Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prostaglandins
3. Nitric Oxide
4. Leptin
5. Gonadotropin-Releasing Hormone (GnRH)
6. Endothelin 1
7. Adrenocorticotropic Hormone
8. Immunity Mediators
9. Peroxisome Proliferator-Activated Receptor
10. Dopamine
11. Kisspeptin
12. Nerve Growth Factor
13. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
3β-HSD | 3β-hydroxysteroid dehydrogenase |
15d-PGJ2 | 15-deoxy-Δ12,14-prostaglandin J2 |
20α-HSD | 20α-hydroxysteroid dehydrogenase |
AA | arachidonic acid |
ACE | angiotensin converting enzyme |
ACTH | adrenocorticotropic hormone |
BAX | BCL2-associated X protein |
BCL2L1 | B-cell CLL/lymphoma 2 (BCL2)-like 1 |
cAMP | cyclic adenosine monophosphate |
CL | corpora lutea; COX1 |
COX1 | cyclooxygenase 1 |
COX2 | cyclooxygenase 2 |
CRH | corticotropin-releasing hormone |
DA | dopamine |
DAG | diacylglycerol |
DR | dopamine receptor |
eCG | equine chorionic gonadotropin |
eNOS | endothelial NOS |
ESR1 | estrogen receptor subtype-1 |
ET1 | endothelin 1 |
GnRH | gonadotropin-releasing hormone |
GnRH-I | gonadotropin-releasing hormone type I |
GnRHR | gonadotropin-releasing hormone receptor |
GR | glucocorticoid receptor |
hCG | human chorionic gonadotropin |
HPA | hypothalamic-pituitary-adrenal |
HPG | hypothalamic–pituitary–gonadal |
IL1B | interleukin 1 Beta |
iNOS | inducible NOS |
IP3 | inositol trisphosphate |
JAK | Janus kinase |
KiSS | kisspeptin |
KiSSR | kisspeptin receptor |
MAPK | mitogen-activated protein kinase |
MC2R | melanocortin receptor type 2 |
MCP1 | monocyte chemoattractant protein-1 |
nNOS | neuronal NOS |
NGF | nerve growth factor |
NGFR | nerve growth factor receptor |
NO | nitric oxide |
NOS | nitric oxide synthase |
NTRK1 | neurotrophic receptor tyrosine kinase 1 |
ObR | leptin (obesity) receptor |
P450scc | P450 side-chain cleavage |
PG | prostaglandin |
PGD2 | prostaglandin D2 |
PGE2-9-K | PGE2-9-ketoreductase |
PGE2 | prostaglandin E2 |
PGF2α | prostaglandin F2α |
PGH2 | prostaglandin H2 |
PGI2 | prostaglandin I2 |
PKA | protein kinase A |
PKC | protein kinase C |
PLA2 | phospholipase A2 |
PLC | phospholipase C |
PPAR | peroxisome proliferator-activated receptor |
RXR | retinoid X receptor |
StAR | steroidogenic acute regulatory protein |
STAT | signal transducer and activator of transcription |
TK | tyrosine kinase |
TNFα | tumor necrosis factor α |
TP53 | tumor protein p53 |
References
- Webb, R.; Woad, K.J.; Armstrong, D.G. Corpus luteum (CL) function: Local control mechanisms. Domest. Anim. Endocrinol. 2002, 23, 277–285. [Google Scholar] [CrossRef]
- Acosta, T.J.; Miyamoto, A. Vascular control of ovarian function: Ovulation, corpus luteum formation and regression. Anim. Reprod. Sci. 2004, 82–83, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Spies, H.G.; Hilliard, J.; Sawyer, C.H. Maintenance of corpora lutea and pregnancy in hypophysectomized rabbits. Endocrinology 1968, 83, 354–356. [Google Scholar] [CrossRef] [PubMed]
- Scott, R.S.; Rennie, P.I. Factors controlling the life-span of the corpora lutea in the pseudopregnant rabbit. Reprod. Fertil. 1970, 23, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, J.Y.; Keyes, P.F.; Wolf, R.C. Comparison of serum progesterone, 20α-dihydroprogesterone, and estradiol-17β in pregnant and pseudopregnant rabbits: Evidence for postimplantation recognition of pregnancy. Biol. Reprod. 1980, 23, 1014–1019. [Google Scholar] [CrossRef]
- Niswender, G.D.; Juengel, J.L.; Silva, P.J.; Rollyson, M.K.; McIntush, E.W. Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev. 2000, 80, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodman, S.B.; Kugu, K.; Chen, S.H.; Preutthipan, S.; Tilly, K.I.; Tilly, J.L.; Dharmarajan, A.M. Estradiol-mediated suppression of apoptosis in the rabbit corpus luteum with a shift in expression of Bcl-2 family members favoring cellular survival. Biol. Reprod. 1998, 59, 820–827. [Google Scholar] [CrossRef] [Green Version]
- Stocco, C.; Telleria, C.; Gibori, G. The molecular control of corpus luteum formation, function, and regression. Endocr. Rev. 2007, 28, 117–149. [Google Scholar] [CrossRef]
- Boiti, C.; Canali, C.; Zerani, M.; Gobbetti, A. Changes in refractoriness of rabbit Corpora lueta to a Prostaglandin F2α analogue, alfaprostol, during pseudopregnancy. Prostag. Other Lipid. Mediat. 1998, 56, 255–264. [Google Scholar] [CrossRef]
- Boiti, C.; Zampini, D.; Zerani, M.; Guelfi, G.; Gobbetti, A. Prostaglandin receptors and role of G protein-activated pathways on corpora lutea of pseudopregnant rabbit in vitro. J. Endocrinol. 2001, 168, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Boiti, C.; Guelfi, G.; Zampini, D.; Brecchia, G.; Gobbetti, A.; Zerani, M. Regulation of nitric-oxide synthase isoforms and role of nitric oxide during prostaglandin F2α-induced luteolysis in rabbits. Reproduction 2003, 125, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.; Vicente, J.S.; Lavara, R.; Viudes-de-Castro, M.P. Effect of eCG dose and ovulation induction treatments on embryo recovery and in vitro development post-vitrification in two selected lines of rabbit does. Anim. Reprod. Sci. 2005, 90, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Dal Bosco, A.; Rebollar, P.G.; Boiti, C.; Zerani, M.; Castellini, C. Ovulation induction in rabbit does: Current knowledge and perspectives. Anim. Reprod. Sci. 2011, 129, 106–117. [Google Scholar] [CrossRef] [PubMed]
