Milk Production Responses and Digestibility of Dairy Buffaloes (Bubalus bubalis) Partially Supplemented with Forage Rape (Brassica napus) Silage Replacing Corn Silage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experiment Design
2.2. Sampling and Chemical Analyses
2.2.1. Feed
2.2.2. Feces and Rumen Fluid Sampling and Analysis
2.2.3. Milk
2.2.4. Blood
2.3. Calculations and Statistical Analyses
2.3.1. Calculations
2.3.2. Statistical Analyses
3. Result
3.1. Feed Intake and Apparent Total-Tract Digestibility
3.2. Rumen Fermentation Characteristics
3.3. Milk Yield and Composition
3.4. Blood Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hausman, G.J.; Basu, U.; Du, M.; Fernyhough-Culver, M.; Dodson, M.V. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte 2014, 3, 242–255. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Masucci, F.; Romano, R.; Napolitano, F.; Sabia, E.; Aiello, A.; di Francia, A. Effects of chickpea in substitution of Soybean meal on milk production, blood profile and reproductive response of primiparous buffaloes in early lactation. Animals 2020, 10, 515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrapica, F.; Masucci, F.; Romano, R.; Santini, A.; Manzo, N.; Seidavi, A.; Omri, B.; Salem, A.Z.M.; di Francia, A. Peas may be a candidate crop for integrating silvoarable systems and dairy buffalo farming in southern Italy. Agrofor. Syst. 2020, 94, 1345–1352. [Google Scholar] [CrossRef]
- Sacchi, R.; Marrazzo, A.; Masucci, F.; Di Francia, A.; Serrapica, F.; Genovese, A. Effects of inclusion of fresh forage in the diet for lactating buffaloes on volatile organic compounds of milk and mozzarella cheese. Molecules 2020, 25, 1332. [Google Scholar] [CrossRef] [Green Version]
- Uzun, P.; Masucci, F.; Serrapica, F.; Napolitano, F.; Braghieri, A.; Romano, R.; Manzo, N.; Esposito, G.; di Francia, A. The inclusion of fresh forage in the lactating buffalo diet affects fatty acid and sensory profile of mozzarella cheese. J. Dairy Sci. 2018, 101, 6752–6761. [Google Scholar] [CrossRef] [PubMed]
- Rawnsley, R.P.; Chapman, D.F.; Jacobs, J.L.; Garcia, S.C.; Callow, M.N.; Edwards, G.R.; Pembleton, K.P. Complementary forages—Integration at a whole-farm level. Anim. Prod. Sci. 2013, 53, 976–987. [Google Scholar] [CrossRef]
- De Ruiter, J.M.; Fletcher, A.; Maley, S.; Sim, R.; George, M. Aiming for 45 t/ha per Annum: Yield of Supplementary Feed Crops Grown in Sequences Designed for Maximum Productivity; NZ Grassland Association: Dunedin, New Zealand, 2009; pp. 107–116. [Google Scholar]
- Jeromela, A.M.; Mikić, A.M.; Vujić, S.; Ćupina, B.; Krstić, D.; Dimitrijević, A.; Vasiljević, S.; Mihailović, V.; Cvejić, S.; Miladinović, D. Potential of legume—Brassica intercrops for forage production and green Manure: Encouragements from a temperate southeast european environment. Front. Plant Sci. 2017, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.N. The feeding value of forage brassica plants for grazing ruminant livestock. Anim. Feed Sci. Technol. 2013, 181, 15–25. [Google Scholar] [CrossRef]
- Westwood, C.T.T. Nutritional Evaluation of Five Species of Forage Brassica; NZ Grassland Association: Dunedin, New Zealand, 2012; pp. 31–37. [Google Scholar]
