Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Design
2.2.1. Experiment 1
2.2.2. Experiment 2
2.3. Analyses in Lavage Fluid
2.4. Analyses in Blood
2.5. Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, G.J.; Johnson, K.E.; Braden, T.D.; Wenzel, J.G.W. Use of an intra-uterine glass ball protocol to extend luteal function in mares. J. Eq. Vet. Sci. 2003, 23, 266–273. [Google Scholar] [CrossRef]
- Rivera del Alamo, M.M.; Reilas, T.; Kindahl, H.; Katila, T. Mechanisms behind intrauterine device-induced luteal persistence in mares. An. Reprod. Sci. 2008, 107, 94–106. [Google Scholar] [CrossRef]
- Argo, C.M.; Turnbull, E.B. The effect of intra-uterine devices on the reproductive physiology and behavior of pony mares. Vet. J. 2010, 186, 39–46. [Google Scholar] [CrossRef]
- Neely, D.P.; Kindahl, H.; Stabenfeldt, G.H.; Edqvist, L.E.; Hughes, J.P. Prostaglandin release patterns in the mare: Physiological, patho-physiological and therapeutic responses. J. Reprod. Fertil. Suppl. 1979, 27, 181–189. [Google Scholar]
- Boerboom, D.; Brown, K.A.; Vaillancourt, D.; Poitras, B.; Goff, A.K.; Watanabe, K.; Doré, M.; Sirois, J. Expression of key prostaglandin synthases in equine endometrium during late diestrus and early pregnancy. Biol. Reprod. 2004, 70, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Rivera del Alamo, M.M.; Reilas, T.; Galvão, A.; Yeste, M.; Katila, T. Cyclooxygenase-2 is inhibited in prolonged luteal maintenance induced by intrauterine devices in mares. Anim. Reprod. Sci. 2018, 199, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Ginther, O.J. Mobility of the early equine conceptus. Theriogenology 1983, 19, 603–611. [Google Scholar] [CrossRef]
- Klohonatz, K.M.; Nulton, L.C.; Hess, A.M.; Bouma, G.J.; Bruemmer, J.E. The role of embryo contact and focal adhesions during maternal recognition of pregnancy. PLoS ONE 2019, 14, e0213322. [Google Scholar] [CrossRef]
- Daels, P.F.; Hughes, J.P. Fertility control using intrauterine devices: An alternative for population control in wild horses. Theriogenology 1995, 44, 629–639. [Google Scholar] [CrossRef]
- Klein, V.; Müller, K.; Schoon, H.A.; Reilas, T.; Rivera del Alamo, M.M.; Katila, T. Effects of intrauterine devices in mares: A histomorphological and immunohistochemical evaluation of the endometrium. Reprod. Domest. Anim. 2016, 51, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Rivera del Alamo, M.M.; Katila, T.; Palviainen, M.; Reilas, T. Effects of intrauterine devices on proteins in the uterine lavage fluid of mares. Theriogenology 2021, 165, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Stout, T.A.; Lamming, G.E.; Allen, W.R. Oxytocin administration prolongs luteal function in cyclic mares. J. Reprod. Fertil. 1999, 116, 315–320. [Google Scholar] [CrossRef]
- Stout, T.A.E.; Allen, W.R. Prostaglandin E2 and F2α production by equine conceptuses and concentrations in conceptus fluids and uterine flushings recovered from early pregnant and dioestrous mares. Reproduction 2002, 123, 261–268. [Google Scholar] [CrossRef]
- Wilsher, S.; Allen, W.R. Intrauterine administration of plant oils inhibits luteolysis in the mare. An. Reprod. Sci. 2010, 121S, S58–S59. [Google Scholar] [CrossRef]