- O’Grady, J.P.; Caldwell, B.V.; Auletta, F.J.; Speroff, L. The effects of an inhibitor of prostaglandin synthesis (indomethacin) on ovulation, pregnancy, and pseudopregnancy in the rabbit. Prostaglandins 1972, 1, 97–106. [Google Scholar] [CrossRef]
- Keyes, P.L.; Bullock, D.W. Effects of prostaglandin F2α on ectopic and ovarian corpora lutea of the rabbit. Biol. Reprod. 1974, 10, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Lytton, F.D.; Poyser, N.L. Prostaglandin production by the rabbit uterus and placenta in vitro. J. Reprod. Fertil. 1982, 66, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Gobbetti, A.; Boiti, C.; Canali, C.; Zerani, M. Nitric oxide synthase acutely regulates progesterone production by in vitro cultured rabbit corpora lutea. J. Endocrinol. 1999, 160, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Boiti, C.; Zerani, M.; Zampini, D.; Gobbetti, A. Nitric oxide synthase activity and progesterone release by isolated corpora lutea of rabbits in early- and mid-luteal phase of pseudopregnancy are differently modulated by prostaglandin E-2 and prostaglandin F-2α via adenylate cyclase and phospholipase C. J. Endocrinol. 2000, 164, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Parillo, F.; Catone, G.; Maranesi, M.; Gobbetti, A.; Gasparrini, B.; Russo, M.; Boiti, C.; Zerani, M. Immunolocalization, gene expression, and enzymatic activity of cyclooxygenases, prostaglandin E2-9-ketoreductase, and nitric oxide synthases in Mediterranean buffalo (Bubalus bubalis) corpora lutea during diestrus. Microsc. Res. Tech. 2012, 75, 1682–1690. [Google Scholar] [CrossRef]
- Diaz, F.J.; Anderson, L.E.; Wu, Y.L.; Rabot, A.; Tsai, S.J.; Wiltbank, M.C. Regulation of progesterone and prostaglandin F2α production in the CL. Mol. Cell Endocrinol. 2002, 191, 65–80. [Google Scholar] [CrossRef]
- Zerani, M.; Dall’Aglio, C.; Maranesi, M.; Gobbetti, A.; Brecchia, G.; Mercati, F.; Boiti, C. Intraluteal regulation of prostaglandin F2α-induced prostaglandin biosynthesis in pseudopregnant rabbits. Reproduction 2007, 133, 1005–1116. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.L.; Garavito, R.M.; De Witt, D.L. Prostaglandin endoperoxide H synthase (cyclooxygenase)-1 and -2. J. Biol. Chem. 1996, 271, 33157–33160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, T.; Tamura, K.; Okamoto, S.; Hara, T.; Kogo, H. Possible role of cyclooxygenase 2 in the acquisition of ovarian luteal function in rodents. Biol. Reprod. 2003, 69, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Helliwell, R.J.A.; Adams, L.F.; Mitchell, M.D. Prostaglandin synthases: Recent developments and a novel hypothesis. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 101–113. [Google Scholar] [CrossRef]
- Watanabe, K. Prostaglandin F synthase. Prostaglandins Other Lipid Mediat. 2002, 68–69, 401–407. [Google Scholar] [CrossRef]
- Schlegel, W.; Daniels, D.; Kruger, S. Partial purification of prostaglandin E2-9 ketoreductase and prostaglandin-15-hydroxydehydrogenase from ovarian tissues of rabbits. Clin. Physiol. Biochem. 1987, 5, 336–342. [Google Scholar]
- Wintergalen, N.; Thole, H.H.; Galla, H.J.; Schlegel, W. Prostaglandin-E2-9-reductase from corpus-luteum of pseudopregnant rabbit is a member of the aldo-keto reductase superfamily featuring 20-alphahydroxysteroid dehydrogenase-activity. Eur. J. Biochem. 1995, 234, 264–270. [Google Scholar] [CrossRef]
- Arosh, J.A.; Banu, S.K.; Chapdelaine, P.; Madore, E.; Sirois, J.; Fortier, M.A. Prostaglandin biosynthesis, transport and signaling in corpus luteum: A basis for autoregulation of luteal function. Endocrinology 2004, 145, 2551–2560. [Google Scholar] [CrossRef]
- Madore, E.; Harvey, N.; Parent, J.; Chapdelaine, P.; Arosh, J.A.; Fortier, M.A. An aldose reductase with 20a-hydroxysteroid dehydrogenase activity is most likely the enzyme responsible for the production of prostaglandin F2a in the bovine endometrium. J. Biol. Chem. 2003, 278, 11205–11212. [Google Scholar] [CrossRef] [Green Version]
- Maranesi, M.; Zerani, M.; Lilli, L.; Dall’Aglio, C.; Brecchia, G.; Gobbetti, A.; Boiti, C. Expression of luteal estrogen receptor, interleukin-1, and apoptosis-associated genes after PGF2α administration in rabbits at different stages of pseudopregnancy. Domest. Anim. Endocrinol. 2010, 39, 116–130. [Google Scholar] [CrossRef] [PubMed]
