Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl4-Induced Liver Injury in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Plant Material and Aqueous Leaf Extract Preparation
2.3. Birds, Diets, and Experimental Design
2.4. Sampling Procedures
2.5. Samples Processing
2.6. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Oxidative Status
3.3. Antioxidant Enzymes
3.4. Blood Biochemistry
3.5. Hepatic Liver Enzyme Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oke, O.E.; Alo, E.T.; Oke, F.O.; Oyebamiji, Y.A.; Ijaiya, M.A.; Odefemi, M.A.; Kazeem, R.Y.; Soyode, A.A.; Aruwajoye, O.M.; Ojo, R.T.; et al. Early age thermal manipulation on the performance and physiological response of broiler chickens under hot humid tropical climate. J. Therm. Biol. 2020, 88. [Google Scholar] [CrossRef]
- Storz, G.; Imlay, J.A. Oxidative stress. Curr. Opin. Microbiol. 1999, 2, 188–194. [Google Scholar] [CrossRef]
- Manibusan, M.K.; Odin, M.; Eastmond, D.A. Postulated carbon tetrachloride mode of action: A review. J. Environ. Sci. Health-Part. C Environ. Carcinog. Ecotoxicol. Rev. 2007, 25, 185–209. [Google Scholar] [CrossRef]
- Agbonon, A.; Gbeassor, M. Hepatoprotective effect of Lonchocarpus sericeus leaves in CCl4-induced liver damage. J. Herbs Spices Med. Plants 2009, 15, 216–226. [Google Scholar] [CrossRef]
- Södergren, E.; Cederberg, J.; Vessby, B.; Basu, S. Vitamin E reduces lipid peroxidation in experimental hepatotoxicity in rats. Eur. J. Nutr. 2001, 40, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Mujumdar, A.M.; Upadhye, A.S.; Pradhan, A.M. Effect of Azadirachta indica leaf extract on carbontetrachloride-induced hepatic damage in albino rats. Indian J. Pharm. Sci. 1998, 60, 363–367. [Google Scholar]
- Srivastava, A.; Shivanandappa, T. Hepatoprotective effect of the root extract of Decalepis hamiltonii against carbon tetrachloride-induced oxidative stress in rats. Food Chem. 2010, 118, 411–417. [Google Scholar] [CrossRef]
- Oke, O.E.; Emeshili, U.K.; Iyasere, O.S.; Abioja, M.O.; Daramola, J.O.; Ladokun, A.O.; Abiona, J.A.; Williams, T.J.; Rahman, S.A.; Rotimi, S.O.; et al. Physiological responses and performance of broiler chickens offered olive leaf extract under a hot humid tropical climate. J. Appl. Poult. Res. 2017, 26, 376–382. [Google Scholar] [CrossRef]
- Aregheore, E.M.; Makkar, H.P.S.; Becker, K. Feed value of some browse plants from the Central Zone of Delta State, Nigeria. Trop. Sci. 1998, 38, 97–104. [Google Scholar]
- Ijeh, I.I.; Ejike, C.E.C.C. Current perspectives on the medicinal potentials of Vernonia amygdalina Del. J. Med. Plants Res. 2011, 5, 1051–1061. [Google Scholar]
- Ohigashi, H.; Huffman, M.A.; Izutsu, D.; Koshimizu, K.; Kawanaka, M.; Sugiyama, H.; Kirby, G.C.; Warhurst, D.C.; Allen, D.; Wright, C.W.; et al. Toward the chemical ecology of medicinal plant use in chimpanzees: The case of Vernonia amygdalina, a plant used by wild chimpanzees possibly for parasite-related diseases. J. Chem. Ecol. 1994, 20, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Bihonegn, T.; Giday, M.; Yimer, G.; Animut, A.; Sisay, M. Antimalarial activity of hydromethanolic extract and its solvent fractions of Vernonia amygdalina leaves in mice infected with Plasmodium berghei. SAGE Open Med. 2019, 7, 205031211984976. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Chukwuma, C.I.; Sanni, O.; Matsabisa, M.G.; Islam, M.S. Histochemistry, phenolic content, antioxidant, and anti-diabetic activities of Vernonia amygdalina leaf extract. J. Food Biochem. 2019, 43, e12737. [Google Scholar] [CrossRef] [PubMed]
