Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Carcasses
2.2. Leg Area and Leg Linear Carcass Measurements
2.3. Carcass Cuts and Composition
2.4. Leg Volume with Kinect 3D Image
2.5. Leg Volume with Archimedes Principle
2.6. Statistical Analysis
3. Results and Discussion
3.1. Cold Carcass Weight, Cuts, and Carcass Composition
3.2. Correlation between Measurements and Composition of Cut and Carcass
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, P. Automated grading of beef carcasses. In Improving the Sensory and Nutritional Quality of Fresh Meat; Kerry, J.P., Ledward, D., Eds.; Woodhead Publishing: Cambridge, UK, 2009; pp. 479–492. [Google Scholar]
- Craigie, C.R.; Navajas, E.A.; Purchas, R.W.; Maltin, C.A.; Bünger, L.; Hoskin, S.O.; Ross, D.W.; Morris, S.T.; Roehe, R. A review of the development and use of video image analysis (VIA) for beef carcass evaluation as an alternative to the current EUROP system and other subjective systems. Meat Sci. 2012, 92, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopkins, D.L.; Gardner, G.E.; Toohey, E.S. Australian view on lamb carcass and meat quality—The role of measurement technologies in the Australian sheep industry. In Farm Animal Imaging—A Summary Report; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC: Edinburgh, UK, 2015; pp. 17–21. [Google Scholar]
- Silva, S.; Guedes, C.; Rodrigues, S.; Teixeira, A. Non-destructive imaging and spectroscopic techniques for assessment of carcass and meat quality in sheep and goats: A review. Foods 2020, 9, 1074. [Google Scholar] [CrossRef]
- Mitchell, C. Carcass Grading and Payment Systems to Improve the Eating Quality of UK Meat; A Nuffield Farming Scholarships Trust Report; Nuffield Farming Scholarships: Taunton, UK, 2019; Available online: https://www.nuffieldscholar.org/reports/gb/2018/carcass-grading-and-payment-systems-improve-eating-quality-uk-meat (accessed on 15 December 2021).
- Delgado-Pando, G.; Allen, P.; Troy, D.J.; McDonnell, C.K. Objective carcass measurement technologies: Latest developments and future trends. Trends Food Sci. Technol. 2021, 111, 771–782. [Google Scholar] [CrossRef]
- Sanudo, C.; Sanchez, A.; Alfonso, M. Small ruminant production systems and factors affecting lamb meat quality. Meat Sci. 1998, 49, S29–S64. [Google Scholar] [CrossRef]
- Santos, V.A.C.; Silva, S.R.; Mena, E.G.; Azevedo, J.M.T. Live weight and sex effects on carcass and meat quality of “Borrego Terrincho-PDO” suckling lambs. Meat Sci. 2007, 77, 654–661. [Google Scholar] [CrossRef]
- Santos, V.A.C.; Cabo, A.; Raposo, P.; Silva, J.A.; Azevedo, J.M.T.; Silva, S.R. The effect of carcass weight and sex on carcass composition and meat quality of “Cordeiro Mirandes” Protected designation of origin lambs. Small Rumin. Res. 2015, 130, 136–140. [Google Scholar] [CrossRef]
- Alfonso, M.; Sañudo, C.; Berge, P.; Fisher, A.V.; Stamataris, C.; Thorkelsson, G.; Piasentier, E. Influential factors in lamb meat quality. Acceptability of specific designations. In Production Systems and Product Quality in Sheep and Goats; Options Méditerranéennes: Série, A. Séminaires Méditerranéens; n. 46; Rubino, R., MorandFehr, P., Eds.; CIHEAM Zaragoza: Zaragoza, Spain, 2001; pp. 19–28. [Google Scholar]
- Sañudo, C.; Alfonso, M.; Sanchez, A.; Delfa, R.; Teixeira, A. Carcass and meat quality in light lambs from different fat classes in the EU carcass classification system. Meat Sci. 2000, 56, 89–94. [Google Scholar] [CrossRef]