- Krusche, C.A.; Vloet, T.D.; Herrier, A.; Black, S.; Beier, H.M. Functional and structural regression of the rabbit corpus luteum is associated with altered luteal immune cell phenotypes and cytokine expression patterns. Histochem. Cell Biol. 2002, 118, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Boiti, C.; Guelfi, G.; Zerani, M.; Zampini, D.; Brecchia, G.; Gobbetti, A. Expression patterns of cytokines, p53, and nitric oxide synthase isoenzymes in corpora lutea of pseudopregnant rabbits during spontaneous luteolysis. Reproduction 2004, 127, 229–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Vecchio, R.P.; Sutherland, W.D. Prostaglandin and progesterone production by bovine luteal cells incubated in the presence or absence of the accessory cells of the corpus luteum and treated with interleukin-1beta, indomethacin and luteinizing hormone. Reprod. Fertil. Dev. 1997, 9, 651–658. [Google Scholar] [CrossRef]
- Leon, L.; Jeannin, J.F.; Bettaieb, A. Post-translational modifications induced by nitric oxide (NO): Implication in cancer cells apoptosis. Nitric Oxide 2008, 19, 77–83. [Google Scholar] [CrossRef]
- Preutthipan, S.; Chen, S.H.; Tilly, J.L.; Kugu, K.; Lareu, R.R.; Dharmarajan, A.M. Inhibition of nitric oxide synthesis potentiates apoptosis in the rabbit corpus luteum. Reprod. Biomed. Online 2004, 9, 264–270. [Google Scholar] [CrossRef]
- Parillo, F.; Dall’Aglio, C.; Brecchia, G.; Maranesi, M.; Polisca, A.; Boiti, C.; Zerani, M. Aglepristone (RU534) effects on luteal function of pseudopregnant rabbits: Steroid receptors, enzymatic activities, and hormone productions in corpus luteum and uterus. Anim. Reprod. Sci. 2013, 138, 118–132. [Google Scholar] [CrossRef]
- Moncada, S.; Palmer, R.M.J.; Higgs, E.A. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 1991, 42, 109–142. [Google Scholar]
- Schmidt, H.H.; Walter, U. NO at work. Cell 1994, 78, 919–925. [Google Scholar] [CrossRef]
- Xie, Q.W.; Nathan, C. The high-output nitric oxide pathway: Role and regulation. J. Leukoc. Biol. 1994, 56, 576–582. [Google Scholar] [CrossRef]
- Van Voorhis, B.J.; Dunn, M.S.; Snyder, G.D.; Weiner, C.P. Nitric oxide: An autocrine regulator of human granulosa-luteal cell steroidogenesis. Endocrinology 1994, 135, 1799–1806. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Gangula, P.R.; Dong, Y.L.; Yallampalli, C. Immunocytochemical localization of nitric oxide synthase-III in reproductive organs of female rats during the oestrous cycle. Histochem. J. 1996, 28, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Hesla, J.S.; Preutthipan, S.; Maguire, M.P.; Chang, T.S.; Wallach, E.E.; Dharmarajan, A.M. Nitric oxide modulates human chorionic gonadotropin-induced ovulation in the rabbit. Fertil. Steril. 1997, 67, 548–552. [Google Scholar] [CrossRef]
- Jablonka-Shariff, A.; Olson, L.M. Hormonal regulation of nitric oxide synthases and their cell-specific expression during follicular development in the rat ovary. Endocrinology 1997, 138, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, J.; Miyazaki, T.; Iwasaki, S.; Kishi, I.; Kuroshima, M.; Tei, C.; Yoshimura, Y. Effects of nitric oxide on ovulation and ovarian steroidogenesis and prostaglandin production in the rabbit. Endocrinology 1997, 138, 3630–3637. [Google Scholar] [CrossRef]
- Pinto, C.R.F.; Paccamonti, D.L.; Eilts, B.E.; Short, C.R.; Godke, R.A. Effect of nitric oxide synthase inhibitors on ovulation in hCG stimulated mares. Theriogenology 2002, 58, 1017–1026. [Google Scholar] [CrossRef]
- Shukovski, L.; Tsafriri, T. The involvement of nitric oxide in the ovulatory process in the rat. Endocrinology 1995, 135, 2287–2290. [Google Scholar] [CrossRef]
- Bonello, N.; McKie, K.; Jasper, M.; Andrew, L.; Ross, N.; Braybon, E.; Brannstrom, M.; Norman, R.J. Inhibition of nitric oxide: Effects on interleukin-1á-enhanced ovulation rate, steroid hormone, and ovarian leukocyte distribution at ovulation in the rat. Biol. Reprod. 1996, 54, 436–445. [Google Scholar] [CrossRef] [Green Version]
- Zackrisson, U.; Mikuni, M.; Wallin, A.; Delbro, D.; Hedin, L.; Brannstrom, M. Cell-specific localization of nitric oxide synthases (NOS) in the rat ovary during follicular development, ovulation and luteal formation. Hum. Reprod. 1996, 11, 2667–2673. [Google Scholar] [CrossRef] [Green Version]
- Boiti, C.; Zampini, D.; Guelfi, G.; Paolocci, F.; Zerani, M.; Gobbetti, A. Expression patterns of endothelial and inducible isoforms in corpora lutea of pseudopregnant rabbits at different luteal stages. J. Endocrinol. 2002, 173, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Korzekwa, A.; Woclawek-Potocka, I.; Okuda, K.; Acosta, T.J.; Skarzynski, D.J. Nitric oxide in bovine corpus luteum: Possible mechanisms of action in luteolysis. J. Anim. Sci. 2007, 78, 233–242. [Google Scholar] [CrossRef]
- Korzekwa, A.; Jaroszewski, J.J.; Bogacki, M.; Deptula, K.M.; Maslanka, T.S.; Acosta, T.J.; Okuda, K.; Skarzynski, D.J. Effects of prostaglandin F2α and nitric oxide on the secretory function of bovine luteal cells. J. Reprod. Dev. 2004, 50, 411–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaroszewski, J.J.; Skarzynski, D.J.; Hansel, W. Nitric oxide as a local mediator of prostaglandin F2-induced regression in bovine corpus luteum: An in vivo study. Exp. Biol. Med. 2003, 228, 1057–1062. [Google Scholar] [CrossRef] [PubMed]