- Okunlola, G.O.; Jimoh, M.A.; Olatunji, O.A.; Rufai, A.B.; Omidiran, A.O. Proximate analysis, mineral composition, and antioxidant properties of bitter leaf and scent leaf. Int. J. Veg. Sci. 2019, 25, 346–354. [Google Scholar] [CrossRef]
- Hasibuan, P.A.Z.; Harahap, U.; Sitorus, P.; Satria, D. The anticancer activities of Vernonia amygdalina Delile. Leaves on 4T1 breast cancer cells through phosphoinositide 3-kinase (PI3K) pathway. Heliyon 2020, 6, e04449. [Google Scholar] [CrossRef]
- Jisaka, M.; Ohigashi, H.; Takagaki, T.; Nozaki, H.; Tada, T.; Hirota, M.; Irie, R.; Huffman, M.A.; Nishida, T.; Kaji, M.; et al. Bitter steroid glucosides, vernoniosides A1, A2, and A3, and related B1 from a possible medicinal plant, Vernonia amygdalina, used by wild chimpanzees. Tetrahedron 1992, 48, 625–632. [Google Scholar] [CrossRef]
- Jisaka, M.; Ohigashi, H.; Takegawa, K.; Hirota, M.; Irie, R.; Huffman, M.A.; Koshimizu, K. Steroid glucosides from Vernonia amygdalina, a possible chimpanzee medicinal plant. Phytochemistry 1993, 34, 409–413. [Google Scholar] [CrossRef]
- Erasto, P.; Grierson, D.S.; Afolayan, A.J. Bioactive sesquiterpene lactones from the leaves of Vernonia amygdalina. J. Ethnopharmacol. 2006, 106, 117–120. [Google Scholar] [CrossRef]
- Tokofai, M.B.; Idoh, K.; Oke, E.O.; Agbonon, A. Growth performance, haematological and biochemical parameters in broilers fed diets with varying levels of Vernonia amygdalina leaf meal. Eur. Poult. Sci. 2020, 84. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th ed.; The National Academies Press: Washington, DC, USA, 1994. [Google Scholar] [CrossRef]
- Baradaran, A.; Samadi, F.; Ramezanpour, S.S.; Yousefdoust, S. Hepatoprotective effects of silymarin on CCl4-induced hepatic damage in broiler chickens model. Toxicol. Rep. 2019, 6, 788–794. [Google Scholar] [CrossRef]
- Sonkusale, P.; Bhandarker, A.G.; Kurkare, N.V.; Ravikanth, K.; Maini, S.; Sood, D. Hepatoprotective activity of superliv liquid and repchol in CCl4 induced FLKS syndrome in broilers. Int. J. Poult. Sci. 2011, 10, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Sharma, M.K.; Kumar, M. Protective effect of Mentha piperita against arsenic-induced toxicity in liver of Swiss albino mice. Basic Clin. Pharmacol. Toxicol. 2007, 100, 249–257. [Google Scholar] [CrossRef]
- Fredrickson, D.S.; Levy, R.I.; Friedewald, W.T. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Sinha, A.K. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The generation of superoixide radical during the autoxidation of ferredoxins. J. Biol. Chem. 1971, 246, 6886–6890. [Google Scholar] [CrossRef]