- Matthews, D.; Pabiou, T.; Evans, R.D.; Beder, C.; Daly, A. Predicting carcass cut yields in cattle from digital images using artificial intelligence. Meat Sci. 2022, 184, 108671. [Google Scholar] [CrossRef]
- McClure, E.K.; Scanga, J.A.; Belk, K.E.; Smith, G.C. Evaluation of the E+ V video image analysis system as a predictor of pork carcass meat yield. J. Anim. Sci. 2003, 81, 1193–1201. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, D.L.; Safari, E.; Thompson, J.M.; Smith, C.R. Video image analysis in the Australian meat industry-precision and accuracy of predicting lean meat yield in lamb carcasses. Meat Sci. 2004, 67, 269–274. [Google Scholar] [CrossRef]
- Rius-Vilarrasa, E.; Bünger, L.; Maltin, C.; Matthews, K.R.; Roehe, R. Evaluation of Video Image Analysis (VIA) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions. Meat Sci. 2009, 82, 94–100. [Google Scholar] [CrossRef]
- Cheng, D.; Wong, C.K.; Lim, P.P. Vision system for the automation of ovine carcass processing. In Proceedings of the Australasian Conference on Robotics and Automation, Melbourne, Australia, 3 December 2014; Oetomo, D., Chen, C., Crocher, V., Eds.; [Google Scholar]
- Alempijevic, A.; Vidal-Calleja, T.; Falque, R.; Quin, P.; Toohey, E.; Walmsley, B.; McPhee, M. Lean meat yield estimation using a prototype 3D imaging approach. Meat Sci. 2021, 181, 108470. [Google Scholar] [CrossRef]
- Fernandes, A.F.; Dórea, J.R.; Fitzgerald, R.; Herring, W.; Rosa, G.J. A novel automated system to acquire biometric and morphological measurements and predict body weight of pigs via 3D computer vision. J. Anim. Sci. 2019, 97, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Condotta, I.C.; Brown-Brandl, T.M.; Silva-Miranda, K.O.; Stinn, J.P. Evaluation of a depth sensor for mass estimation of growing and finishing pigs. Biosyst. Eng. 2018, 173, 11–18. [Google Scholar] [CrossRef]
- Nyalala, I.; Okinda, C.; Kunjie, C.; Korohou, T.; Nyalala, L.; Chao, Q. Weight and volume estimation of poultry and products based on computer vision systems: A review. Poult. Sci. J. 2021, 100, 101072. [Google Scholar] [CrossRef]
- Condotta, I.C.F.S.; Brown-Brandl, T.M.; Stinn, J.P.; Silva-Miranda, K.O. Evaluation of low-cost depth cameras for precision livestock farming applications. In Proceedings of the 9th European Conference on Precision Livestock Farming, ECPLF 2019, Cork, Ireland, 26–29 August 2019; Organising Committee of the 9th European Conference on Precision Livestock Farming (ECPLF), Teagasc, Animal and Grassland Research and Innovation Centre: Cork, Ireland, 2019; pp. 503–510. [Google Scholar]
- Batista, A.C.; Santos, V.; Afonso, J.; Guedes, C.; Azevedo, J.; Teixeira, A.; Silva, S. Evaluation of an Image Analysis Approach to Predicting Primal Cuts and Lean in Light Lamb Carcasses. Animals 2021, 11, 1368. [Google Scholar] [CrossRef] [PubMed]
- Rasband, W.S. ImageJ. U.S. National Institutes of Health: Bethesda, MD, USA, 2018. Available online: https://imagej.nih.gov/ij/ (accessed on 1 January 2019).
- Santos, V.A.C.; Silva, S.R.; Azevedo, J.M.T. Carcass composition and meat quality of equally mature kids and lambs. J. Anim. Sci. 2008, 86, 1943–1950. [Google Scholar] [CrossRef]
- Rodrigues, S.; Cadavez, V.; Teixeira, A. Breed and maturity effects on Churra Galega Bragançana and Suffolk lamb carcass characteristics: Killing-out proportion and composition. Meat. Sci. 2006, 17, 130–140. [Google Scholar] [CrossRef]
- Panea, B.; Ripoll, G.; Albertí, P.; Joy, M.; Teixeira, A. Atlas of dissection of ruminant’s carcass. Informacion Tecnica Economica Agraria 2012, 108, 3–105. [Google Scholar]
- JMP, 14; SAS Institute Inc.: Cary, NC, USA, 2018.
