Rearing of Bitterling (Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Sample Collection and Preparation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rhodeus Sericeus (Pallas 1776). Available online: https://www.fishbase.se/summary/2948 (accessed on 10 August 2021).
- Przybylski, M. Różanka. In Ryby Słodkowodne Polski; Brylińska, M., Ed.; Wyd. PWN: Warszawa, Poland, 2000; Volume 285, pp. 233–237. [Google Scholar]
- Kottelat, M.; Freyhof, J. Handbook of European Freshwater Fishes; Publications Kottelat: Berlin, Germany, 2007; p. 287. [Google Scholar]
- Konečná, M.; Smith, C.; Reichard, M. Population and individual consequences of breeding resource availability in the European bitterling (Rhodeus amarus). Behav. Ecol. Sociobiol. 2010, 64, 1069–1079. [Google Scholar] [CrossRef]
- Wiepkema, P.R. An ethological analysis of the reproductive behaviour of the bitterling (Rhodeus amarus Bloch). Arch. Neerl. De Zoologie. 1961, 14, 103–199. [Google Scholar] [CrossRef] [Green Version]
- Przybylski, M.; Reichard, M.; Spence, R.; Smith, C. Spatial distribution of oviposition sites determines variance in the reproductive rate of European bitterling (Rhodeus amarus). Behaviour 2007, 144, 1403–1417. [Google Scholar] [CrossRef]
- Kujawa, R. Rozwój zarodków oraz larw różanki (Rhodeus sericeus) uzyskanych w efekcie rozrodu kontrolowanego. In Podchowy Organizmów Wodnych—Osiagnięcia, Wyzwania, Perspektywy; Zakęś, Z., Demska Zakęś, K., Eds.; Wyd. IRS: Olsztyn, Poland, 2015; pp. 179–188. [Google Scholar]
- Reynolds, J.D.; Debuse, V.J.; Aldridge, D.C. Host specialisation in an unusual symbiosis: European bitterlings spawning in freshwater mussels. Oikos 1997, 78, 539–545. [Google Scholar] [CrossRef]
- Smith, C.; Reichard, M.; Jurajda, P.; Przybylski, M. The reproductive ecology of the European bitterling (Rhodeus sericeus). J. Zool. 2004, 262, 107–124. [Google Scholar] [CrossRef] [Green Version]
- Reichard, M.; Przybylski, M.; Kaniewska, P.; Liu, H.; Smith, C. A possible evolutionary lag in the relationship between freshwater mussels and European bitterling. J. Fish Biol. 2007, 70, 709–725. [Google Scholar] [CrossRef]
- Reichard, M.; Liu, H.; Smith, C. The co-evolutionary relationship between bitterling fishes and freshwater mussels: Insights from interspecific comparisons. Evol. Ecol. Res. 2007, 9, 239–259. [Google Scholar]
- Aldridge, D.C. Development of European bitterling in the gills of freshwater mussels. J. Fish Biol. 1999, 54, 138–151. [Google Scholar] [CrossRef]
- Smith, C.; Reynolds, J.D.; Sutherland, W.J. The population consequences of reproductive decisions. Proc. R. Soc. Lond. Ser. B 2000, 267, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Reynolds, J.D.; Sutherland, W.J.; Jurajda, P. Adaptive host choice and avoidance of super parasitism in the spawning decisions of bitterling (Rhodeus sericeus). Behav. Ecol. Sociobiol. 2000, 48, 29–35. [Google Scholar] [CrossRef]
- Frelik, A. Predation of adult large diving beetles Dytiscus marginalis (Linnaeus, 1758), Dytiscus circumcinctus (Ahrens, 1811) and Cybister lateralimarginalis (De Geer, 1774) (Coleoptera: Dytiscidae) on fish fry. Int. J. Oceanogr. Hydrobiol. 2014, 43, 360–365. [Google Scholar] [CrossRef]