- Durunna, C.S.; Chiaka, I.I.; Ebenebe, O.E.; Udedibie, A.B.I.; Uchegbu, M.C.; Durunna, O.N. Value of bitter leaf (Vernonia amygdalina) meal as feed ingredient in the diet of finisher. Int. J. Agric. Rural Dev. 2011, 14, 722–726. [Google Scholar]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I.; Kabbashi, N.A. Extraction and characterization of bioactive compounds in Vernonia amygdalina leaf ethanolic extract comparing Soxhlet and microwave-assisted extraction techniques. J. Taibah Univ. Sci. 2019, 13, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Odukoya, J.; Charles, U.; Odukoya, J. Response of nutritional and phytochemical constituents of bitter leaf to some drying methods. Int. Res. J. Pure Appl. Chem. 2019, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Fiesel, A.; Gessner, D.K.; Most, E.; Eder, K. Effects of dietary polyphenol-rich plant products from grape or hop on pro-inflammatory gene expression in the intestine, nutrient digestibility and faecal microbiota of weaned pigs. BMC Vet. Res. 2014, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Olobatoke, R.Y.; Oloniruha, J.A. Haematological assessment of bitter leaf (Vernonia amygdalina) efficiency in reducing infections in cockerels. Afr. J. Tradit. Complementary Altern. Med. 2009, 472–473. [Google Scholar]
- Adaramoye, O.A.; Akintayo, O.; Achem, J.; Fafunso, M.A. Lipid-lowering effects of methanolic extract of Vernonia amygdalina leaves in rats fed on high cholesterol diet. Vasc. Health Risk Manag. 2008, 4, 235–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huffman, M.A.; Koshimizu, K.; Ohigashi, H.; Caligari, P.D.S.; Hind, D.J.N. Ethnobotany and zoopharmacognosy of Vernonia amygdalina, a medicinal plant used by humans and chimpanzees. Compos. Biol. Util. 1996, 2, 351–360. [Google Scholar]
- Sun, H.; Che, Q.M.; Zhao, X.; Pu, X.P. Antifibrotic effects of chronic baicalein administration in a CCl4 liver fibrosis model in rats. Eur. J. Pharmacol. 2010, 631, 53–60. [Google Scholar] [CrossRef]
- Ahangari, J.Y. Effects of Peppermint (Mentha piperita L.) Alcoholic Extract on Carbon Tetrachloride-induced Hepatotoxicity in Broiler Chickens under Heat Stress Condition. Poult. Sci. J. 2015, 3, 1–16. [Google Scholar] [CrossRef]
- Chinna, M.; Nettem, S.; Dipankar, B.; Manasa, N. Hepatoprotective activity of Averrhoa carambola stem ethanolic extract on CCl4 induced liver damage in rats. Int. J. Pharm. Pharm. Sci. 2013, 5, 406–410. [Google Scholar]
- Moradi, F.; Samadi, F.; Dastar, B.; Samadi, S. The effects of silymarin on oxidative status and bone characteristics in Japanese quail subjected to oxidative stress induced by carbon tetrachloride. Poult. Sci. J. 2017, 5, 15–22. [Google Scholar] [CrossRef]
- Flees, J.; Rajaei-Sharifabadi, H.; Greene, E.; Beer, L.; Hargis, B.M.; Ellestad, L.; Porter, T.; Donoghue, A.; Bottje, W.G.; Dridi, S. Effect of Morinda citrifolia (Noni)-enriched diet on Hepatic Heat Shock protein and lipid metabolism-related genes in heat stressed broiler chickens. Front. Physiol. 2017, 8, 919. [Google Scholar] [CrossRef] [Green Version]
- Vahidi-Eyrisofla, N.; Hojati, V.; Yazdian, M.-R.; Zendehdel, M.; Shajiee, H. Effects of Olive Leaf Extract on Prevention of Molecular, Histopathological, and Enzymatic Changes in Chicken Carbon Tetrachloride-Induced Liver Damage. Galen Med. J. 2019, 8, 1204. [Google Scholar] [CrossRef] [PubMed]
- Vinarova, L.; Vinarov, Z.; Atanasov, V.; Pantcheva, I.; Tcholakova, S.; Denkov, N.; Stoyanov, S. Lowering of cholesterol bioaccessibility and serum concentrations by saponins: In vitro and in vivo studies. Food Funct. 2015, 6, 501–512. [Google Scholar] [CrossRef]
- Mahmoodzadeh, Y.; Mazani, M.; Rezagholizadeh, L. Hepatoprotective effect of methanolic Tanacetum parthenium extract on CCl4-induced liver damage in rats. Toxicol. Rep. 2017, 4, 455–462. [Google Scholar] [CrossRef]