- Moate, P.J.; Dalley, D.E.; Grainger, C.; Goudy, A.; Clarke, T.; Williams, P.; Limsowtin, G. Effect of feeding turnips on the concentration of thiocyanate in milk and consequences for cheese making. Aust. J. Dairy Technol. 1996, 51, 1–5. [Google Scholar]
- Williams, S.R.O.; Moate, P.J.; Deighton, M.H.; Hannah, M.C.; Wales, W.J.; Jacobs, J.L. Milk production and composition, and methane emissions from dairy cows fed lucerne hay with forage brassica or chicory. Anim. Prod. Sci. 2016, 56, 304–311. [Google Scholar] [CrossRef]
- Nichol, W.; Westwood, C.; Dumbleton, A.; Amyes, J. Brassica wintering for dairy cows: Overcoming the challenges. In Proceedings of the South Island Dairy Event (SIDE), Canterbury, New Zealand, 7 June 2003; pp. 154–172. [Google Scholar]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis of Aoac International; AOAC International: Arlington, VA, USA, 1995. [Google Scholar]
- McCarthy, J.F.; Aherne, F.X.; Okai, D.B. Use of HCl insoluble ash as an index material for determining apparent digestibility with pigs. Can. J. Anim. Sci. 1974, 54, 107–109. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H. Use of detergents in the analysis of fibrous feeds. IV. Determination of plant cell-wall constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R. Determination of water-soluble carbohydrates in grass. J. Sci. Food Agric. 1964, 15, 395–398. [Google Scholar] [CrossRef]
- Shen, J.S.; Chai, Z.; Song, L.J.; Liu, J.X.; Wu, Y.M. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J. Dairy Sci. 2012, 95, 5978–5984. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Li, Y.; Gao, Y.; Li, J. Effects of dietary active dry yeast on rumen fermentation characteristics and nutrient apparent digestibility of lactating dairy cows. Chin. J. Anim. Nutr. 2019, 31, 3338–3345. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Hu, W.; Liu, J.; Wu, Y.; Guo, Y.; Ye, J. Effects of tea saponins on in vitro ruminal fermentation and growth performance in growing Boer goat. Arch. Anim. Nutr. 2006, 60, 89–97. [Google Scholar] [CrossRef]
- Laporte, M.F.; Paquin, P. Near-infrared analysis of fat, protein, and casein in cow’s milk. J. Agric. Food Chem. 1999, 47, 2600–2605. [Google Scholar] [CrossRef]
- Nasrollahi, S.M.; Ghorbani, G.R.; Zali, A.; Kahyani, A. Feeding behaviors, metabolism, and performance of primiparous and multiparous dairy cows fed high-concentrate diets. Livest. Sci. 2017, 198, 115–119. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Y.; Shi, L.; Cui, L.; Li, X.; He, C.; Yang, L. Evaluation and mining the applicable methods of roughage digestibility determination for buffalo (Bubalus bubalis). Trop. Anim. Health Prod. 2020, 52, 2639–2646. [Google Scholar] [CrossRef] [PubMed]
- Sales, J.; Janssens, G.P.J. Acid-insoluble ash as a marker in digestibility studies: A review. J. Anim. Feed Sci. 2003, 12, 383–401. [Google Scholar] [CrossRef]
- Wiedenhoeft, M.H.; Barton, B.A. Taste quality of milk from dairy cows fed forage Brassica cv. Tyfon. J. Sustain. Agric. 1995, 5, 139–146. [Google Scholar] [CrossRef]