- Folsom, T.C.; Collins, N.C. Food availability in nature for the larval dragonfly Anax junius (Odonata: Aeshnidae). Freshw. Invertebr. Biol. 1982, 1, 33–40. [Google Scholar] [CrossRef]
- Witkowski, A.; Kotusz, J.; Przybylski, M. Stopień zagrożenia słodkowodnej ichtiofauny Polski: Czerwona lista minogów i ryb—Stan 2009. Chrońmy Przyr. Ojcz. 2009, 65, 33–52. [Google Scholar]
- Feliksiak, S. Próba rozwoju różanki Rhodeus sericeus. Pallas z pominięciem małża. Kosm. A 1955, 4, 313–315. [Google Scholar]
- Sorgeloos, P.; Bossuyt, E.; Lavinam, E.; Baeza-Mesa, M.; Persoone, G. Decapsulation of Artemia cysts: A simple technique for the improvement of the use of brine shrimp in aquaculture. Aquaculture 1977, 12, 311–315. [Google Scholar] [CrossRef]
- Brown, T.; Hansen, R.J.; Yorra, A.J. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: A preliminary report. JBJS 1957, 39, 1135–1164. [Google Scholar] [CrossRef]
- Myszkowski, L. Pitfalls of using growth rate coefficients. Pol. Arch. Hydrobiol. 1997, 44, 389–396. [Google Scholar]
- Peňáz, J. A Device for Automatic Non-Invasive Continuous Measurement of Blood Pressure; Pra-327 gue; Patent Office: Prague, Czech Republic, 1989. [Google Scholar]
- Bohlen, J. Spawning habitat in the spined loach, Cobitis taenia (Cypriniformes: Cobitidae). Ichthyol. Res. 2003, 50, 98–101. [Google Scholar] [CrossRef]
- Juchno, D.; Jabłońska, O.; Boroń, A.; Kujawa, R.; Leska, A.; Grabowska, A.; Nynca, A.; Świgońska, S.; Król, M.; Spóz, A.; et al. Ploidy-dependent survival of progeny arising from crosses between natural allotriploid Cobitis females and diploid C. taenia males (Pisces, Cobitidae). Genetica 2014, 142, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, B.; Monka, J.; Drozd, B.; Hundt, M.; Weiss, M.; Oswald, T.; Gergs, R.; Schulz, R. Thermal requirements for growth, survival and aerobic performance of weatherfish larvae Misgurnus fossilis. J. Fish Biol. 2017, 90, 1597–1608. [Google Scholar] [CrossRef]
- Wolnicki, J.; Kamiński, R.; Korwin-Kossakowski, M.; Kusznierz, J.; Myszkowski, L. The influence of water temperature on laboratory-reared lake minnow Eupallasella perenurus (Pallas) larvae and juveniles. Fish. Aquat. Life 2004, 12, 61–69. [Google Scholar]
- Kamiński, R.; Judycka, S.; Sikorska, J.; Wolnicki, J. Hormonal treatment with Ovopel increases sperm production in lake minnow, Eupallasella percnurus (Pallas, 1814). Fish. Aquat. Life 2021, 29, 50–53. [Google Scholar] [CrossRef]
- Kujawa, R.; Fopp-Bayat, D.; Cejko, B.I.; Kucharczyk, D.; Glińska-Lewczuk, K.; Obolewski, K.; Biegaj, M. Rearing river lamprey Lampetra fluviatilis (L.) larvae under controlled conditions as a tool for restitution of endangered populations. Aquac. Int. 2018, 26, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Kujawa, R.; Cejko, B.I.; Fopp-Bayat, D.; Judycka, S.; Glińska-Lewczuk, K.; Timofte, C.M.; Nowosad, J.; Kucharczyk, D. Reproduction of endangered river lamprey (Lampetra fluviatilis) in controlled conditions. Anim. Reprod. Sci. 2019, 203, 75–83. [Google Scholar] [CrossRef]
