.; Ghoneim, I.; Fayez, M.; Elsohaby, I.; Alhaider, A.; ElGioushy, M. Acute Phase Proteins, Proinflammatory Cytokines and Oxidative Stress Biomarkers in Sheep, Goats and She-Camels with Coxiella Burnetii Infection-Induced Abortion. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101352. [Google Scholar] [CrossRef] [PubMed]
- Eckersall, P.D.; Lawson, F.P.; Bence, L.; Waterston, M.M.; Lang, T.L.; Donachie, W.; Fontaine, M.C. Acute Phase Protein Response in an Experimental Model of Ovine Caseous Lymphadenitis. BMC Vet. Res. 2007, 3, 35. [Google Scholar] [CrossRef] [Green Version]
- Wells, B.; Innocent, G.T.; Eckersall, P.D.; McCulloch, E.; Nisbet, A.J.; Burgess, S.T. Two Major Ruminant Acute Phase Proteins, Haptoglobin and Serum Amyloid A, as Serum Biomarkers during Active Sheep Scab Infestation. Vet. Res. 2013, 44, 103. [Google Scholar] [CrossRef] [Green Version]
- Simplício, K.M.M.G.; Rocha, T.G.; Sanchez, D.C.C.; Cotrim, F.S.; Silva, P.C.; Fagliari, J.J. Serum Concentrations of Acute Phase Proteins in Goats and Ewes with Naturally Acquired Staphylococcus Aureus Mastitis. Arq. Bras. Med. Vet. Zootec. 2017, 69, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Katsafadou, A.I.; Tsangaris, G.T.; Anagnostopoulos, A.K.; Billinis, C.; Barbagianni, M.S.; Vasileiou, N.G.C.; Spanos, S.A.; Mavrogianni, V.S.; Fthenakis, G.C. Differential quantitative proteomics study of experimental Mannheimia haemolytica mastitis in sheep. J. Proteom. 2019, 205, 103393. [Google Scholar] [CrossRef]
- Sánchez-Cordón, P.J. Comparative Study of Clinical Courses, Gross Lesions, Acute Phase Response and Coagulation Disorders in Sheep Inoculated with Bluetongue Virus Serotype 1 and 8. Vet. Microbiol. 2013, 11, 184–194. [Google Scholar] [CrossRef]
- Meling, S.; Bårdsen, K.; Ulvund, M.J. Presence of an Acute Phase Response in Sheep with Clinical Classical Scrapie. BMC Vet. Res. 2012, 8, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Deeb, W.M.; Elmoslemany, A.M. The diagnostic accuracy of acute phase proteins and proinflammatory cytokines in sheep with pneumonic pasteurellosis. PeerJ 2016, 4, e2161. [Google Scholar] [CrossRef] [Green Version]
- Gebert, L.F.R.; MacRae, I.J. Regulation of MicroRNA Function in Animals. Nat. Rev. Mol. Cell Biol. 2019, 20, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Hao, Z.; Hu, J.; Liu, X.; Li, S.; Wang, J.; Shen, J.; Song, Y.; Ke, N.; Luo, Y. Small RNA Deep Sequencing Reveals the Expressions of MicroRNAs in Ovine Mammary Gland Development at Peak-Lactation and during the Non-Lactating Period. Genomics 2021, 113, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Do, D.N.; Dudemaine, P.-L.; Mathur, M.; Suravajhala, P.; Zhao, X.; Ibeagha-Awemu, E.M. MiRNA Regulatory Functions in Farm Animal Diseases, and Biomarker Potentials for Effective Therapies. Int. J. Mol. Sci. 2021, 22, 3080. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Fujikawa, T.; Maemura, T.; Ando, T.; Kitahara, G.; Endo, Y.; Yamato, O.; Koiwa, M.; Kubota, C.; Miura, N. Inflammation-Related MicroRNA Expression Level in the Bovine Milk Is Affected by Mastitis. PLoS ONE 2017, 12, e0177182. [Google Scholar]
- van der Kolk, J.H.; Pacholewska, A.; Gerber, V. The Role of MicroRNAs in Equine Medicine: A Review. Vet. Q. 2015, 35, 88–96. [Google Scholar] [CrossRef]
- Kaur, M.; Kumar, A.; Siddaraju, N.K.; Fairoze, M.N.; Chhabra, P.; Ahlawat, S.; Vijh, R.K.; Yadav, A.; Arora, R. Differential Expression of MiRNAs in Skeletal Muscles of Indian Sheep with Diverse Carcass and Muscle Traits. Sci. Rep. 2020, 10, 16332. [Google Scholar] [CrossRef]