- Keogh, B.; French, P.; Murphy, J.J.; Mee, J.F.; McGrath, T.; Storey, T.; Grant, J.; Mulligan, F.J. A note on the effect of dietary proportions of kale (Brassica oleracea) and grass silage on rumen pH and volatile fatty acid concentrations in dry dairy cows. Livest. Sci. 2009, 126, 302–305. [Google Scholar] [CrossRef]
- Keim, J.P.; Daza, J.; Beltrán, I.; Balocchi, O.A.; Pulido, R.G.; Sepúlveda-Varas, P.; Pacheco, D.; Berthiaume, R. Milk production responses, rumen fermentation, and blood metabolites of dairy cows fed increasing concentrations of forage rape (Brassica napus ssp. Biennis). J. Dairy Sci. 2020, 103, 9054–9066. [Google Scholar] [CrossRef]
- Alexander, J.; Auðunsson, G.A.; Benford, D.; Cockburn, A.; Cravedi, J.; Dogliotti, E.; Di Domenico, A.; Férnandez-cruz, M.L.; Fürst, P.; Galli, C.L.; et al. Glucosinolates as undesirable substances in animal feed—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 1–76. [Google Scholar] [CrossRef]
- Brabban, A.D.; Edwards, C. Isolation of glucosinolate degrading microorganisms and their potential for reducing the glucosinolate content of rapemeal. FEMS Microbiol. Lett. 1994, 119, 83–88. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Mould, F.L.; Ørskov, E.R. Manipulation of rumen fluid pH and its influence on cellulolysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay or concentrate. Anim. Feed Sci. Technol. 1983, 10, 1–14. [Google Scholar] [CrossRef]
- Lambert, M.G.; Abrams, S.M.; Harpster, H.W.; Jung, G.A. Effect of hay substitution on intake and digestibility of forage rape (Brassica napus) fed to lambs. J. Anim. Sci. 1987, 65, 1639–1646. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.H.; Beattie, M.M.; Robertson, E. Intake and digestibility of components of forage rape (Brassica napus) by sheep. Grass Forage Sci. 1993, 48, 410–415. [Google Scholar] [CrossRef]
- Schulz, F.; Westreicher-Kristen, E.; Knappstein, K.; Molkentin, J.; Susenbeth, A. Replacing maize silage plus soybean meal with red clover silage plus wheat in diets for lactating dairy cows. J. Dairy Sci. 2018, 101, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.A.; Kumari, R. Ruminal pH as Regulator of Rumen Metabolism in Buffaloes. Buffalo Bull. 2006, 25, 432. [Google Scholar]
- Kaur, R.; Garcia, S.C. Rumen degradation and fermentation characteristics of forage rape. In Proceedings of the 4th Australasian Dairy Science Symposium, Christchurch, New Zealand, 31 August–2 September 2010; pp. 321–325. [Google Scholar]
- Allen, M.S.; Voelker, J.A.; Oba, M. Physically effective fiber and regulation of ruminal pH: More than just chewing. In Production Diseases in Farm Animals; Wageningen Academic Publishers: Wageningen, The Netherlands, 2006; pp. 270–278. [Google Scholar]
- Gazzola, P.; Boyle, L.; French, P.; Hanlon, A.J.; Mulligan, F.J. The effect of three feeding systems on metabolic status and foraging behaviour of out-wintered cows. In Proceedings of the Irish Grassland and Animal Production, Tullamore, Ireland, 21 June 2008. [Google Scholar]
- Mulligan, F.J.; Caffrey, P.J.; Rath, M.; Callan, J.J.; Brophy, P.O.; O’Mara, F.P. An investigation of feeding level effects on digestibility in cattle for diets based on grass silage and high fibre concentrates at two forage: Concentrate ratios. Livest. Prod. Sci. 2002, 77, 311–323. [Google Scholar] [CrossRef]