- Sañudo, C.; Campo, M.M.; Sierra, I.; María, G.A.; Olleta, J.L.; Santolaria, P. Breed effect on carcase and meat quality of suckling lambs. Meat Sci. 1997, 46, 357–365. [Google Scholar] [CrossRef]
- Furnols, M.F.; Julián, R.S.; Guerrero, L.; Sañudo, C.; Campo, M.M.; Olleta, J.; Oliver, M.; Cañeque, V.; Álvarez, I.; Díaz-Chirón, M.T.D.; et al. Acceptability of lamb meat from different producing systems and ageing time to German, Spanish and British consumers. Meat Sci. 2006, 72, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Campo, M.M.; Muela, E.; Resconi, V.C.; Barahona, M.; Sañudo, C. Influence of commercial cut on proximate composition and fatty acid profile of Rasa Aragonesa light lamb. J. Food Compos. Anal. 2016, 53, 7–12. [Google Scholar] [CrossRef]
- Lambe, N.R.; Navajas, E.A.; Bünger, L.; Fisher, A.V.; Roehe, R.; Simm, G. Prediction of lamb carcass composition and meat quality using combinations of post-mortem measurements. Meat Sci. 2009, 81, 711–719. [Google Scholar] [CrossRef]
- Ngo, L.; Ho, H.; Hunter, P.; Quinn, K.; Thomson, A.; Pearson, G. Post-mortem prediction of primal and selected retail cut weights of New Zealand lamb from carcass and Animal characteristics. Meat Sci. 2016, 112, 39–45. [Google Scholar] [CrossRef]
- Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV-vis-NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Caro, I.; Alaiz-Rodríguez, R.; González-Castro, V.; Quinto, E.J.; Mateo, J. Conformation characteristics of suckling lambs carcasses from the Spanish local breeds Churra and Castellana and the non-native breed Assaf determined using digital photographs. Small Rumin. Res. 2018, 160, 89–94. [Google Scholar] [CrossRef]
- Xiberta, P.; Boada, I.; Bardera, A.; Font-i-Furnols, M. A semi-automatic and an automatic segmentation algorithm to remove the internal organs from live pig CT images. Comput. Electron. Agric. 2017, 140, 290–302. [Google Scholar] [CrossRef]
- Pan, X.; Zhu, J.; Tai, W.; Fu, Y. An automated method to quantify the composition of live pigs based on computed tomography segmentation using deep neural networks. Comput. Electron. Agric. 2021, 183, 105987. [Google Scholar] [CrossRef]
- Lerch, S.; De La Torre, A.; Huau, C.; Monziols, M.; Xavier, C.; Louis, L.; Cozler, Y.L.; Faverdin, P.; Lambertor, P.; Chery, I.; et al. Estimation of dairy goat body composition: A direct calibration and comparison of eight methods. Methods 2021, 186, 68–78. [Google Scholar] [CrossRef]
- Bünger, L.; Moore, K.; McLean, K.; Kongsro, J.; Lambe, N. Integrating Computed tomography into commercial sheep breeding in the UK: Cost and value. In Farm Animal Imaging III; Maltin, C., Craigie, C., Bünger, J., Eds.; FAIM: Copenhagen, Denmark, 2014; pp. 22–27. [Google Scholar]
- Scholz, A.M.; Kremer-Rücker, P.V.; Wenczel, R.; Pappenberger, E.; Bernau, M. Body composition in farm animals by dual energy X-ray absorptiometry. In Farm Animal Imaging, Dublin; Maltin, C., Craigie, C., Bünger, L., Eds.; SRUC Scotland: Ingliston, UK, 2013; pp. 9–14. [Google Scholar]