- Sifa, D.; Bai, X.; Zhang, D.; Hu, H.; Wu, X.; Wen, A.; He, S.; Zhao, L. Dietary glutamine improves meat quality, skeletal muscle antioxidant capacity and glutamine metabolism in broilers under acute heat stress. J. Appl. Anim. Res. 2018, 46, 1412–1417. [Google Scholar] [CrossRef]
- Igile, G.O.; Oleszek, W.; Jurzysta, M.; Burda, S.; Fafunso, M.; Fasanmade, A.A. Flavonoids from Vernonia amygdalina and Their Antioxidant Activities. J. Agric. Food Chem. 1994, 42, 2445–2448. [Google Scholar] [CrossRef]
- El-haskoury, R.; Al-Waili, N.; Kamoun, Z.; Makni, M.; Al-Waili, H.; Lyoussi, B. Antioxidant Activity and Protective Effect of Carob Honey in CCl4-induced Kidney and Liver Injury. Arch. Med Res. 2018, 49, 306–313. [Google Scholar] [CrossRef]
- Eghbal, M.A.; Pennefather, P.S.; O’Brien, P.J. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation. Toxicology 2004, 203, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Yang, C.; Yang, Z. Effects of star anise (Illicium verum Hook. f.), essential oil, and leavings on growth performance, serum, and liver antioxidant status of broiler chickens. J. Appl. Poult. Res. 2017, 26, 459–466. [Google Scholar] [CrossRef]
- Iwo, M.I.; Sjahlim, S.L.; Rahmawati, S.F. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver. Sci. Pharm. 2017, 85, 16. [Google Scholar] [CrossRef] [Green Version]
- Khorramshahi, M.; Samadi, F.; Ganji, F. The Effects of Cynara scolymus L. on Carbon Tetracholoride Induced Liver Toxicity in Japanese quail. Int. J. AgriSci. 2014, 4, 362–369. [Google Scholar]
- Behboodi, H.R.; Samadi, F.; Shams Shargh, M.; Ganji, F.; Samadi, S. Effects of Silymarin on growth performance, internal organs and some blood parameters in Japanese quail subjected to oxidative stress induced by carbon tetrachloride. Poult. Sci. J. 2017, 5, 31–40. [Google Scholar] [CrossRef]
- Adesanoye, O.A.; Farombi, E.O. Hepatoprotective effects of Vernonia amygdalina (astereaceae) in rats treated with carbon tetrachloride. Exp. Toxicol Pathol 2010, 62, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Oke, G.O.; Abiodun, A.A.; Imafidon, C.E.; Monsi, B.F. Zingiber officinale (Roscoe) mitigates CCl4-induced liver histopathology and biochemical derangements through antioxidant, membrane-stabilizing and tissue-regenerating potentials. Toxicol. Rep. 2019, 6, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Elgawish, R.A.R.; Rahman, H.G.A.; Abdelrazek, H.M.A. Green tea extract attenuates CCl4-induced hepatic injury in male hamsters via inhibition of lipid peroxidation and p53-mediated apoptosis. Toxicol. Rep. 2015, 2, 1149–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ighodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [Google Scholar] [CrossRef] [Green Version]
Ingredients (%). | 0 to 21 Days | 22 to 42 Days |
---|---|---|
White maize | 57.00 | 66.00 |
Roasted soya bean meal | 25.00 | 24.00 |
Wheat bran | 5.00 | 3.00 |
Fish meal 40% | 5.00 | 2.00 |
Oyster shell | 2.00 | 2.50 |
Concentrate 2 | 5.00 | 2.50 |
Lysine | 0.50 | - |
Methionine | 0.50 | - |
Calculated analysis | ||
Metabolizable energy (MJ) | 12.7 | 13.0 |
Crude protein (%) | 21.43 | 18.45 |
Crude fiber (%) | 4.71 | 4.74 |
Lysine (%) | 1.37 | 1.14 |