- Yang, H.; Liu, X.; Hu, G.; Xie, Y.; Lin, S.; Zhao, Z.; Chen, J. Identification and Analysis of MicroRNAs-MRNAs Pairs Associated with Nutritional Status in Seasonal Sheep. Biochem. Biophys. Res. Commun. 2018, 499, 321–327. [Google Scholar] [CrossRef]
- Wong, L.L.; Rademaker, M.T.; Saw, E.L.; Lew, K.S.; Ellmers, L.J.; Charles, C.J.; Richards, A.M.; Wang, P. Identification of Novel MicroRNAs in the Sheep Heart and Their Regulation in Heart Failure. Sci. Rep. 2017, 7, 8250. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shandilya, U.K.; Sullivan, T.; Naylor, D.; Canovas, A.; Mallard, B.A.; Karrow, N.A. Identification of Ovine Serum MiRNAs Following Bacterial Lipopolysaccharide Challenge. Int. J. Mol. Sci. 2020, 21, 7920. [Google Scholar] [CrossRef]
- Du, J.; Gao, S.; Tian, Z.; Xing, S.; Huang, D.; Zhang, G.; Zheng, Y.; Liu, G.; Luo, J.; Chang, H.; et al. MicroRNA Expression Profiling of Primary Sheep Testicular Cells in Response to Bluetongue Virus Infection. Infect. Genet. Evol. 2017, 49, 256–267. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Li, X.; Wang, X.; Ban, Q.; Hui, W.; Jia, B. MicroRNA Profiling of the Intestinal Tissue of Kazakh Sheep after Experimental Echinococcus Granulosus Infection, Using a High-Throughput Approach. Parasite 2016, 23, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duman, E.; Özmen, Ö.; Kul, S. Oar-miR-16b and oar-miR-27a: Negatively correlated with milk yield and milk protein in sheep. Anim. Biotechnol. 2021, 1–14. [Google Scholar] [CrossRef]
- Krauss, R.H.; Phipson, B.; Oshlack, A.; Prasad-Gupta, N.; Cheung, M.M.; Smolich, J.J.; Pepe, S. Shifts in Ovine Cardiopulmonary MicroRNA Expression in Late Gestation and the Perinatal Period. PLoS ONE 2018, 13, e0204038. [Google Scholar] [CrossRef] [PubMed]
- Bagnicka, E.; Kawecka-Grochocka, E.; Pawlina-Tyszko, K.; Zalewska, M.; Kapusta, A.; Kościuczuk, E.; Marczak, S.; Ząbek, T. MicroRNA Expression Profile in Bovine Mammary Gland Parenchyma Infected by Coagulase-Positive or Coagulase-Negative Staphylococci. Vet. Res. 2021, 52, 41. [Google Scholar] [CrossRef]
- Lai, Y.-C.; Habiby, G.H.; Jasing Pathiranage, C.C.; Rahman, M.M.; Chen, H.-W.; Husna, A.A.; Kubota, C.; Miura, N. Bovine Serum MiR-21 Expression Affected by Mastitis. Res. Vet. Sci. 2021, 135, 290–292. [Google Scholar] [CrossRef]
- Ngo, S.; Moloney, S.; Li, X.; McNaughton, L.; Partridge, A.; Michael Sheppard, A. Distinct MicroRNA Signatures for Mastitis Measured in Milk Following Natural Exposure in Dairy Herds. Int. J. Anim. Sci. 2017, 1, 1001. [Google Scholar] [CrossRef]
- zur Bruegge, J.; Einspanier, R.; Sharbati, S. A Long Journey Ahead: Long Non-Coding RNAs in Bacterial Infections. Front. Cell. Infect. Microbiol. 2017, 7, 95. [Google Scholar] [CrossRef] [Green Version]
- Tong, C.; Chen, Q.; Zhao, L.; Ma, J.; Ibeagha-Awemu, E.M.; Zhao, X. Identification and Characterization of Long Intergenic Noncoding RNAs in Bovine Mammary Glands. BMC Genom. 2017, 18, 468. [Google Scholar] [CrossRef]
- Chen, W.; Lv, X.; Wang, Y.; Zhang, X.; Wang, S.; Hussain, Z.; Chen, L.; Su, R.; Sun, W. Transcriptional Profiles of Long 717 Non-Coding RNA and MRNA in Sheep Mammary Gland During Lactation Period. Front. Genet. 2020, 11, 946. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, X.; Li, X.; Wang, Q.; Qing, S.; Zhang, Y.; Gao, M.-Q. A Novel Long Non-coding RNA Regulates the Immune Response in MAC-T Cells and Contributes to Bovine Mastitis. FEBS J. 2019, 286, 1780–1795. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.; Luo, Y.; Wang, J.; Hu, J.; Liu, X.; Li, S.; Jin, X.; Ke, N.; Zhao, M.; Hu, L.; et al. RNA-Seq Reveals the Expression 719 Profiles of Long Non-Coding RNAs in Lactating Mammary Gland from Two Sheep Breeds with Divergent Milk Pheno-720 type. Animals 2020, 10, 1565. [Google Scholar] [CrossRef] [PubMed]
