Effects of Heat Stress on Follicular Physiology in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Follicular Development under Conditions of Heat Stress
2.1. Primary and Preantral Follicles
2.2. Maturation of Oocytes and Antral Follicles
2.3. Pre-Ovulatory Follicle and Ovulation
3. Temperature Gradients in the Reproductive System
Periovulatory Changes in Ovarian Temperature
4. Clinical Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Boni, R. Heat stress, a serious threat to reproductive function in animals and humans. Mol. Reprod. Dev. 2019, 86, 1307–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berman, A.; Folman, Y.; Kaim, M.; Mamen, M.; Herz, Z.; Wolfenson, D.; Arieli, A.; Graber, Y. Upper critical temperatures and forced ventilation effects for high-yielding dairy cows in a subtropical climate. J. Dairy Sci. 1985, 68, 1488–1495. [Google Scholar] [CrossRef]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, R.J.; Renquist, B.J.; Xiao, Y. A 100-Year Review: Stress physiology including heat stress. J. Dairy Sci. 2017, 100, 10367–10380. [Google Scholar] [CrossRef] [PubMed]
- Wolfenson, D.; Roth, Z. Impact of heat stress on cow reproduction and fertility. Anim. Front. 2019, 9, 32–38. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Wolfenson, D.; Lew, B.J.; Thatcher, W.W.; Graber, Y.; Meidan, R. Seasonal and acute heat stress effects on steroid production by dominant follicles in cows. Anim. Reprod. Sci. 1997, 47, 9–19. [Google Scholar] [CrossRef]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Zampieri, M.; Russo, S.; di Sabatino, S.; Michetti, M.; Scoccimarro, E.; Gualdi, S. Global assessment of heat wave magnitudes from 1901 to 2010 and implications for the river discharge of the Alps. Sci. Total Environ. 2016, 571, 1330–1339. [Google Scholar] [CrossRef]
- Roth, Z. Cooling is the predominant strategy to alleviate the effects of heat stress on dairy cows. Reprod. Domest. Anim. 2020. early view. [Google Scholar] [CrossRef]
- Howell, J.L.; Fuquay, J.W.; Smith, A.E. Corpus luteum growth and function in lactating Holstein cows during spring and summer. J. Dairy Sci. 1994, 77, 735–739. [Google Scholar] [CrossRef]
- Wolfenson, D.; Roth, Z.; Meidan, R. Impaired reproduction in heat-stressed cattle: Basic and applied aspects. Anim. Reprod. Sci. 2000, 60, 535–547. [Google Scholar] [CrossRef]
- Roth, Z. Effect of heat stress on reproduction in dairy cows: Insights into the cellular and molecular responses of the oocyte. Annu. Rev. Anim. Biosci. 2017, 5, 151–170. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.B.; Schellander, K.; Luceno, N.L.; Van Soom, A. Heat stress responses in spermatozoa: Mechanisms and consequences for cattle fertility. Theriogenology 2018, 113, 102–112. [Google Scholar] [CrossRef]
- López-Gatius, F.; Hunter, R.H.F. Local cooling of the ovary and its implications for heat stress effects on reproduction. Theriogenology 2020, 149, 98–103. [Google Scholar] [CrossRef]
- Nagamatsu, G. Regulation of primordial follicle formation, dormancy, and activation in mice. J. Reprod. Dev. 2021, 67, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Badinga, L.; Collier, R.J.; Thatcher, W.W.; Wilcox, C.J. Effects of climatic and management factors on conception rate of dairy cattle in subtropical environmental. J. Dairy Sci. 1985, 68, 78–85. [Google Scholar] [CrossRef]
- Roth, Z.; Meiden, R.; Braw-Tal, R.; Wolfenson, D. Immediate and delayed effects of heat stress on follicular development and its association with plasma FSH and inhibin concentration in cows. J. Reprod. Fertil. 2000, 120, 83–90. [Google Scholar] [CrossRef]