- Portus, B.J.; Reilas, T.; Katila, T. Effect of seminal plasma on uterine inflammation, contractility and pregnancy rates in mares. Eq. Vet. J. 2005, 37, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Reilas, T.; Katila, T. Proteins and enzymes in uterine lavage fluid of postpartum and nonparturient mares. Reprod. Dom. An. 2002, 37, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Battut, I.; Colchen, S.; Fieni, F.; Tainturier, D.; Bruyas, J.F. Success rates when attempting to nonsurgically collect equine embryos at 144, 156 or 168 h after ovulation. Equine Vet. J. Suppl. 1997, 29, 60–66. [Google Scholar] [CrossRef]
- Klein, C.; Troedsson, M.H.T. Transcriptional profiling of equine conceptuses reveals new aspects of embryo-maternal communication in the horse. Biol. Reprod. 2011, 84, 872–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merkl, M.; Ulbrich, S.E.; Otzdorff, C.; Herbach, N.; Wanke, R.; Wolf, E.; Handler, J.; Bauersachs, S. Microarray analysis of equine endometrium at days 8 and 12 of pregnancy. Biol. Reprod. 2010, 83, 874–886. [Google Scholar] [CrossRef] [Green Version]
- Watson, E.D.; Stokes, C.R.; David, J.S.E.; Bourne, F.J. Concentrations of uterine luminal prostaglandins in mares with acute and persistent endometritis. Equine Vet. J. 1987, 19, 31–37. [Google Scholar] [CrossRef]
- Christoffersen, M.; Troedsson, M.H.T. Inflammation and fertility in the mare. Reprod. Dom. Anim. 2017, 52 (Suppl. 3), 14–20. [Google Scholar] [CrossRef] [PubMed]
- Berglund, L.A.; Sharp, D.C.; Vernon, M.W.; Thatcher, W.W. Effect of pregnancy and collection technique on prostaglandin F in the uterine lumen of Pony mares. J. Reprod. Fertil. Suppl. 1982, 32, 335–341. [Google Scholar] [PubMed]
- Vernon, M.W.; Zavy, M.T.; Asquith, R.L.; Sharp, D.C. Prostaglandin F2alpha in the equine endometrium: Steroid modulation and production capacities during the estrous cycle and early pregnancy. Biol. Reprod. 1981, 25, 581–589. [Google Scholar] [CrossRef]
- Lukasik, K.; Szóstek, A.; Galvao, A.; Hojo, T.; Okuda, K.; Skarzynski, D.J. Auto-paracrine action of prostaglandins E2 and F2α in equine corpus luteum. J. Eq. Vet. Sci. 2014, 34, 120. [Google Scholar] [CrossRef]
- Hughes-Fulford, M. Signal transduction and mechanical stress. Sci. STKE 2004, 31, RE12. [Google Scholar] [CrossRef] [Green Version]
- Jorge, S.; Chang, S.; Barzilai, J.J.; Leppert, P.; Segars, J.H. Mechanical signaling in reproductive tissues: Mechanisms and importance. Reprod. Sci. 2014, 21, 1093–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Costa, R.P.; Costa, A.S.; Korzekwa, A.J.; Platek, R.; Siemieniuch, M.; Galvão, A.; Redmer, D.A.; Silva, J.R.; Skarzynski, D.J.; Ferreira-Dias, G. Actions of nitric oxide donor on prostaglandin production and angiogenic activity in the equine endometrium. Reprod. Fertil. Dev. 2008, 20, 674–683. [Google Scholar] [CrossRef]
- Alghamdi, A.S.; Foster, D.N.; Carlson, C.S.; Troedsson, M.H.T. Nitric oxide levels and nitric oxide synthase expression in uterine samples from mares susceptible and resistant to persistent breeding-induced endometritis. Am. J. Reprod. Immunol. 2005, 53, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Woodward, E.M.; Christoffersen, M.; Campos, J.; Horohov, D.W.; Scoggin, K.E.; Squires, E.; Troedsson, M.H.T. An investigation of uterine nitric oxide production in mares susceptible and resistant to persistent breeding-induced endometritis and the effects of immunomodulation. Reprod. Dom. Anim. 2013, 48, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Croxtall, J.D.; Perretti, M.; Bryant, C.E.; Thiemermann, C.; Flower, R.J.; Vane, J.R. Lipocrotin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat. Proc. Natl. Acad. Sci. USA 1995, 92, 3473–3477. [Google Scholar] [CrossRef] [Green Version]