- Addis, M.F.; Pisanu, S.; Ghisaura, S.; Pagnozzi, D.; Marogna, G.; Tanca, A.; Biosa, G.; Cacciotto, C.; Alberti, A.; Pittau, M.; et al. Proteomics and Pathway Analyses of the Milk Fat Globule in Sheep Naturally Infected by Mycoplasma Agalactiae Provide Indications of the In Vivo Response of the Mammary Epithelium to Bacterial Infection. Infect. Immun. 2011, 79, 3833–3845. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Gennaro, R.; Romeo, D. Cathelicidins: A Novel Protein Family with a Common Proregion and a Variable C-Terminal Antimicrobial Domain. FEBS Lett. 1995, 374, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M. Cathelicidins, Multifunctional Peptides of the Innate Immunity. J. Leukoc. Biol. 2004, 75, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of Antimicrobial Peptides. A Review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisanu, S.; Cubeddu, T.; Pagnozzi, D.; Rocca, S.; Cacciotto, C.; Alberti, A.; Marogna, G.; Uzzau, S.; Addis, M.F. Neutrophil Extracellular Traps in Sheep Mastitis. Vet. Res. 2015, 46, 59. [Google Scholar] [CrossRef] [Green Version]
- Zanetti, M.; Litteri, L.; Griffiths, G.; Gennaro, R.; Romeo, D. Stimulus-Induced Maturation of Probactenecins, Precursors of Neutrophil Antimicrobial Polypeptides. J. Immunol. 1991, 146, 4295–4300. [Google Scholar]
- Cubeddu, T.; Cacciotto, C.; Pisanu, S.; Tedde, V.; Alberti, A.; Pittau, M.; Dore, S.; Cannas, A.; Uzzau, S.; Rocca, S.; et al. Cathelicidin Production and Release by Mammary Epithelial Cells during Infectious Mastitis. Vet. Immunol. Immunopathol. 2017, 189, 66–70. [Google Scholar] [CrossRef]
- Addis, M.F.; Pisanu, S.; Marogna, G.; Cubeddu, T.; Pagnozzi, D.; Cacciotto, C.; Campesi, F.; Schianchi, G.; Rocca, S.; Uzzau, S. Production and Release of Antimicrobial and Immune Defense Proteins by Mammary Epithelial Cells Following Streptococcus Uberis Infection of Sheep. Infect. Immun. 2013, 81, 3182–3197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addis, M.F.; Tedde, V.; Dore, S.; Pisanu, S.; Puggioni, G.M.G.; Roggio, A.M.; Pagnozzi, D.; Lollai, S.; Cannas, E.A.; Uzzau, S. Evaluation of Milk Cathelicidin for Detection of Dairy Sheep Mastitis. J. Dairy Sci. 2016, 99, 6446–6456. [Google Scholar] [CrossRef] [PubMed]
- Puggioni, G.M.G.; Tedde, V.; Uzzau, S.; Dore, S.; Liciardi, M.; Cannas, E.A.; Pollera, C.; Moroni, P.; Bronzo, V.; Addis, M.F. Relationship of Late Lactation Milk Somatic Cell Count and Cathelicidin with Intramammary Infection in Small Ruminants. Pathogens 2020, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- Travis, S.M.; Anderson, N.N.; Forsyth, W.R.; Espiritu, C.; Conway, B.D.; Greenberg, E.P.; McCray, P.B.; Lehrer, R.I.; Welsh, M.J.; Tack, B.F. Bactericidal Activity of Mammalian Cathelicidin-Derived Peptides. Infect. Immun. 2000, 68, 2748–2755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiman, L.; Tabibi, S.; Starner, T.D.; San Gabriel, P.; Winokur, P.L.; Jia, H.P.; McCray, P.B.; Tack, B.F. Cathelicidin Peptides Inhibit Multiply Antibiotic-Resistant Pathogens from Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2001, 45, 2838–2844. [Google Scholar] [CrossRef] [Green Version]
- Brogden, K.A.; Kalfa, V.C.; Ackermann, M.R.; Palmquist, D.E.; McCray, P.B.; Tack, B.F. The Ovine Cathelicidin SMAP29 Kills Ovine Respiratory Pathogens In Vitro and in an Ovine Model of Pulmonary Infection. Antimicrob. Agents Chemother. 2001, 45, 331–334. [Google Scholar] [CrossRef] [Green Version]