- Balon, E. Postup osifikácie šupin u lopatky dúhovej (Rhodeus sericeus amarus). Biológia Bratisl. 1959, 14, 173–178. [Google Scholar]
- Balon, E.K. Note on the number of Danubian bitterlings developmental stages in mussels. Vestn. Ceskoslovenske Spol. Zool. 1962, 26, 250–256. [Google Scholar]
- Mills, S.C.; Reynolds, J.D. Host species preferences by bitterling, Rhodeus sericeus, spawning in freshwater mussels and consequences for offspring survival. Anim. Behav. 2002, 63, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
- Piechocki, A.; Dyduch-Falniowska, A. Mięczaki (Mollusca). Małże (Bivalvia). Fauna Słodkowodna Polski; PWN: Warszawa, Poland, 1993. [Google Scholar]
- Nlewadim, A.A.; Udoh, J.P.; Otoh, A.J. Growth response and survival of Heterobranchus longifilis cultured at different water levels in outdoor concrete tanks. Aquac. Aquar. Conserv. Legis. 2011, 4, 404–411. [Google Scholar]
- Leszczyński, E.P. Pokarm młodocianych stadiów niektórych gatunków ryb kilku jezior okolic Węgorzewa. Rocz. Nauk Rol. 1963, 82, 236–250. [Google Scholar]
- Przybylski, M. The diel feeding pattern of Bitterling, Rhodeus sericeus amarus (Bloch) in the Wieprz-Krzna Canal, Poland. Pol. Arch. Hydrobiol. 1996, 43, 203–212. [Google Scholar]
- Kamiński, R.; Korwin-Kossakowski, M.; Kusznierz, J.; Myszkowski, L.; Stanny, L.A.; Wolnicki, J. Response of a juvenile cyprinid, lake minnow Eupallasella perenurus (Pallas), to different diets. Aquac. Int. 2005, 13, 479–486. [Google Scholar] [CrossRef]
- Xie, S.; Zhu, X.; Cui, Y.; Wootton, R.J.; Lei, W.; Yang, Y. Compensatory growth in the gibel carp following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol. 2001, 58, 999–1009. [Google Scholar] [CrossRef]
- Bélanger, F.; Blier, P.U.; Dutil, J.D. Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). Fish Physiol. Biochem. 2002, 26, 121–128. [Google Scholar] [CrossRef]
- Nikki, J.; Pirhonen, J.; Jobling, M.; Karjalainen, J. Compensatory growth in juvenile rainbow trout, Oncorhynchus mykiss (Walbaum), held individually. Aquaculture 2004, 235, 285–296. [Google Scholar] [CrossRef]
- Van Dijk, P.L.M.; Hardewig, I.; Hölker, F. Energy reserves during food deprivation and compensatory growth in juvenile roach: The importance of season and temperature. J. Fish Biol. 2005, 66, 167–181. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Yang, Y.; Cai, F. Compensatory growth in hybrid tilapia, Oreochromis mossambicus × O. niloticus, reared in seawater. Aquaculture 2000, 189, 101–108. [Google Scholar] [CrossRef]
- Kujawa, R.; Furgała-Selezniow, G.; Mamcarz, A.; Lach, M.; Kucharczyk, D. Influence of temperature on the growth and survivability of sichel larvae Pelecus cultratus reared under controlled conditions. Ichthyol. Res. 2015, 62, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Kawecki, T.J.; Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 2004, 7, 1225–1241. [Google Scholar] [CrossRef] [Green Version]
- Reichard, M.; Smith, C.; Jordan, W.C. Genetic evidence reveals density-dependent mediated success of alternative mating behaviours in the European bitterling (Rhodeus sericeus). Mol. Ecol. 2004, 13, 1569–1578. [Google Scholar] [CrossRef]