- Roth, Z.; Meidan, R.; Shaham-Albalancy, A.; Braw-Tal, R.; Wolfenson, D. Delayed effect of heat stress on steroid production in medium-sized and preovulatory bovine follicles. Reproduction 2001, 121, 745–751. [Google Scholar] [CrossRef]
- Aguiar, L.H.; de Hyde, K.A.; Pedroza, G.H.; Denicol, A.C. Heat stress impairs in vitro development of preantral follicles of cattle. Anim. Reprod. Sci. 2020, 213, 106277. [Google Scholar] [CrossRef]
- Fair, T. Follicular oocyte growth and acquisition of developmental competence. Anim. Reprod. Sci. 2003, 78, 203–216. [Google Scholar] [CrossRef]
- Driancourt, M.A.; Thuel, B. Control of oocyte growth and maturation by follicular cells and molecules present in follicular fluid. A review. Reprod. Nutr. Dev. 1998, 38, 345–362. [Google Scholar] [CrossRef] [Green Version]
- Eppig, J.J. Oocyte control of ovarian follicular development and function in mammals. Reproduction 2001, 122, 829–838. [Google Scholar] [CrossRef]
- Hunter, R.H.F.; López-Gatius, F. Evolutionary sequences in mammalian reproductive biology. J. Exp. Zool. A 2020, 333, 533–535. [Google Scholar] [CrossRef]
- Lussier, J.G.; Matton, P.; Dufour, J.J. Growth rates of follicles in the ovary of the cow. J. Reprod. Fertil. 1987, 81, 301–307. [Google Scholar] [CrossRef]
- Hulshof, S.C.J.; Bevers, M.M.; van der Donk, H.A.; van den Hurk, R. The isolation and characterization of preantral follicles from foetal bovine ovaries. In Proceedings of the 12th International Congress on Animal Reproduction, The Hague, The Netherlands, 23–27 August 1992; Volume 1, pp. 336–338. [Google Scholar]
- Wolfenson, D.; Thatcher, W.W.; Badinga, L.; Savi, J.D.; Meidan, R.; Lew, B.J. Effect of heat stress on follicular development during the estrous cycle in lactating dairy cattle. Biol. Reprod. 1995, 52, 1106–1113. [Google Scholar] [CrossRef] [Green Version]
- Silvestre, F.T.; Kamimura, S.; Arteche, A.C.; Bartolome, J.; Pancarci, S.M.; Thatcher, W.W. Reproductive responses following postpartum suppression of ovarian follicular development with a deslorelin implant during summer heat stress in lactating dairy cows. Anim. Reprod. Sci. 2009, 111, 320–337. [Google Scholar]
- Roth, Z.; Arav, A.; Bor, A.; Zeron, Y.; Braw-Tal, R.; Wolfenson, D. Improvement of quality of oocytes collected in the autumn by enhanced removal of impaired follicles from previously heat-stressed cows. Reproduction 2001, 122, 737–744. [Google Scholar]
- Badinga, L.; Thatcher, W.W.; Diaz, T.; Drost, M.; Wolfenson, D. Effect of environmental heat stress on follicular development and steroidogenesis in lactating Holstein cows. Theriogenology 1993, 39, 797–810. [Google Scholar] [CrossRef]
- Wilson, S.J.; Marion, R.S.; Spain, J.N.; Spiers, D.E.; Keisler, D.H.; Lucy, M.C. Effects of controlled heat stress on ovarian function of dairy cattle. 1. Lactating cows. J. Dairy Sci. 1998, 81, 2124–2131. [Google Scholar] [CrossRef]
- Wilson, S.J.; Kirby, C.J.; Koenigsfeld, A.T.; Keisler, D.H.; Lucy, M.C. Effects of controlled heat stress on ovarian function of dairy cattle. 2. Heifers. J. Dairy Sci. 1998, 81, 2132–2138. [Google Scholar] [CrossRef]
- Guzeloglu, A.; Ambrose, J.D.; Kassa, T.; Diaz, T.; Thatcher, M.J.; Thatcher, W.W. Long-term follicular dynamics and biochemical characteristics of dominant follicles in dairy cows subjected to acute heat stress. Anim. Reprod. Sci. 2001, 66, 15–34. [Google Scholar] [CrossRef]
- Badinga, L.; Thatcher, W.W.; Wilcox, C.J.; Morris, G.; Entwistle, K.; Wolfenson, D. Effect of season on follicular dynamics and plasma concentrations of oestradiol-17ß, progesterone and luteinizing hormone in lactating Holstein cows. Theriogenology 1994, 42, 1263–1274. [Google Scholar] [CrossRef]