- Brogden, K.A.; Nordholm, G.; Ackermann, M. Antimicrobial Activity of Cathelicidins BMAP28, SMAP28, SMAP29, and PMAP23 against Pasteurella Multocida Is More Broad-Spectrum than Host Species Specific. Vet. Microbiol. 2007, 119, 76–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sambri, V.; Marangoni, A.; Giacani, L.; Gennaro, R.; Murgia, R.; Cavenini, R.; Cinco, M. Comparative in Vitro Activity of Five Cathelicidin-Derived Synthetic Peptides against Leptospira, Borrelia and Treponema Pallidum. J. Antimicrob. Chemother. 2002, 50, 895–902. [Google Scholar] [CrossRef] [Green Version]
Management System | Prevalence of Subclinical Mastitis | References |
---|---|---|
Semi-intensive | 0.296 | [21] |
0.120 | [22] | |
0.112 | [23] | |
Intensive | 0.254 | [21] |
Semi-extensive | 0.196 | [21] |
0.192 | [24] | |
0.139 | [25] | |
Extensive | 0.178 | [21] |
0.192 | [24] |
Type of Biomarker | Mode of Action | Brief Description | Current State of Action | Concentration Changes | Key Reference |
---|---|---|---|---|---|
Acute-phase proteins (APP) | - restore the disturbed physiological processes of the homeostasis | - induced by pro-inflammatory cytokines, - haptoglobin, serum amyloid A (SAA), and its milk isoform (MAA), alpha-1 acid glycoprotein (AGP) | - indicator of mastitis caused by S. aureus in goats and sheep - diagnosis of viral diseases in ruminants | - staphylococcal mastitis: increase serum ceruloplasmin by 337%, fibrinogen by 90%, haptoglobin by 461%, and alpha-1 acid glycoprotein by 225% | [72] |
miRNA | - control the expression of protein-coding genes (inhibition, elongation, degradation, termination) | - short, non-coding RNAs - regulate many cellular processes - play role in disease and inflammation pathogenesis - occur in many tissue and body fluids | - non-invasive biomarkers of various diseases - very sensitive and specific - in milk be used as biomarkers or for milk quality control | - 25 mi-RNAs differentially expressed during mastitis relative to their expression in normal milk - lack of data regarding miRNA expression in milk during naturally occurring ovine mastitis | [79] |
Cathelicidins (CATH) | - direct antimicrobial activity - proinflammatory and chemotactic functions - released from neutrophils | - proteolytically activated peptide, - express in milk during mastitis - cathelicidin-1, -2, -3 and cathelicidin-derived myeloid antimicrobial peptide - the first line of defense in the mammary gland | - most promising molecules for mastitis detection in sheep - bonus sensitivity with high specificity - has a higher specificity than SCC and similar sensitivity | - detection of cathelicidin-1 in sheep milk confirms mastitis | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Libera, K.; Konieczny, K.; Grabska, J.; Smulski, S.; Szczerbal, I.; Szumacher-Strabel, M.; Pomorska-Mól, M. Potential Novel Biomarkers for Mastitis Diagnosis in Sheep. Animals 2021, 11, 2783. https://doi.org/10.3390/ani11102783
Libera K, Konieczny K, Grabska J, Smulski S, Szczerbal I, Szumacher-Strabel M, Pomorska-Mól M. Potential Novel Biomarkers for Mastitis Diagnosis in Sheep. Animals. 2021; 11(10):2783. https://doi.org/10.3390/ani11102783
Chicago/Turabian StyleLibera, Kacper, Kacper Konieczny, Julia Grabska, Sebastian Smulski, Izabela Szczerbal, Małgorzata Szumacher-Strabel, and Małgorzata Pomorska-Mól. 2021. "Potential Novel Biomarkers for Mastitis Diagnosis in Sheep" Animals 11, no. 10: 2783. https://doi.org/10.3390/ani11102783
APA StyleLibera, K., Konieczny, K., Grabska, J., Smulski, S., Szczerbal, I., Szumacher-Strabel, M., & Pomorska-Mól, M. (2021). Potential Novel Biomarkers for Mastitis Diagnosis in Sheep. Animals, 11(10), 2783. https://doi.org/10.3390/ani11102783