- Troedsson, M.H.T.; Woodward, E.M. Our understanding of the pathophysiology of equine endometritis with an emphasis on breeding-induced endometritis. Reprod. Biol. 2016, 16, 8–12. [Google Scholar] [CrossRef]
- Dajani, R.; Al-Haj Ali, E.; Dajani, B. Macrophage colony stimulating factor and monocyte chemoattractant protein 2 are elevated in intrinsic asthmatics. Cytokine 2011, 56, 641–647. [Google Scholar] [CrossRef]
- Pype, J.L.; Dupont, L.J.; Menten, P.; Van Coillie, E.; Opdenakker, G.; Van Damme, J.; Chung, K.F.; Demedts, M.G.; Verleden, G.M. Expression of monocytes chemotactic protein (MCP)-1, MCP-2, and MCP-3 by human airway smooth-muscle cells. Modulation by corticosteroids and T-helper 2 cytokines. Am. J. Resp. Cell Mol. Biol. 1999, 21, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Osuga, Y.; Hirota, Y.; Koga, K.; Morimoto, C.; Hirata, T.; Yoshino, O.; Tsutsumi, O.; Yano, T.; Taketani, Y. Mechanical stretch stimulated interleukin-8 production in endometrial stromal cells: Possible implications in endometrium-related events. J. Clin. Endorinol. Metab. 2005, 90, 1144–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Mette, C.; Dooleweerdt, B.C.; Stine, J.; Miki, B.A.; Roenn, P.M.; Henrik, L.J. Evaluation of the systemic acute phase response and endometrial gene expression of serum amyloid A and pro- and anti-inflammatory cytokines in mares with experimentally induced endometritis. Vet. Immunol. Immunopathol. 2010, 138, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Gomes Buarque de Holanda, A.; da Silva Liete, J.; Consalter, A.; Gomes Coelho da Silva, K.V.; Dos Santos Batista, B.P.; Monteiro Fonseca, A.B.; Zondinadi Brandao, Z.; Reis Ferreira, A. Expression of interleukins 6 and 10 and population of inflammatory cells in the equine endometrium: Diagnostic implications. Mol. Biol. Rep. 2019, 46, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Parente, L.; Solito, E. Annexin 1: More than an anti-phopholipase protein. Inflamm. Res. 2004, 53, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, M.A.; Vago, J.V.; Teixeira, M.M.; Sousa, L.P. Annexin A1 and the resolution of inflammation: Modulation of neutrophil recruitment, apoptosis, and clearance. J. Immunol. Res. 2016, 2016, 8239258. [Google Scholar] [CrossRef] [Green Version]
- Yamanouchi, K.; Hirasawa, K.; Hasegawa, T.; Ikeda, A.; Chang, K.T.; Matsuyama, S.; Nishihara, M.; Miyazawa, K.; Sawasadi, T.; Tojo, H.; et al. Equine inhibin/activin A-subunit mRNA is expressed in the endometrial gland, but not in the trophoblast, during pregnancy. Mol. Reprod. Develop. 1997, 47, 363–369. [Google Scholar] [CrossRef]
- Jones, L.R.; Findlay, J.K.; Farnworth, P.G.; Robertson, D.M.; Wallace, E.; Salamonsen, L.A. Activin A and Inhibin A differentially regulate human uterine matrix metalloproteinases: Potential interactions during decidualization and trophoblast invasion. Endocrinology 2006, 147, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, R.; Noda, N.; Minoura, H.; Toyoda, N.; Imanaka-Yoshida, K.; Sakakur, T.; Yoshida, T. Expression of matrix metalloproteinase-3 in mouse endometrial stromal cells during early pregnancy: Regulation by interleukin-1α and tenascin-C. Gynecol. Endocrinol. 2009, 21, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Tobolski, D.; Lukasik, K.; Basławska, A.; Skarzynski, D.J.; Hostens, M.; Baranski, W. Prediction of calving to conception interval length using algorithmic analysis of endometrial mRNA expression in bovine. Animals 2021, 11, 236. [Google Scholar] [CrossRef] [PubMed]