- Roth, Z.; Hansen, P.J. Disruption of nuclear maturation and rearrangement of cytoskeletal elements in bovine oocytes exposed to heat shock during maturation. Reproduction 2005, 129, 235–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, J.L.; Saxton, A.M.; Lawrence, J.L.; Payton, R.R.; Dunlap, J.R. Exposure to a physiologically relevant elevated temperature hastens in vitro maturation in bovine oocytes. J. Dairy Sci. 2005, 88, 4326–4333. [Google Scholar] [CrossRef]
- Gendelman, M.; Aroyo, A.; Yavin, S.; Roth, Z. Seasonal effects on gene expression, cleavage timing, and developmental competence of bovine preimplantation embryos. Reproduction 2010, 140, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, T.G.; Neal, P. Organ culture of cortical fragments and Graafian follicles from human ovaries. J. Anat. 1974, 117, 361–371. [Google Scholar] [PubMed]
- Picton, H.M.; Harris, S.E.; Muruvi, W.; Chambers, E.L. The in vitro growth and maturation of follicles. Reproduction 2008, 136, 703–715. [Google Scholar] [CrossRef] [Green Version]
- Shehab-El-Deen, M.A.M.M.; Leroy, J.L.M.R.; Fadel, M.S.; Saleh, S.Y.A.; Maes, D.; Van Soom, A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim. Reprod. Sci. 2010, 117, 189–200. [Google Scholar] [CrossRef]
- Rispoli, L.A.; Edwards, J.L.; Pohler, K.G.; Russell, S.; Somiari, R.I.; Payton, R.R.; Schrick, F.N. Heat-induced hyperthermia impacts the follicular fluid proteome of the periovulatory follicle in lactating dairy cows. PLoS ONE 2019, 14, e0227095. [Google Scholar] [CrossRef] [Green Version]
- Jitjumnong, J.; Moonmanee, T.; Sudwan, P.; Mektrirat, R.; Osathanunkul, M.; Navanukraw, C.; Panatuk, J.; Yama, P.; Pirokad, W.; U-Krit, W.; et al. Associations among thermal biology, preovulatory follicle diameter, follicular and luteal vascularities, and sex steroid hormone concentrations during preovulatory and postovulatory periods in tropical beef cows. Anim. Reprod. Sci. 2020, 213, 106281. [Google Scholar] [CrossRef]
- Schüller, L.K.; Michaelis, I.; Heuwieser, W. Impact of heat stress on estrus expression and follicle size in estrus under field conditions in dairy cows. Theriogenology 2017, 102, 48–53. [Google Scholar] [CrossRef]
- López-Gatius, F.; López-Béjar, M.; Fenech, M.; Hunter, R.H.F. Ovulation failure and double ovulation in dairy cattle: Risk factors and effects. Theriogenology 2005, 63, 1298–1307. [Google Scholar] [CrossRef]
- López-Gatius, F.; Hunter, R.H.F. Clinical relevance of pre-ovulatory follicular temperature in heat-stressed lactating dairy cows. Reprod. Domest. Anim. 2017, 52, 366–370. [Google Scholar] [CrossRef]
- Hansel, W.; Convey, E.M. Physiology of the estrous cycle. J. Anim. Sci. 1983, 57, 404–424. [Google Scholar]
- Vanselow, J.; Vernunft, A.; Koczan, D.; Spitschak, M.; Kuhla, B. Exposure of lactating dairy cows to acute pre-ovulatory heat stress affects granulosa cell-specific gene expression profiles in dominant follicles. PLoS ONE 2016, 17, e0160600. [Google Scholar] [CrossRef]
- Sartori, R.; Fricke, P.M.; Ferreira, J.C.P.; Ginther, O.J.; Wiltbank, M.C. Follicular deviation and acquisition of ovulatory capacity in bovine follicles. Biol. Reprod. 2001, 65, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Colazo, M.G.; Behrouzi, A.; Ambrose, D.J.; Mapletoft, R.J. Diameter of the ovulatory follicle at timed artificial insemination as a predictor of pregnancy status in lactating dairy cows subjected to GnRH-based protocols. Theriogenology 2015, 84, 377–383. [Google Scholar] [CrossRef] [PubMed]
- López-Gatius, F.; Garcia-Ispierto, I.; Serrano-Pérez, B.; Hunter, R.H.F. The presence of two ovulatory follicles at timed artificial insemination influences the ovulatory response to GnRH in high-producing dairy cows. Theriogenology 2018, 120, 91–97. [Google Scholar] [CrossRef]