- Toohey, E.S.; van de Ven, R.; Hopkins, D.L. The value of objective online measurement technology: Australian red meat processor perspective. Anim. Prod. Sci. 2018, 58, 1559–1565. [Google Scholar] [CrossRef]
- Teixeira, A.; Silva, S.; Guedes, C.; Rodrigues, S. Sheep and Goat Meat Processed Products Quality: A Review. Foods 2020, 9, 960. [Google Scholar] [CrossRef] [PubMed]
Traits | Mean | sd | Min | Max | CV (%) |
---|---|---|---|---|---|
Cold carcass weight (kg) | 8.66 | 0.88 | 6.85 | 9.91 | 10.1 |
Cut | |||||
Leg (g) | 1145.27 | 82.39 | 973.80 | 1243.00 | 7.2 |
Leg muscle (g) | 698.41 | 53.13 | 566.90 | 772.70 | 7.6 |
Leg fat (g) | 113.37 | 23.26 | 80.10 | 153.80 | 20.5 |
HVC (g) | 1818.93 | 201.66 | 1447.40 | 2127.30 | 11.1 |
HVC muscle (g) | 1063.09 | 129.76 | 826.10 | 1292.30 | 12.2 |
HCV fat (g) | 235.30 | 45.80 | 154.40 | 308.60 | 19.5 |
MVC (g) | 1082.74 | 111.29 | 840.50 | 1216.50 | 10.3 |
MVC muscle (g) | 583.38 | 71.33 | 439.40 | 700.60 | 12.2 |
MCV fat (g) | 127.32 | 34.78 | 84.50 | 202.70 | 27.3 |
LVC (g) | 1056.58 | 119.00 | 797.80 | 1274.80 | 11.3 |
LVC muscle (g) | 489.11 | 48.92 | 406.10 | 572.00 | 10.0 |
LCV fat (g) | 181.35 | 63.04 | 75.50 | 289.00 | 34.8 |
Carcass* (g) | 3958.24 | 376.02 | 3088.80 | 4447.50 | 9.5 |
Carcass muscle (g) | 2135.58 | 222.49 | 1724.70 | 2463.10 | 10.4 |
Carcass fat (g) | 543.97 | 129.48 | 323.60 | 698.90 | 23.8 |
Leg Measurements | Mean | sd | Min | Max | CV (%) | |
---|---|---|---|---|---|---|
Length (cm) | 28.50 | 1.99 | 25.00 | 32.00 | 7.0 | |
Width (cm) | Thinnest width of leg (LW1) | 12.62 | 0.96 | 10.90 | 14.00 | 7.6 |
Largest width of the leg (LW2) | 13.51 | 0.71 | 12.00 | 14.50 | 5.3 | |
Minimum waist width (LW3) | 13.29 | 0.65 | 11.80 | 14.30 | 4.9 | |
Perimeter (cm) | Hind quarter | 49.85 | 2.09 | 46.00 | 54.00 | 4.2 |
Leg | 34.41 | 2.00 | 31.00 | 38.00 | 5.8 | |
Area (cm2) | 367.03 | 26.25 | 324.40 | 412.40 | 7.2 | |
Volume (cm3) | Archimedes (cm3) | 1025.52 | 69.12 | 891.70 | 1126.10 | 6.7 |
Kinect 3D image (cm3) | 1036.53 | 94.29 | 865.77 | 1191.07 | 9.1 |
Traits | Length (cm) | Width (cm) | Perimeter (cm) | Area (cm2) | Volume (cm3) | ||||
---|---|---|---|---|---|---|---|---|---|
LW1 | LW2 | LW3 | Hind Quarter | Leg | Archimedes | Kinect 3D | |||
Leg (g) | 0.433 * | 0.393 | 0.537 * | 0.309 | 0.622 ** | 0.486 * | 0.602 ** | 0.807 ** | 0.822 ** |
Leg muscle (g) | 0.322 | 0.323 | 0.249 | 0.040 | 0.489 * | 0.182 | 0.337 | 0.762 ** | 0.688 ** |
Leg fat (g) | 0.180 | 0.428 * | 0.537 * | 0.433 * | 0.397 | 0.509 * | 0.574 ** | 0.500 * | 0.603 ** |
HVC (g) | 0.393 | 0.583 ** | 0.687 ** | 0.458 * | 0.482 * | 0.500 * | 0.736 ** | 0.742 ** | 0.727 ** |
HVC muscle (g) | 0.438 * | 0.655 ** | 0.624 ** | 0.406 | 0.468 * | 0.351 | 0.708 ** | 0.752 ** | 0.659 ** |
HCV fat (g) | 0.084 | 0.417 | 0.572 ** | 0.432 * | 0.375 | 0.610 ** | 0.498 * | 0.556 ** | 0.724 ** |
MVC (g) | 0.450 * | 0.589 ** | 0.660 ** | 0.531 * | 0.715 ** | 0.290 | 0.700 ** | 0.835 ** | 0.736 ** |
MVC muscle (g) | 0.294 | 0.456 * | 0.573 ** | 0.435 * | 0.586 ** | 0.371 | 0.633 ** | 0.640 ** | 0.714 ** |
MCV fat (g) | 0.322 | 0.634 ** | 0.611 ** | 0.538 ** | 0.436 * | 0.079 | 0.626 ** | 0.683 ** | 0.417 * |