RIA/ELISA Kit Name | Manufacturer Product No | Curve Range | CVs (Inter-/Intra-) | |
---|---|---|---|---|
E2 (pg/mL) | Ultra-sensitive estradiol RIA, human | Immunotech a.s.; DSL4800 | 0.5–750 | 8.7%/6.1% |
PGF2α (pg/mL) | Prostaglandin F2α (PGF2α) ELISA kit | Enzo; ADI-901-069 | 3.05–50,000 | 13.1%/9.7% |
PGE2 (ng/mL) | Highly sensitive Prostaglandin E2 (PGE2) ELISA kit | Enzo; ADI-900-001 | 31.9–2500 | 17.5%/5.1% |
IL-1α (pg/mL) | ELISA Kit for Interleukin 1 Alpha (IL1α), Equine | Cloud-clone; SEA071Eq | 15.6–1000 | 10.0%/12.0% |
IL-1β (pg/mL) | ELISA Kit for Interleukin 1 Beta (IL1β), Equine | Cloud-clone; SEA563Eq | 15.6–1000 | 10.0%/12.0% |
IL-8 (pg/mL) | Horse C-C Motif Chemokine 8/MCP2 (CCL8) ELISA Kit, Equine | Abbexa; abx575576 | 15.6–1000 | 10.0%/12.0% |
InhibinA (pg/mL) | Inhibin A (Equine, Canine, Rodent) ELISA | AnshLabs; AL-161 | 6.6–668 | 10.0%/12.0% |
Parameter | AI-N n = 5 | AI-P n = 5 | IUD n = 12 |
---|---|---|---|
S P4 D4 (nmol/L) | 23.2 ± 2.82 | 19.6 ± 2.95 | 21.7 ± 1.96 |
S P4 D10 (nmol/L) | 18.3 ± 3.06 | 17.4 ± 1.40 | 16.6 ± 1.53 |
S E2 D10 (pg/mL) | 18.57 ± 2.75 | 19.35 ± 1.88 | 16.57 ± 1.52 |
NO (ng/mL) | 5.47 ± 1.30 | 7.15 ± 1.46 | 6.99 ± 1.45 |
PGF2α (ng/mL) | 0.85 ± 0.22 ab | 0.95 ± 0.03 a | 0.45 ± 0.09 b |
PGE2 (ng/mL) | 122.40 ± 22.96 | 130.46 ± 10.50 | 119.76 ± 12.43 |
PGE/PGF IL-1α (pg/mL) | 192.07 ± 77.92 54.69 ± 21.45 | 143.80 ± 8.76 8.22 ± 3.33 | 289.91 ± 47.11 14.47 ± 8.69 |
IL-1β (pg/mL) | 27.77 ± 4.11 | 23.02 ± 3.33 | 19.17 ± 2.90 |
IL-8 (pg/mL) | 10.60 ± 3.11 | 5.90 ± 2.91 | 7.31 ± 3.18 |
IL-10 (pg/mL) | 14.71 ± 2.92 | 10.33 ± 0.52 | 10.62 ± 1.38 |
Inhibin A (pg/mL) | 11.47 ± 1.32 | 14.31 ± 2.35 | 17.59 ± 2.00 |
Parameter | AI-N n = 4 | AI-P n = 8 | IUD n = 15 |
---|---|---|---|
S P4 D14 (nmol/L) | 7.25 ± 2.32 | 14.88 ± 2.08 | 13.57 ± 2.03 |
S P4 D15 (nmol/L) | 6.75 ± 3.15 | 16.0 ± 2.79 | 9.07 ± 2.26 |
S E2 D15 (pg/mL) | 23.42 ± 3.58 | 19.90 ± 2.24 | 15.65 ± 1.34 |
NO (ng/mL) | 7.70 ± 2.06 | 7.92 ± 2.83 | 5.10 ± 0.98 |
PGF2α (ng/mL) | 1.72 ± 0.32 a | 16.70 ± 4.69 b | 1.81 ± 0.49 a |
IL-1α (pg/mL) | 33.16 ± 19.07 | 42.07 ± 22.33 | 14.22 ± 6.36 |
IL-1β (pg/mL) | 14.72 ± 3.58 | 18.99 ± 2.94 | 19.24 ± 1.55 |
IL-8 (pg/mL) | 7.44 ± 3.76 | 7.33 ± 2.25 | 13.32 ± 2.92 |
IL-10 (pg/mL) | 7.41 ± 1.00 a | 9.47 ± 0.82 ab | 10.51 ± 1.81 b |
Inhibin A (pg/mL) | 19.90 ± 5.36 ab | 12.59 ± 3.33 a | 25.02 ± 2.93 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera del Alamo, M.M.; Reilas, T.; Lukasik, K.; Galvão, A.M.; Yeste, M.; Katila, T. Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation. Animals 2021, 11, 3493. https://doi.org/10.3390/ani11123493
Rivera del Alamo MM, Reilas T, Lukasik K, Galvão AM, Yeste M, Katila T. Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation. Animals. 2021; 11(12):3493. https://doi.org/10.3390/ani11123493
Chicago/Turabian StyleRivera del Alamo, Maria Montserrat, Tiina Reilas, Karolina Lukasik, Antonio M. Galvão, Marc Yeste, and Terttu Katila. 2021. "Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation" Animals 11, no. 12: 3493. https://doi.org/10.3390/ani11123493
APA StyleRivera del Alamo, M. M., Reilas, T., Lukasik, K., Galvão, A. M., Yeste, M., & Katila, T. (2021). Inflammatory Markers in Uterine Lavage Fluids of Pregnant, Non-Pregnant, and Intrauterine Device Implanted Mares on Days 10 and 15 Post Ovulation. Animals, 11(12), 3493. https://doi.org/10.3390/ani11123493