- Hunter, R.H.F. Temperature gradients in female reproductive tissues. Reprod. Biomed. Online 2012, 24, 377–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.Y.B.; Mingels, R.; Morgan, H.; Macklon, N.; Cheong, Y. In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: A systematic review. Hum. Reprod. Update 2018, 24, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.E.; Kitahara, G.; Tamura, Y.; Kobayashi, I.; Hemmi, K.; Torisu, S.; Sameshima, H.; Horii, Y.; Zaabel, S.; Kamimura, S. Presence of a temperature gradient among genital tract portions and the thermal changes within these portions over the estrous cycle in beef cows. J. Reprod. Dev. 2013, 59, 59–65. [Google Scholar]
- Hunter, R.H.F.; Nichol, R.; Crabtree, S.M. Transport of spermatozoa in the ewe: Timing of the establishment of a functional population in the oviduct. Reprod. Nutr. Dev. 1980, 20, 869–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.H.F. Sperm transport and reservoirs in the pig oviduct in relation to the time of ovulation. J. Reprod. Fertil. 1981, 63, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.H.F.; Wilmut, I. Sperm transport in the cow: Periovulatory redistribution of viable cells within the oviduct. Reprod. Nutr. Dev. 1984, 24, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Einer-Jensen, N.; Hunter, R.H.F. Physiological and pharmacological aspects of local transfer of substances in the ovarian adnexa in women. Hum. Reprod. Update 2000, 6, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Cicinelli, E.; Einer-Jensen, N.; Barba, B.; Luisi, D.; Alfonso, R.; Tartagni, M. Blood to the corneal area of uterus is mainly supplied from the ovarian artery in the follicular phase and from the uterine artery in the luteal phase. Hum. Reprod. 2004, 19, 1003–1008. [Google Scholar] [CrossRef] [Green Version]
- Einer-Jensen, N.; Hunter, R.H.F. Counter-current transfer in reproductive biology. Reproduction 2005, 129, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Rutllant, J.; López-Béjar, M.; López-Gatius, F. Ultrastructural and rheological properties of bovine vaginal fluid and its relation to sperm motility and fertilization: A review. Reprod. Domest. Anim. 2005, 40, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Benoit, H.J.; Borth, R.; Ellicott, A.R.; Woolever, C.A. Periovulatory changes in ovarian temperature in ewes. Am. J. Obstet. Gynecol. 1976, 124, 356–360. [Google Scholar] [CrossRef]
- Grinsted, J.; Glendstrup, K.; Andreasen, M.P.; Byskov, A.G. Temperature measurements of rabbit antral follicles. J. Reprod. Fertil. 1980, 60, 149–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grinsted, J.; Kjer, J.J.; Blendstrup, K.; Pedersen, J.F. Is low temperature of the follicular fluid prior to ovulation necessary for normal oocyte development? Fertil. Steril. 1985, 43, 34–39. [Google Scholar] [CrossRef]
- Hunter, R.H.F.; Grondahl, C.; Greve, T.; Schmidt, M. Graafian follicles are cooler than neighbouring ovarian tissues and deep rectal temperatures. Hum. Reprod. 1997, 12, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.H.F.; Bogh, I.B.; Einer-Jensen, N.; Müller, S.; Greve, T. Pre-ovulatory Graafian follicles are cooler than neighbouring stroma in pig ovaries. Hum. Reprod. 2000, 15, 273–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greve, T.; Grøndahl, C.; Schmidt, M.; Hunter, R.H.F.; Avery, B. Bovine preovulatory follicular temperature: Implications for in vitro production of embryos. Arch. Tierz. 1996, 39, 7–14. [Google Scholar]
- López-Gatius, F.; Hunter, R.H.F. Pre-ovulatory follicular temperature in bi-ovular cows. J. Reprod. Dev. 2019, 65, 191–194. [Google Scholar] [CrossRef] [Green Version]