LVC (g) | 0.309 | 0.308 | 0.438 * | 0.362 | 0.580 ** | 0.189 | 0.445 * | 0.495 * | 0.529 * |
LVC muscle (g) | 0.379 | 0.243 | 0.415 | 0.156 | 0.512 * | 0.353 | 0.413 | 0.524 * | 0.716 ** |
LCV fat (g) | 0.149 | 0.612 ** | 0.667 ** | 0.635 ** | 0.438 * | 0.499 * | 0.761 ** | 0.540 ** | 0.650 ** |
Carcass* (g) | 0.441 * | 0.577 ** | 0.686 ** | 0.521 * | 0.701 ** | 0.412 | 0.758 ** | 0.822 ** | 0.793 ** |
Carcass muscle (g) | 0.383 | 0.529 * | 0.620 ** | 0.401 | 0.537 * | 0.540 ** | 0.655 ** | 0.723 ** | 0.812 ** |
Carcass fat (g) | 0.216 | 0.668 ** | 0.712 ** | 0.691 ** | 0.545 ** | 0.411 | 0.835 ** | 0.674 ** | 0.633 ** |
Dependent | Intercept | Independent | R2 | RSD | RDP | p Value | ||
---|---|---|---|---|---|---|---|---|
X1 (CCW, kg) | X2 | |||||||
Leg (g) | 310.668 | 57.846 | 0.323 | Kinect 3D (cm3) | 0.829 | 35.8 | 2.3 | <0.0001 |
Leg muscle (g) | 102.564 | 5.359 | 0.536 | Archimedes (cm3) | 0.585 | 36.0 | 1.5 | 0.0002 |
Leg fat (g) | −58.596 | 10.983 | 0.074 | Kinect 3D (cm3) | 0.433 | 18.4 | 1.3 | 0.0046 |
HVC (g) | −235.776 | 176.173 | 0.516 | Archimedes (cm3) | 0.817 | 90.8 | 2.2 | <0.0001 |
HVC muscle (g) | −310.7 | 78.111 | 0.680 | Archimedes (cm3) | 0.692 | 75.8 | 1.7 | <0.0001 |
HCV fat (g) | −162.143 | 14.349 | 0.265 | Kinect 3D (cm3) | 0.555 | 32.1 | 1.4 | 0.0005 |
MVC (g) | 53.96 | 93.696 | 0.211 | Kinect 3D (cm3) | 0.763 | 57.0 | 2.0 | <0.0001 |
MVC muscle (g) | −57.132 | 58.871 | 0.127 | Kinect 3D (cm3) | 0.723 | 39.5 | 1.8 | <0.0001 |
MCV fat (g) | −217.263 | 8.248 | 0.266 | Archimedes (cm3) | 0.486 | 26.2 | 1.3 | 0.0018 |
LVC (g) | −499.473 | 19.743 | 27.785 | Perimeter hind quarter | 0.349 | 100.9 | 1.2 | 0.017 |
LVC muscle (g) | 78.175 | 4.55 | 0.36 | Kinect 3D (cm3) | 0.515 | 35.8 | 1.4 | 0.001 |
LCV fat (g) | −331.271 | 44.41 | 0.124 | Kinect 3D (cm3) | 0.577 | 43.1 | 1.5 | 0.0003 |
Carcass* (g) | 235.941 | 313.033 | 0.98 | Kinect 3D (cm3) | 0.845 | 155.7 | 2.4 | <0.0001 |
Carcass muscle (g) | −105.423 | 171.687 | 0.731 | Kinect 3D (cm3) | 0.845 | 92.0 | 2.4 | <0.0001 |
Carcass fat (g) | −883.099 | 56.078 | 2.565 | Area leg (cm2) | 0.742 | 69.2 | 1.9 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, S.R.; Almeida, M.; Condotta, I.; Arantes, A.; Guedes, C.; Santos, V. Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume. Animals 2021, 11, 3595. https://doi.org/10.3390/ani11123595
Silva SR, Almeida M, Condotta I, Arantes A, Guedes C, Santos V. Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume. Animals. 2021; 11(12):3595. https://doi.org/10.3390/ani11123595
Chicago/Turabian StyleSilva, Severiano R., Mariana Almeida, Isabella Condotta, André Arantes, Cristina Guedes, and Virgínia Santos. 2021. "Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume" Animals 11, no. 12: 3595. https://doi.org/10.3390/ani11123595
APA StyleSilva, S. R., Almeida, M., Condotta, I., Arantes, A., Guedes, C., & Santos, V. (2021). Assessing the Feasibility of Using Kinect 3D Images to Predict Light Lamb Carcasses Composition from Leg Volume. Animals, 11(12), 3595. https://doi.org/10.3390/ani11123595