- Roberto da Costa, R.P.; Costa, A.S.; Korzekwa, A.; Platek, R.; Siemieniuch, M.; Galvão, A.; Redmer, D.A.; Robalo Silva, J.; Skarzynski, D.J.; Ferreira-Dias, G. Actions of a nitric oxide donor on prostaglandins production and angiogenic activity in the equine endometrium. Reprod. Fertil. Dev. 2008, 20, 674–683. [Google Scholar] [CrossRef]
- Ferreira-Dias, G.; Costa, A.S.; Mateus, L.; Korzekwa, A.J.; Galvão, A.; Redmer, D.A.; Lukasik, K.; Szóstek, A.Z.; Woclawek-Potocka, I.; Skarzynski, D.J. Nitric oxide stimulates progesterone and prostaglandin E2 secretion as well as angiogenic activity in the equine corpus luteum. Domest. Anim. Endocrinol. 2010, 40, 1–9. [Google Scholar] [CrossRef]
- Olson, L.M.; Jones-Burton, C.M.; Jablonka-Shariff, A. Nitric oxide decreases estradiol synthesis of rat luteinized ovarian cells: Possible role for nitric oxide in functional luteal regression. Endocrinology 1996, 137, 3531–3539. [Google Scholar] [CrossRef] [Green Version]
- Holt, J.A. Regulation of progesterone production in the rabbit corpus luteum. Biol. Reprod. 1989, 40, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature 1994, 372, 425–432. [Google Scholar] [CrossRef]
- Morash, B.; Li, A.; Murphy, P.R.; Wilkinson, M.; Ur, E. Leptin gene expression in the brain and pituitary gland. Endocrinology 1999, 140, 5995–5998. [Google Scholar] [CrossRef]
- Harris, R.B. Leptin–much more than a satiety signal. Annu. Rev. Nutr. 2000, 20, 45–75. [Google Scholar] [CrossRef] [Green Version]
- Houseknecht, K.L.; Portocarrero, C.P. Leptin and its receptors: Regulators of whole-body energy homeostasis. Domest. Anim. Endocrinol. 1998, 15, 457–475. [Google Scholar] [CrossRef]
- Sweeney, G. Leptin signalling. Cell. Signal. 2002, 14, 655–663. [Google Scholar] [CrossRef]
- Zabeau, L.; Lavens, D.; Peelman, F.; Eycherman, S.; Vandekerckhove, J.; Tavernier, J. The ins and out of leptin receptor activation. FEBS Lett. 2003, 546, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Baumann, H.; Morella, K.K.; White, D.W.; Dembski, M.; Bailon, P.S.; Kim, H.; Lai, C.F.; Tartaglia, L.A. The full-length leptin receptor has signaling capabilities of interleukin 6-type cytokine receptors. Proc. Nat. Acad. Sci. USA 1996, 9, 8374–8378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bjørbæk, A.S.; Uotani, S.; da Silva, B.; Flier, J.S. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 1997, 272, 32686–32695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mantzoros, C.S. Role of leptin in reproduction. Ann. N. Y. Acad. Sci. 2000, 900, 174–183. [Google Scholar] [CrossRef]
- Spicer, L.J.; Francisco, C.C. The adipose obese gene product, leptin: Evidence of a direct inhibitory role in ovarian function. Endocrinology 1997, 138, 3374–3379. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Vogel, K.; Weitsman, S.R.; Magoffin, D.A. Leptin antagonizes the insulin-like growth factor-I augmentation of steroidogenesis in granulosa and theca cells of the human ovary. J. Clin. Endocrinol. Metab. 1999, 84, 1072–1076. [Google Scholar] [CrossRef]
- Cunningham, M.J.; Clifton, D.K.; Steiner, R.A. Leptin’s actions on the reproductive axis: Perspectives and mechanisms. Biol. Reprod. 1999, 60, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Ryan, N.K.; Woodhouse, C.M.; Van Der Hoeck, K.H.; Gilchrist, R.B.; Armstrong, D.T.; Norman, R.J. Expression of leptin and its receptor in the murine ovary: Possible role in the regulation of oocyte maturation. Biol. Reprod. 2002, 66, 1548–1554. [Google Scholar] [CrossRef] [Green Version]
- Mounzih, K.; Qiu, J.; Ewart-Toland, A.; Chehab, F.F. Leptin is not necessary for gestation and parturition but regulates maternal nutrition via a leptin resistance state. Endocrinology 1998, 139, 5259–5262. [Google Scholar] [CrossRef] [PubMed]
- Mukherjea, R.; Castonguay, T.W.; Douglass, L.W.; Moser-Veillon, P. Elevated leptin concentrations in pregnancy and lactation: Possible role as a modulator of substrate utilization. Life Sci. 1999, 65, 1183–1193. [Google Scholar] [CrossRef]
- Quinton, N.D.; Laird, S.M.; Kocon, M.A.; Li, T.C.; Smith, R.F.; Ross, R.J.; Blakemore, A.I. Serum leptin levels during the menstrual cycle of healthy fertile women. Br. J. Biomed. Sci. 1999, 56, 16–19. [Google Scholar] [PubMed]
- Ludwig, M.; Klein, H.H.; Diedrich, K.; Ortmann, O. Serum leptin concentrations throughout the menstrual cycle. Arch. Gynecol. Obstet. 2000, 263, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Moschos, S.; Chan, J.L.; Mantzoros, C.S. Leptin and reproduction: A review. Fertil. Steril. 2002, 77, 433–444. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, S.; Burguera, B.G.; Couce, M.E.; Osamura, R.Y.; Kulig, E.; Lloyd, R.V. Leptin and leptin receptor expression in rat and mouse pituitary cells. Endocrinology 2000, 141, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, C.; Lindell, K.; Svensson, E.; Bergh, C.; Lind, P.; Billig, H.; Carlsson, L.M.; Carlsson, B. Expression of functional leptin receptors in the human ovary. J. Clin. Endocrinol. Metab. 1997, 82, 4144–4148. [Google Scholar] [CrossRef]