- Sun, X.Z.; Harland, R.; Pacheco, D. Effect of altering ruminal pH by dietary buffer supplementation on methane emissions from sheep fed forage rape. Animal 2020, 14, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Umaña, M.; Balocchi, O.; Pulido, R.; Sepúlveda-Varas, P.; Pacheco, D.; Muetzel, S.; Berthiaume, R.; Keim, J.P. Milk production responses and rumen fermentation of dairy cows supplemented with summer brassicas. Animal 2020, 14, 1684–1692. [Google Scholar] [CrossRef]
- Seguel, G.; Keim, J.P.; Vargas-Bello-Pérez, E.; Geldsetzer-Mendoza, C.; Ibáñez, R.A.; Alvarado-Gilis, C. Effect of forage brassicas in dairy cow diets on the fatty acid profile and sensory characteristics of Chanco and Ricotta cheeses. J. Dairy Sci. 2020, 103, 228–241. [Google Scholar] [CrossRef] [Green Version]
- Bath, D.L. Reducing fat in milk and dairy products by feeding. J. Dairy Sci. 1982, 65, 450–453. [Google Scholar] [CrossRef]
- Reiter, J.; Strittmatter, H.; Wiemann, L.O.; Schieder, D.; Sieber, V. Enzymatic cleavage of lignin β-O-4 aryl ether bonds via net internal hydrogen transfer. Green Chem. 2013, 15, 1373–1381. [Google Scholar] [CrossRef]
- Rugoho, I. Intake and Performance of Dairy Cattle on Forages in Winter. Ph.D. Thesis, Lincoln University, Christchurch, New Zealand, 2013. [Google Scholar]
- Bedford, A.; Beckett, L.; Hardin, K.; Dias, N.W.; Davis, T.; Mercadante, V.R.G.; Ealy, A.D.; White, R.R. Propionate affects insulin signaling and progesterone profiles in dairy heifers. Sci. Rep. 2018, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chorfi, Y.; Couture, Y.; Tremblay, G.F.; Berthiaume, R.; Cinq-Mars, D. Growth and Blood Parameters of Weaned Crossbred Beef Calves Fed Forage Kale (Brassica oleracea spp. acephala). Adv. Agric. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cox-Ganser, J.M.; Jung, G.A.; Pushkin, R.T.; Reid, R.L. Evaluation of Brassicas in grazing systems for sheep: II. Blood composition and nutrient status. J. Anim. Sci. 1994, 72, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Vermorel, M.; Davicco, M.-J.; Evrard, J.; Anglaret, Y.; Genest, M.; Leoty, C.; Meyer, M.; Souchet, R. Valorization of rapeseed meal. 3. Effects of glucosinolate content on food intake, weight gain, liver weight and plasma thyroid hormone levels in growing rats. Reprod. Nutr. Dév. 1987, 27, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowland, J.P. Evaluation of low glucosinolate—Low erucic acid rapeseed meals as protein supplements for young growing pigs, including effects on blood serum constituents. Can. J. Anim. Sci. 1975, 55, 409–419. [Google Scholar] [CrossRef]
- Wilson, C.; Undi, M.; Tenuta, M.; Wittenberg, K.M.; Flaten, D.; Krause, D.O.; Entz, M.H.; Holley, R.; Ominski, K.H. Pasture productivity, cattle productivity and metabolic status following fertilization of a grassland with liquid hog manure: A three-year study. Can. J. Anim. Sci. 2010, 90, 233–243. [Google Scholar] [CrossRef] [Green Version]
Parameter (%DM) | Forage Rape Silage | Corn Silage | Straw | Corn Meal | Soybean Meal | DDGS |
---|---|---|---|---|---|---|
Dry matter (DM) | 30.77 | 21.67 | 85.32 | 89.64 | 90.61 | 89.94 |
Organic Matter (OM) | 88.58 | 92.7 | 87.16 | 98.08 | 93.33 | 90.48 |