Methionine (%) | 0.54 | 0.43 |
Methionine + Cystine (%) | 0.68 | 0.54 |
Calcium (%) | 1.17 | 1.13 |
Phosphorus (%) | 0.66 | 0.50 |
Parameters | Treatments | |||||
---|---|---|---|---|---|---|
Control | VALE | CCl4 | VALE + CCl4 | SEM | p-Value | |
Initial body weight (g) | 43.25 | 43.53 | 44.02 | 43.01 | 0.13 | 0.152 |
Final body weight (g) | 1725 b | 1858 a | 1647 c | 1716 b | 4.45 | 0.003 |
Weight gain (g) | 1682 b | 1814 a | 1603 c | 1673 b | 8.57 | 0.005 |
Daily weight gain (g) | 40.05 b | 43.19 a | 38.17 c | 39.83 b | 0.32 | <0.0001 |
Total feed intake (g) | 3602 a | 3517 b | 3505 c | 3528 b | 7.66 | 0.014 |
Daily feed intake (g) | 85.75 a | 83.73 c | 83.45 c | 84.01 b | 0.71 | 0.002 |
Feed conversion ratio | 2.14 a | 1.93 b | 2.12 a | 2.11 a | 0.02 | 0.011 |
Parameters | Treatments | |||||
---|---|---|---|---|---|---|
Control | VALE | CCl4 | VALE + CCl4 | SEM | p-Value | |
LDH (U/L) | 100.9 b | 110.2 a,b | 116.7 a | 118.3 a | 3.60 | 0.006 |
MDA (nmol/mL) | 1.87 c,d | 1.91 b,c | 2.75 a | 1.96 b | 0.16 | <0.0001 |
TAC (U/mL) | 1.89 a | 1.83 a | 1.15 b | 1.26 b | 0.13 | 0.043 |
Parameters | Treatments | |||||
---|---|---|---|---|---|---|
Control | VALE | CCl4 | VA + CCl4 | SEM | p-Value | |
SOD (U/g Hb) | 2850 b | 3925 a | 2130 c | 2925 b | 100.1 | 0.034 |
CAT (U/g Hb) | 1124 b | 1830 a | 935 c | 1055 b | 62.27 | 0.022 |
Parameters | Treatments | |||||
---|---|---|---|---|---|---|
Control | VALE | CCl4 | VALE + CCl4 | SEM | p-Value | |
Glucose (mg/dL) | 224.3 a | 226.9 a | 211.07 b | 217.6 a | 1.34 | 0.026 |
Total protein (g/dL) | 3.35 a | 3.47 a | 1.76 b | 3.26 a | 0.26 | 0.003 |
Albumin (g/dL) | 1.76 a | 1.98 a | 1.37 b | 1.78 a | 0.03 | 0.010 |
Total cholesterol (mg/dL) | 138.3 a | 120.8 b | 140.4 a | 142.7 a | 2.48 | 0.021 |
Triglyceride (mg/dL) | 43.29 a | 34.46 b | 49.18 a | 42.83 a | 1.50 | 0.009 |
LDL (mg/dL) | 107.8 b | 92.18 c | 117.5 a | 94.31 c | 1.40 | 0.005 |
HDL (mg/dL) | 54.9 b | 73.24 a | 42.38 c | 75.53 a | 1.33 | 0.002 |
Parameters | Treatments | |||||
---|---|---|---|---|---|---|
Control | VALE | CCl4 | VALE + CCl4 | SEM | p-Value | |
AST (U/L) | 234.1 a | 239.7 a | 257.9 b | 245.3 b | 2.43 | 0.034 |
ALP (U/L) | 221.6 a | 246.1 b | 282.8 c | 255.1 b | 3.46 | 0.002 |
ALT (U/L) | 17.6 a | 18.9 a | 20.51 b | 20.24 b | 0.44 | 0.017 |
GGT (U/L) | 12.35 a | 12.95 a | 14.7 b | 13.32 ab | 0.46 | 0.021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokofai, B.M.; Idoh, K.; Oke, O.E.; Agbonon, A. Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl4-Induced Liver Injury in Broiler Chickens. Animals 2021, 11, 3371. https://doi.org/10.3390/ani11123371
Tokofai BM, Idoh K, Oke OE, Agbonon A. Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl4-Induced Liver Injury in Broiler Chickens. Animals. 2021; 11(12):3371. https://doi.org/10.3390/ani11123371
Chicago/Turabian StyleTokofai, Bemela Mawulom, Kokou Idoh, Oyegunle Emmanuel Oke, and Amegnona Agbonon. 2021. "Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl4-Induced Liver Injury in Broiler Chickens" Animals 11, no. 12: 3371. https://doi.org/10.3390/ani11123371
APA StyleTokofai, B. M., Idoh, K., Oke, O. E., & Agbonon, A. (2021). Hepatoprotective Effects of Vernonia amygdalina (Astereaceae) Extract on CCl4-Induced Liver Injury in Broiler Chickens. Animals, 11(12), 3371. https://doi.org/10.3390/ani11123371