- Zachow, R.J.; Magoffin, D.A. Direct intraovarian effects of leptin: Impairment of the synergistic action of insulin-like growth factor-I on follicle-stimulating hormone-dependent estradiol-17 beta production by rat ovarian granulosa cells. Endocrinology 1997, 138, 847–850. [Google Scholar] [CrossRef]
- Brannian, J.D.; Zhao, Y.; McElroy, M. Leptin inhibits gonadotrophin-stimulated granulosa cell progesterone production by antagonizing insulin action. Hum. Reprod. 1999, 14, 1445–1448. [Google Scholar] [CrossRef] [Green Version]
- Zerani, M.; Boiti, C.; Zampini, D.; Brecchia, G.; Dall’Aglio, C.; Ceccarelli, P.; Gobbetti, A. Ob receptor in rabbit ovary and leptin in vitro regulation of corpora lutea. J. Endocrinol. 2004, 183, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Conn, P.M.; Crowley, W.F., Jr. Gonadotropin-releasing hormone and its analogues. Ann. Rev. Med. 1994, 45, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnappa, N.; Rajamahendran, R.; Lin, Y.M.; Leung, P.C.K. GnRH in non- hypothalamic reproductive tissues. Anim. Reprod. Sci. 2005, 88, 95–113. [Google Scholar] [CrossRef] [PubMed]
- Rippel, R.H.; Johnson, E.S.; Kimura, E.T. Regression of corpora lutea in the rabbit after injection of a gonadotropin-releasing peptide. Proc. Soc. Experim. Biol. Med. 1976, 152, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Kitai, H.; Kobayashi, Y.; Santulli, R.; Wallach, E.E. Gonadotropin releasing hormone: Effects on the in vitro perfused rabbit ovary. Biol. Reprod. 1984, 30, 1216–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerani, M.; Parillo, F.; Brecchia, G.; Guelfi, G.; Dall’Aglio, C.; Lilli, L.; Maranesi, M.; Gobbetti, A.; Boiti, C. Expression of type I GnRH receptor and in vivo and in vitro GnRH-I effects in corpora lutea of pseudopregnant rabbits. J. Endocrinol. 2010, 207, 289–300. [Google Scholar] [CrossRef]
- Meidan, R.; Milvae, R.A.; Weiss, S.; Levy, N.; Friedman, A. Intra-ovarian regulation of luteolysis. J. Reprod. Fertil. 1999, 54, 217–228. [Google Scholar]
- Yanagisawa, M.; Kurihara, H.; Kimura, S.; Tomobe, Y.; Kobayashi, M.; Mitsui, Y.; Yazaki, Y.; Goto, K.; Masaki, T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988, 332, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Iwai, M.; Hasegawa, M.; Taii, S.; Sagawa, N.; Nakao, K.; Imura, H.; Nakanishi, S.; Mori, T. Endothelins inhibit luteinization of cultured porcine granulosa cells. Endocrinology 1991, 129, 1909–1914. [Google Scholar] [CrossRef]
- Bagavandoss, P.; Wilks, J.W. Isolation and characterization of microvascular endothelial cells from developing corpus luteum. Biol. Reprod. 1991, 44, 1132–1139. [Google Scholar] [CrossRef] [Green Version]
- Usuki, S.; Suzuki, N.; Matsumoto, H.; Yanagisawa, M.; Masaki, T. Endothelin-1 in luteal tissue. Mol. Cell Endocrinol. 1991, 80, 147–151. [Google Scholar] [CrossRef]
- Boiti, C.; Guelfi, G.; Brecchia, G.; Dall’Aglio, C.; Ceccarelli, P.; Maranesi, M.; Mariottini, C.; Zampini, D.; Gobbetti, A.; Zerani, M. Role of the endothelin-1 system in the luteolytic process of pseudopregnant rabbits. Endocrinology 2005, 146, 1293–1300. [Google Scholar] [CrossRef] [PubMed]
- Boiti, C.; Maranesi, M.; Dall’aglio, C.; Pascucci, L.; Brecchia, G.; Gobbetti, A.; Zerani, M. Vasoactive peptides in the luteolytic process activated by PGF2α in pseudopregnant rabbits at different luteal stages. Biol. Reprod. 2007, 77, 156–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schams, D.; Berisha, B.; Neuvians, T.; Amselgruber, W.; Kraetzl, W.D. Real-time changes of the local vasoactive peptide systems (angiotensin, endothelin) in the bovine corpus luteum after induced luteal regression. Mol. Reprod. Dev. 2003, 65, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Goligorsky, M.S.; Budzikowski, A.S.; Tsukahara, H.; Noiri, E. Co-operation between endothelin and nitric oxide in promoting endothelial cell migration and angiogenesis. Clin. Exp. Pharm. Physiol. 1999, 26, 269–271. [Google Scholar] [CrossRef]
- Zhang, M.; Luo, B.; Chen, S.J.; Abrams, G.A.; Fallon, M.B. Endothelin-1 stimulation of endothelial nitric oxide synthase in the pathogenesis of hepatopulmonary syndrome. Am. J. Physiol. 1999, 277, G944–G952. [Google Scholar] [CrossRef]
- Tognetti, T.; Estevez, A.; Luchetti, C.G.; Sander, V.; Franchi, A.M.; Motta, A.B. Relationship between endothelin-1 and nitric oxide system in the corpus luteum regression. Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 359–364. [Google Scholar] [CrossRef]
- Ferin, M. Stress and the reproductive cycle. J. Clin. Endocrinol. Metab. 1998, 84, 1768–1774. [Google Scholar] [CrossRef]