- Weeks, A.R.; Sgro, C.M.; Young, A.G.; Frankham, R.; Mitchell, N.J.; Miller, K.A.; Byrne, M.; Coates, D.J.; Eldridge, M.D.B.; Sunnucks, P.; et al. Assessing the benefits and risks of translocations in changing environments: A genetic perspective. Evol. Appl. 2011, 4, 709–725. [Google Scholar] [CrossRef] [Green Version]
- Tuomainen, U.; Candolin, U. Behavioural responses to human-induced environmental change. Biol. Rev. 2011, 86, 640–657. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, M.; Zięba, G. Microhabitat preferences of European bitterling Rhodeus sericeus in the Drzewiczka River (Pilica basin). Pol. Arch. Hydrobiol. 2000, 47, 99–144. [Google Scholar]
- Řežucha, R.; Smith, C.; Reichard, M. Personality traits, reproductive behaviour and alternative mating tactics in male European bitterling, Rhodeus amarus. Behaviour 2012, 149, 531–553. [Google Scholar]
Feed | Component (%) | ||||
---|---|---|---|---|---|
Protein | Fat | Carbohydrates | Ash | Phosphorus | |
Artemia sp. | 47.0 | 21.5 | 10.6 | 9.5 | - |
Nutra HP | 55.0 | 18.0 | 0.5 | 10.5 | 1.7 |
Parameter | I STAGE (Time Rearing 1.5 Months) | II STAGE (Time Rearing 5 Months) | ||
---|---|---|---|---|
Temperature (°C) | Temperature (°C) | |||
20 | 26 | 20 | 26 | |
Initial mean body weight (mg) | 7 ± 0.23 a | 7 ± 0.24 a | 298 ± 45.8 a | 721 ± 97.55 b |
Final mean body weight (mg) | 298 ± 32.2 a | 721 ± 80.4 b | 3242 ± 427 a | 3389 ± 548 a |
Initial mean body length (mm) | 8.6 ± 0.11 a | 8.6 ± 0.12 a | 34.4 ± 0.63 a | 40.2 ± 1.98 b |
Final mean body length (mm) | 34.4 ± 1.67 a | 40.2 ± 2.1 b | 64.48 ± 3.4 a | 66.2 ± 3.0 a |
Initial stock (indiv.) | 200 | 200 | 200 | 200 |
Final stock (indiv.) | 200 | 200 | 200 | 200 |
Survival (%) | 100 | 100 | 100 | 100 |
Time rearing (days) | 45 | 45 | 150 | 150 |
Increase in total lenght (ITL) (mm d−1) | 0.57 ± 0.02 a | 0.70 ± 0.04 a | 0.20 ± 0.01 a | 0.17 ± 0.02 b |
Relative growth rate (RGR) for weight (% d−1) | 8.69 ± 0.4 a | 10.85 ± 0.6 b | 1.60 ± 0.17 a | 1.03 ± 0.24 b |
Relative growth rate (RGR) for length (% d−1) | 3.13 ± 0.1 a | 3.47 ± 0.2 b | 0.42 ± 0.02 a | 0.33 ± 0.04 b |
Relative growth rate (RBR) for biomass (% d−1) | 8.69 ± 0.4 a | 10.85 ± 0.6 b | 1.60 ± 0.05 a | 1.03 ± 0.03 b |
Biomass (g dm−3) | 2.98 ± 0.3 a | 7.21 ± 0.51 b | 10.81 ± 0.62 a | 11.3 ± 0.53 a |
Fultona K | 0.73 ± 0.06 a | 1.11 ± 0.09 b | 1.21 ±0.3 a | 1.2 ± 0.2 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawa, R.; Piech, P. Rearing of Bitterling (Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations. Animals 2021, 11, 3534. https://doi.org/10.3390/ani11123534
Kujawa R, Piech P. Rearing of Bitterling (Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations. Animals. 2021; 11(12):3534. https://doi.org/10.3390/ani11123534
Chicago/Turabian StyleKujawa, Roman, and Przemysław Piech. 2021. "Rearing of Bitterling (Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations" Animals 11, no. 12: 3534. https://doi.org/10.3390/ani11123534
APA StyleKujawa, R., & Piech, P. (2021). Rearing of Bitterling (Rhodeus amarus) Larvae and Fry under Controlled Conditions for the Restitution of Endangered Populations. Animals, 11(12), 3534. https://doi.org/10.3390/ani11123534