CP | 11.74 | 8.74 | 4.11 | 13.05 | 42.81 | 20.36 |
Ether extract | 2.94 | 2.58 | 1.00 | 3.52 | 2.27 | 4.64 |
Water-soluble carbohydrates | 2.77 | 7 | 6.28 | 12.68 | 12.91 | 7.93 |
Neutral Detergent Fiber (NDF) | 51.13 | 54.32 | 51.9 | 5.72 | 12.8 | 34.26 |
Acid Detergent fiber (ADF) | 34.4 | 28.67 | 31.51 | 0.88 | 7.47 | 21.84 |
Acid Detergent Lignin (ADL) | 5.63 | 2.87 | 1.59 | ND1 | ND | 5.6 |
Item | Diets 1 | |||
---|---|---|---|---|
FRS0 | FRS15 | FRS25 | FRS35 | |
Ingredient (%DM) | ||||
Forage rape silage | 0 | 9.87 | 16.21 | 22.36 |
Corn silage | 46.20 | 38.03 | 32.84 | 27.79 |
Straw | 15.52 | 15.03 | 14.70 | 14.38 |
Corn meal | 15.62 | 15.13 | 14.80 | 14.48 |
Soybean meal | 7.03 | 6.81 | 6.66 | 6.51 |
DDGS | 15.62 | 15.13 | 14.80 | 14.48 |
Brick lick 2 | - | - | - | - |
Chemical composition | ||||
OM, % of DM | 92.37 | 90.97 | 90.69 | 90.19 |
CP, % of DM | 12.25 | 13.17 | 13.52 | 14.16 |
Ether extract, % of DM | 2.17 | 2.31 | 2.98 | 3.71 |
Water Soluble Carbohydrate (WSC), % of DM | 7.06 | 5.61 | 3.71 | 5.61 |
NDF, % of DM | 33.52 | 35.37 | 37.09 | 37.68 |
ADF, % of DM | 20.05 | 23.06 | 24.22 | 24.33 |
Item | Diets 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
FRS0 | FRS15 | FRS25 | FRS35 | Diet | L | Q | ||
Intake, kg/day | ||||||||
DM | 9.33 b | 9.65 b | 10.91 a | 10.47 a | 0.1793 | <0.0001 | <0.0001 | 0.0173 |
OM | 8.00 b | 8.07 b | 9.17 a | 8.86 a | 0.1508 | 0.0001 | <0.0001 | 0.1070 |
ATTD, % | ||||||||
DM | 59.31 c | 65.83 a | 62.54 b | 54.48 d | 0.6811 | <0.0001 | 0.0004 | <0.0001 |
OM | 62.25 b | 68.61 a | 65.26 ab | 57.30 c | 0.7404 | <0.0001 | 0.0006 | <0.0001 |
N | 61.53 c | 64.17 ab | 64.90 a | 62.10 bc | 0.5723 | 0.0087 | 0.3646 | 0.0014 |
NDF | 42.21 c | 53.53 ab | 55.79 a | 44.61 bc | 1.9912 | 0.0032 | 0.3199 | 0.0005 |
ADF | 35.02 b | 52.29 a | 54.72 a | 36.33 b | 2.3448 | 0.0005 | 0.5608 | <0.0001 |
Item | Diets 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
FRS0 | FRS15 | FRS25 | FRS35 | Diet | L | Q | ||
pH | 6.92 | 7.00 | 6.98 | 7.05 | 0.0476 | 0.4122 | 0.1561 | 0.9019 |
Ammonia nitrogen, mg/dL | 6.51 | 6.83 | 5.39 | 5.43 | 0.3633 | 0.3157 | 0.1656 | 0.8443 |
MCP, mg/mL | 2.52 b | 3.25 b | 5.85 a | 2.05 b | 0.4408 | <0.0001 | 0.4804 | <0.0001 |
Acetic acid, mmol/L | 28.07 | 20.28 | 24.51 | 24.83 | 2.0031 | 0.1432 | 0.5719 | 0.0717 |
Propionic acid, mmol/L | 23.30 a | 14.98 b | 19.72 ab | 20.35 ab | 1.6139 | 0.0398 | 0.6014 | 0.0202 |
Acetic/Propionic | 1.20 b | 1.36 a | 1.24 ab | 1.22 b | 0.0287 | 0.0215 | 0.6402 | 0.0122 |
Butyric acid, mmol/L | 21.65 a | 14.36 b | 17.24 ab | 20.01 ab | 1.5380 | 0.0428 | 0.7821 | 0.0087 |
Isobutyric acid, mmol/L | 1.78 | 1.41 | 1.66 | 1.72 | 0.1120 | 0.2010 | 0.8890 | 0.0850 |
Valeric acid, mmol/L | 2.47 a | 1.38 b | 2.10 ab | 2.27 a | 0.1873 | 0.0149 | 0.8974 | 0.0071 |
Isovaleric acid, mmol/L | 1.34 | 1.02 | 1.27 | 1.16 | 0.0826 | 0.1062 | 0.4770 | 0.2326 |
Caproic acid, mmol/L | 0.342 | 0.219 | 0.324 | 0.347 | 0.0461 | 0.2630 | 0.5872 | 0.1462 |
Parameter | Diets 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
FRS0 | FRS15 | FRS25 | FRS35 | Diet | L | Q | ||
Milk, kg/day | 5.11 | 5.30 | 5.26 | 4.80 | 0.9565 | 0.9534 | 0.7518 | 0.6380 |