- Pau, K.Y.F.; Orstead, K.M.; Hess, D.L.; Spies, H.G. Feedback effects ovarian steroids on the hypothalamic hypophyseal axis in the rabbit. Biol. Reprod. 1986, 35, 1009–1023. [Google Scholar] [CrossRef]
- Schioth, H.B. The physiological role of melanocortin receptors. Vitam. Horm. 2001, 63, 195–232. [Google Scholar]
- Guelfi, G.; Zerani, M.; Brecchia, G.; Parillo, F.; Dall’Aglio, C.; Maranesi, M.; Boiti, C. Direct actions of ACTH on ovarian function of pseudopregnant rabbits. Mol. Cell Endocrinol. 2011, 339, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Adashi, E.Y. The potential relevance of cytokines to ovarian physiology: The emerging role of resident ovarian cells of the white blood cell series. Endocrin. Rev. 1990, 11, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Bagavandoss, P.; Wiggins, R.C.; Kunkel, S.L.; Remick, D.G.; Keyes, P.L. Tumor necrosis factor production and accumulation of inflammatory cells in the corpus luteum of pseudopregnancy and pregnancy in rabbits. Biol. Reprod. 1990, 42, 367–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagavandoss, P.; Kunkel, S.L.; Wiggins, R.C.; Keyes, P.L. Tumor necrosis factor-a (TNF-a) production and localization of macrophages and T lymphocytes in the rabbit corpus luteum. Endocrinology 1988, 122, 1185–1187. [Google Scholar] [CrossRef] [PubMed]
- Takehara, Y.; Dharmarajan, A.M.; Kaufman, G.; Wallach, E.E. Effect of interleukin 1β on ovulation in the in vitro perfused rabbit ovary. Endocrinology 1994, 134, 1788–1793. [Google Scholar] [CrossRef]
- Bréard, E.; Delarue, B.; Benhaïm, A.; Féral, C.; Leymarie, P. Inhibition by gonadotropins of interleukin-1 production by rabbit granulosa and theca cells: Effects on gonadotropin-induced progesterone production. Eur. J. Endocrinol. 1998, 138, 328–336. [Google Scholar] [CrossRef] [Green Version]
- Gérard, N.; Caillaud, M.; Martoriati, A.; Goudet, G.; Lalmanach, A.C. The interleukin-1 system and female reproduction. J. Endocrinol. 2004, 180, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Narko, K.; Ritvos, O.; Ristmaki, A. Induction of cyclooxygenase-2 and prostaglandin F2α receptor expression by interleukin-1β in cultured human granulosa–luteal cells. Endocrinology 1997, 138, 3638–3644. [Google Scholar] [CrossRef]
- Estevez, A.; Tognetti, T.; Rearte, B.; Sander, V.; Motta, A.B. Interleukin1-beta in the functional luteolysis. Relationship with the nitric oxide system. Prostaglandins Leukot. Essent. Fat. Acids 2002, 67, 411–417. [Google Scholar] [CrossRef]
- Froment, P.; Gizard, F.; Defever, D.; Staels, B.; Dupont, J.; Monget, P. Peroxisome proliferator-activated receptors in reproductive tissues: From gametogenesis to parturition. J. Endocrinol. 2006, 189, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Komar, C.M. Peroxisome proliferator-activated receptors (PPARs) and ovarian function -implications for regulating steroidogenesis, differentiation, and tissue remodelling. Reprod. Biol. Endocrinol. 2005, 3, e41. [Google Scholar] [CrossRef] [Green Version]
- Minge, C.E.; Robker, R.L.; Norman, R.J. PPAR gamma: Coordinating metabolic and immune contributions to female fertility. PPAR Res. 2008, 243791. [Google Scholar] [CrossRef] [PubMed]
- Braissant, O.; Foufelle, F.; Scotto, C.; Dauça, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): Tissue distribution of PPAR-α, -β, and -γ in the adult rat. Endocrinology 1996, 137, 354–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Miyoshi, K.; Claudio, E.; Siebenlist, U.K.; Gonzalez, F.J.; Flaws, J.; Wagner, K.U.; Hennighausen, L. Loss of the peroxisome proliferation-activated receptor γ (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J. Biol. Chem. 2002, 277, 17830–17835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schoppee, P.D.; Garmey, J.C.; Veldhuis, J.D. Putative activation of the peroxisome proliferator-activated receptor γ impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol. Reprod. 2002, 66, 190–198. [Google Scholar] [CrossRef] [Green Version]
- Froment, P.; Fabre, S.; Dupont, J.; Pisselet, C.; Chesneau, D.; Staels, B.; Monget, P. Expression and functional role of peroxisome proliferator-activated receptor-γ in ovarian folliculogenesis in the sheep. Biol. Reprod. 2003, 69, 1665–1674. [Google Scholar] [CrossRef] [Green Version]
- Löhrke, B.; Viergutz, T.; Shahi, S.K.; Pöhland, R.; Wollenhaupt, K.; Goldammer, T.; Walzel, H.; Kanitz, W. Detection and functional characterisation of the transcription factor peroxisome proliferator-activated receptor γ in lutein cells. J. Endocrinol. 1998, 159, 429–439. [Google Scholar] [CrossRef]
- Sundvold, H.; Brzozowska, A.; Lien, S. Characterisation of bovine peroxisome proliferator-activated receptors γ1 and γ2: Genetic mapping and differential expression of the two isoforms. Biochem. Biophys. Res. Commun. 1997, 239, 857–861. [Google Scholar] [CrossRef]
- Parillo, F.; Catone, G.; Gobbetti, A.; Zerani, M. Cell localization of ACTH, dopamine, and GnRH receptors and PPARγ in bovine corpora lutea during diestrus. Acta Sci. Vet. 2013, 41, e1129. [Google Scholar]