- López-Gatius, F.; Hunter, R.H.F. Pre-ovulatory follicular cooling correlates positively with the potential for pregnancy in dairy cows: Implications for human IVF. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 419–422. [Google Scholar] [CrossRef]
- Morita, Y.; Ozaki, R.; Mukaiyama, A.; Sasaki, T.; Tatebyashi, R.; Morishima, A.; Kitagawa, Y.; Suzumura, R.; Abe, R.; Tsukamura, H.; et al. Establishment of long-term chronic recording technique of in vivo ovarian parenchymal temperature in Japanese Black cows. J. Reprod. Dev. 2020, 66, 271–275. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garcia-Ispierto, I.; Hunter, R.H.F. Cervix–rectum temperature differential at the time of insemination is correlated with the potential for pregnancy in dairy cows. J. Reprod. Dev. 2021, 67, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Morgan, W.F.; Lean, I.J. Gonadotrophin-releasing hormone treatment in cattle: A meta-analysis of the effects on conception at the time of insemination. Aust. Vet. J. 1993, 70, 205–209. [Google Scholar] [CrossRef]
- López-Gatius, F. Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology 2003, 60, 89–99. [Google Scholar] [CrossRef]
- López-Gatius, F.; Garcia-Ispierto, I.; Hunter, R.H.F. Twin Pregnancies in Dairy Cattle: Observations in a Large Herd of Holstein-Friesian Dairy Cows. Animals 2020, 10, 2165. [Google Scholar] [CrossRef] [PubMed]
- De Rensis, F.; Morini, G.; Garcia-Ispierto, I.; López-Gatius, F. Thermal Mechanisms Preventing or Favoring Multiple Ovulations in Dairy Cattle. Animals 2021, 11, 435. [Google Scholar] [CrossRef]
- Hansen, P.J. Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction. Anim. Reprod. 2019, 16, 497–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrón-Pérez, V.M.; Fausnacht, D.W.; Rhoads, M.L. Management strategies capable of improving the reproductive performance of heat-stressed dairy cattle. J. Dairy Sci. 2019, 102, 10695–10710. [Google Scholar] [CrossRef]
- Monteiro, A.P.A.; Tao, S.; Thompson, I.M.T.; Dahl, G.E. In utero heat stress decreases calf survival and performance through the first lactation. J. Dairy Sci. 2016, 99, 8443–8450. [Google Scholar] [CrossRef]
- Pinedo, P.J.; De Vries, A. Season of conception is associated with future survival, fertility, and milk yield of Holstein cows. J. Dairy Sci. 2017, 100, 6631–6639. [Google Scholar] [CrossRef]
- Baker, T.G.; Hunter, R.H.F. Oogenesis and follicular growth in the cow: Implications for superovulation. In Control of Reproduction in the Cow; Sreenan, J.M., Ed.; CEC Publications: Luxembourg, 1978; pp. 34–49. [Google Scholar]
- Hyttel, P.; Fair, T.; Callesen, H.; Greve, T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology 1997, 47, 23–32. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Rensis, F.; Saleri, R.; Garcia-Ispierto, I.; Scaramuzzi, R.; López-Gatius, F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals 2021, 11, 3406. https://doi.org/10.3390/ani11123406
De Rensis F, Saleri R, Garcia-Ispierto I, Scaramuzzi R, López-Gatius F. Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals. 2021; 11(12):3406. https://doi.org/10.3390/ani11123406
Chicago/Turabian StyleDe Rensis, Fabio, Roberta Saleri, Irina Garcia-Ispierto, Rex Scaramuzzi, and Fernando López-Gatius. 2021. "Effects of Heat Stress on Follicular Physiology in Dairy Cows" Animals 11, no. 12: 3406. https://doi.org/10.3390/ani11123406
APA StyleDe Rensis, F., Saleri, R., Garcia-Ispierto, I., Scaramuzzi, R., & López-Gatius, F. (2021). Effects of Heat Stress on Follicular Physiology in Dairy Cows. Animals, 11(12), 3406. https://doi.org/10.3390/ani11123406