Protein, % | 4.08 | 4.12 | 4.26 | 4.66 | 0.1712 | 0.1121 | 0.0190 | 0.5727 |
Fat, % | 7.34 | 7.55 | 7.98 | 8.55 | 0.5318 | 0.1335 | 0.0221 | 0.6403 |
Lactose, % | 5.59 | 5.26 | 5.59 | 5.46 | 0.1389 | 0.0734 | 0.8861 | 0.3219 |
Urea, mg/dL | 20.34 ab | 17.50 b | 19.01 ab | 21.26 a | 1.3034 | 0.0385 | 0.3080 | 0.0095 |
TS, % | 17.47 | 17.23 | 18.36 | 19.04 | 0.6984 | 0.0532 | 0.0126 | 0.3582 |
SNF, % | 10.08 ab | 9.74 b | 10.34 a | 10.39 a | 0.2171 | 0.0202 | 0.0321 | 0.2139 |
Casein, % | 2.68 | 2.70 | 2.89 | 3.00 | 0.1457 | 0.1080 | 0.0187 | 0.6555 |
SFA, % | 4.81 | 4.93 | 5.14 | 5.55 | 0.3744 | 0.2354 | 0.0494 | 0.5921 |
MUFA, % | 2.29 | 2.35 | 2.56 | 2.69 | 0.1821 | 0.1210 | 0.0199 | 0.7481 |
Parameter | Diets 1 | SEM | p-Value 2 | |||||
---|---|---|---|---|---|---|---|---|
FRS0 | FRS15 | FRS25 | FRS35 | Diet | L | Q | ||
Glu, mmol/L | 4.52 b | 6.29 a | 5.91 a | 4.69 b | 0.4877 | 0.0030 | 0.9362 | 0.0003 |
TC, mmol/L | 7.40 | 7.96 | 7.81 | 7.17 | 0.3264 | 0.0893 | 0.4299 | 0.0170 |
TP, g/L | 99.92 b | 130.21 a | 104.35 b | 97.85 b | 8.6030 | 0.0041 | 0.2525 | 0.0067 |
TG, mmol/L | 2.57 b | 3.44 a | 3.32 a | 2.57 b | 0.1497 | <0.0001 | 0.8065 | <0.0001 |
LDL, mmol/L | 3.25 | 3.53 | 3.39 | 3.30 | 0.1756 | 0.4168 | 0.9823 | 0.1509 |
HDL, mmol/L | 1.43 a | 1.02 b | 1.04 b | 1.41 a | 0.0900 | <0.0001 | 0.8873 | <0.0001 |
BUN, mmol/L | 6.65 b | 7.17 ab | 7.47 a | 6.20 b | 0.2885 | 0.0014 | 0.2670 | 0.0003 |
ALT, U/L | 39.37 | 39.57 | 34.21 | 38.04 | 3.2667 | 0.3499 | 0.3758 | 0.4412 |
AST, U/L | 28.79 | 26.92 | 22.40 | 32.71 | 6.6176 | 0.4894 | 0.7331 | 0.2078 |
LD, U/L | 721.32 | 616.73 | 692.31 | 659.92 | 54.448 | 0.2838 | 0.5352 | 0.3596 |
GGT, U/L | 45.12 | 45.41 | 50.10 | 44.38 | 4.0831 | 0.5024 | 0.8496 | 0.3106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Abdelrahman, M.; Zhang, X.; Yang, S.; Yuan, J.; An, Z.; Niu, K.; Gao, Y.; Li, J.; Wang, B.; et al. Milk Production Responses and Digestibility of Dairy Buffaloes (Bubalus bubalis) Partially Supplemented with Forage Rape (Brassica napus) Silage Replacing Corn Silage. Animals 2021, 11, 2931. https://doi.org/10.3390/ani11102931
Zhou D, Abdelrahman M, Zhang X, Yang S, Yuan J, An Z, Niu K, Gao Y, Li J, Wang B, et al. Milk Production Responses and Digestibility of Dairy Buffaloes (Bubalus bubalis) Partially Supplemented with Forage Rape (Brassica napus) Silage Replacing Corn Silage. Animals. 2021; 11(10):2931. https://doi.org/10.3390/ani11102931
Chicago/Turabian StyleZhou, Di, Mohamed Abdelrahman, Xinxin Zhang, Shuai Yang, Jing Yuan, Zhigao An, Kaifeng Niu, Yanxia Gao, Jianguo Li, Bo Wang, and et al. 2021. "Milk Production Responses and Digestibility of Dairy Buffaloes (Bubalus bubalis) Partially Supplemented with Forage Rape (Brassica napus) Silage Replacing Corn Silage" Animals 11, no. 10: 2931. https://doi.org/10.3390/ani11102931
APA StyleZhou, D., Abdelrahman, M., Zhang, X., Yang, S., Yuan, J., An, Z., Niu, K., Gao, Y., Li, J., Wang, B., Zhou, G., Yang, L., & Hua, G. (2021). Milk Production Responses and Digestibility of Dairy Buffaloes (Bubalus bubalis) Partially Supplemented with Forage Rape (Brassica napus) Silage Replacing Corn Silage. Animals, 11(10), 2931. https://doi.org/10.3390/ani11102931