- Maranesi, M.; Zerani, M.; Parillo, F.; Brecchia, G.; Gobbetti, A.; Boiti, C. Role of peroxisome proliferator-activated receptor gamma in corpora lutea of pseudopregnant rabbits. Reprod. Domest. Anim. 2011, 46 (Suppl. 3), 126. [Google Scholar]
- Lambe, K.G.; Tugwood, J.D. A human peroxisomeproliferator-activated receptor-γ is activated by inducers of adipogenesis, including thiazalidinedione drugs. Eur. J. Biochem. 1996, 239, 1–7. [Google Scholar] [CrossRef]
- Mu, Y.M.; Yanase, T.; Nishi, Y.; Waseda, N.; Oda, T.; Tanaka, A.; Takayanagi, R.; Nawata, H. Insulin sensitizer, troglitazone, directly inhibits aromatase activity in human ovarian granulosa cells. Biochem. Biophys. Res. Commun. 2000, 271, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Doney, A.; Fischer, B.; Frew, D.; Cumming, A.; Flavell, D.M.; World, M.; Montgomery, H.E.; Boyle, D.; Morris, A.; Palmer, C.N. Haplotype analysis of the PPARγ Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet. 2002, 3, e21. [Google Scholar] [CrossRef] [PubMed]
- Viergutz, T.; Lšhrke, B.; Poehland, R.; Becker, F.; Kanitz, W. Relationship between different stages of the corpus luteum and the expression of the peroxisome proliferator-activated receptor gamma protein in bovine large lutein cells. J. Reprod. Fertil. 2000, 118, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Willis, D.S.; White, J.; Brosens, S.; Franks, S. Effect of 15-deoxy-delta (12,14)-prostaglandin J2 (PGJ2) a peroxisome proliferator activating receptor γ (PPARγ) ligand on human ovarian steroidogenesis. Endocrinology 1999, 140, 1491. [Google Scholar]
- Zerani, M.; Maranesi, M.; Brecchia, G.; Gobbetti, A.; Boiti, C.; Parillo, F. Evidence for a luteotropic role of peroxisome proliferator-activated receptor gamma: Expression and in vitro effects on enzymatic and hormonal activities in corpora lutea of pseudopregnant rabbits. Biol. Reprod. 2013, 88, 62. [Google Scholar] [CrossRef]
- Parillo, F.; Maranesi, M.; Brecchia, G.; Gobbetti, A.; Boiti, C.; Zerani, M. In vivo chronic and in vitro acute effects of di(2-ethylhexyl) phthalate on pseudopregnant rabbit corpora lutea: Possible involvement of peroxisome proliferator-activated receptor gamma. Biol. Reprod. 2014, 90, 41. [Google Scholar] [CrossRef]
- Yamamoto, K.; Vernier, P. The evolution of dopamine systems in chordates. Front. Neuroanat. 2011, 5, e21. [Google Scholar] [CrossRef] [Green Version]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharm. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [Green Version]
- Mayerhofer, A.; Fritz, S.; Grunert, R.; Sanders, S.L.; Uffy, D.M.; Ojeda, S.R.; Stouffer, R.L. D1-receptor, darpp-32, and pp-1 in the primate corpus luteum and luteinized granulosa cells: Evidence for phosphorylation of darpp-32 by dopamine and human chorionic gonadotropin. J. Clin. Endocrinol. Metab. 2000, 85, 4750–4757. [Google Scholar] [CrossRef]
- Mayerhofer, A.; Hemmings, H.C., Jr.; Snyder, G.L.; Greengard, P.; Boddien, S.; Berg, U.; Brucker, C. Functional dopamine-1 receptors and DARPP-32 are expressed in human ovary and granulosa luteal cells in vitro. J. Clin. Endocrinol. Metab. 1999, 84, 257–264. [Google Scholar] [CrossRef]
- King, S.S.; Campbell, A.G.; Dille, E.A.; Roser, J.F.; Murphy, L.L.; Jones, K.L. Dopamine receptors in equine ovarian tissues. Domest. Anim. Endocrinol. 2005, 28, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Rey-Ares, V.; Lazarov, N.; Berg, D.; Berg, U.; Kunz, L.; Mayerhofer, A. Dopamine receptor repertoire of human granulosa cells. Reprod. Biol. Endocrinol. 2007, 5, e40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parillo, F.; Maranesi, M.; Mignini, F.; Marinelli, L.; Di Stefano, A.; Boiti, C.; Zerani, M. Evidence for a dopamine intrinsic direct role in the regulation of the ovary reproductive function: In vitro study on rabbit corpora lutea. PLoS ONE 2014, 9, e104797. [Google Scholar] [CrossRef] [PubMed]
- Gerendai, I.; Banczerowski, P.; Halász, B. Functional significance of the innervation of the gonads. Endocrine 2005, 28, 309–318. [Google Scholar] [CrossRef]
- D’Albora, H.; Anesetti, G.; Lombide, P.; Dees, W.L.; Ojeda, S.R. Intrinsic neurons in the mammalian ovary. Microsc. Res. Tech. 2002, 59, 484–489. [Google Scholar] [CrossRef]
- Skorupskaite, K.; George, J.T.; Anderson, R.A. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum. Reprod. Update 2014, 20, 485–500. [Google Scholar] [CrossRef] [Green Version]
- Wahab, F.; Atika, B.; Shahab, M.; Behr, R. Kisspeptin signalling in the physiology and pathophysiology of the urogenital system. Nat. Rev. Urol. 2016, 13, 21–32. [Google Scholar] [CrossRef]
- Basini, G.; Grasselli, F.; Bussolati, S.; Ciccimarra, R.; Maranesi, M.; Bufalari, A.; Parillo, F.; Zerani, M. Presence and function of kisspeptin/KISS1R system in swine ovarian follicles. Theriogenology 2018, 115, 1–8. [Google Scholar] [CrossRef]
- Peng, J.; Tang, M.; Zhang, B.P.; Zhang, P.; Zhong, T.; Zong, T.; Yang, B.; Kuang, H.B. Kisspeptin stimulates progesterone secretion via the Erk1/2 mitogen-activated protein kinase signaling pathway in rat luteal cells. Fertil. Steril. 2013, 99, 1436–1443. [Google Scholar] [CrossRef]
- Laoharatchatathanin, T.; Terashima, R.; Yonezawa, T.; Kurusu, S.; Kawaminami, M. Augmentation of metastin/kisspeptin mRNA expression by the proestrous luteinizing hormone surge in granulosa cells of rats: Implications for luteinization. Biol. Reprod. 2015, 93, 15. [Google Scholar] [CrossRef]
- Maranesi, M.; Petrucci, L.; Leonardi, L.; Bufalari, A.; Parillo, F.; Boiti, C.; Zerani, M. Kisspeptin/kisspeptin receptor system in pseudopregnant rabbit corpora lutea: Presence and function. Sci. Rep. 2019, 9, 5044. [Google Scholar] [CrossRef] [PubMed]
- Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev. 2012, 92, 1235–1316. [Google Scholar] [CrossRef] [PubMed]
- Franssen, D.; Tena-Sempere, M. The kisspeptin receptor: A key G-protein-coupled receptor in the control of the reproductive axis. Best Pract. Res. Clin. Endocrinol. Metab. 2018, 32, 107–123. [Google Scholar] [CrossRef] [PubMed]
- Levi-Montalcini, R. The nerve growth factor 35 years later. Science 1987, 237, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Thoenen, H.; Barde, Y.A. Physiology of nerve growth factor. Physiol. Rev. 1980, 60, 1284–1335. [Google Scholar] [CrossRef]
- Snider, W.D. Functions of the neurotrophins during nervous system development: What the knockouts are teaching us. Cell 1994, 77, 627–638. [Google Scholar] [CrossRef]
- Garcia-Garcia, R.M.; Arias-Alvarez, M.; Sanchez-Rodriguez, A.; Lorenzo, P.L.; Rebollar, P.G. Role of nerve growth factor in the reproductive physiology of female rabbits: A review. Theriogenology 2020, 15, 321–328. [Google Scholar] [CrossRef]
- Maranesi, M.; Petrucci, L.; Leonardi, L.; Piro, F.; Rebollar, P.G.; Millá, P.; Cocci, P.; Vullo, C.; Parillo, F.; Moura, A.; et al. New insights on a NGF-mediated pathway to induce ovulation in rabbits (Oryctolagus cuniculus). Biol. Reprod. 2018, 98, 634–643. [Google Scholar] [CrossRef] [Green Version]
- Maranesi, M. Expression and potential mechanisms of action of b-NGF and its TRKA receptor in the reproductive system of rabbits. In Proceedings of the International Workshop: The β-Nerve Growth Factor in Rabbit Semen, Possible Role in Artificial Insemination, Perugia, Italy, 26 September 2014. [Google Scholar]
- Silva, M.; Ulloa-Leal, C.; Valderrama, X.P.; Bogle, O.A.; Adams, G.P.; Ratto, M.H. Nerve growth factor from seminal plasma origin (spβ-NGF) increases CL vascularization and level of mRNA expression of steroidogenic enzymes during the early stage of Corpus Luteum development in llamas. Theriogenology 2017, 103, 69–75. [Google Scholar] [CrossRef]
- Silva, M.; Ulloa-Leal, C.; Norambuena, C.; Fernández, A.; Adams, G.P.; Ratto, M.H. Ovulation-inducing factor (OIF/NGF) from seminal plasma origin enhances Corpus Luteum function in llamas regardless the preovulatory follicle diameter. Anim. Reprod. Sci. 2014, 148, 221–227. [Google Scholar] [CrossRef]
- Tribulo, P.; Bogle, O.; Mapletoft, R.J.; Adams, G.P. Bioactivity of ovulation inducing factor (or nerve growth factor) in bovine seminal plasma and its effects onovarian function in cattle. Theriogenology 2015, 83, 1394–1401. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.L.; Mercadante, V.R.G.; Dias, N.W.; Canisso, I.F.; Yau, P.; Imai, B.; Lima, F.S. Nerve Growth Factor-Beta, purified from bull seminal plasma, enhances corpus luteum formation and conceptus development in Bos taurus cows. Theriogenology 2018, 106, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Kershaw-Young, C.M.; Druart, X.; Vaughan, J.; Maxwell, W.M. β-Nerve growth factor is a major component of alpaca seminal plasma and induces ovulation in female alpacas. Reprod. Fertil. Dev. 2012, 24, 1093–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stuart, C.C.; Vaughan, J.L.; Kershaw-Young, C.M.; Wilkinson, J.; Bathgate, R.; de Graaf, S.P. Effects of varying doses of β-nerve growth factor on the timing of ovulation, plasma progesterone concentration and corpus luteum size in female alpacas (Vicugna pacos). Reprod. Fertil. Devel. 2015, 27, 1181–1186. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zerani, M.; Polisca, A.; Boiti, C.; Maranesi, M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals 2021, 11, 296. https://doi.org/10.3390/ani11020296
Zerani M, Polisca A, Boiti C, Maranesi M. Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals. 2021; 11(2):296. https://doi.org/10.3390/ani11020296
Chicago/Turabian StyleZerani, Massimo, Angela Polisca, Cristiano Boiti, and Margherita Maranesi. 2021. "Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model" Animals 11, no. 2: 296. https://doi.org/10.3390/ani11020296
APA StyleZerani, M., Polisca, A., Boiti, C., & Maranesi, M. (2021). Current Knowledge on the Multifactorial Regulation of Corpora Lutea Lifespan: The Rabbit Model. Animals, 11(2), 296. https://doi.org/10.3390/ani11020296