Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Rumen Fluid Collection
2.3. Experimental Design
2.4. In Vitro Batch Incubation
2.4.1. In Vitro Batch Culture
2.4.2. Calculations
2.4.3. Analyses
2.5. Statistical Analysis
3. Results
3.1. In Vitro Dry Matter Disappearance and Kinetic Parameters of Gas Production
3.2. pH, Ammonia-N, and Microbial Crude Protein
3.3. Volatile Fatty Acid
3.4. Interaction between the Cassava Residue Inclusion Level and the In Vitro Incubation Time
4. Discussion
4.1. Responses of Gas Production and Degradability to Cassava Residue Addition
4.2. In Vitro Rumen Fermentation Characteristics in Response to Cassava Residue Inclusion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bull, S.E.; Ndunguru, J.; Gruissem, W.; Beeching, J.R.; Vanderschuren, H. Cassava: Constraints to production and the transfer of biotechnology to African laboratories. Plant Cell Rep. 2011, 30, 779–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latif, S.; Müller, J. Cassava—How to explore the ‘all-sufficient’. Rural 21 2014, 48, 30–31. [Google Scholar]
- Li, S.; Cui, Y.; Zhou, Y.; Luo, Z.; Liu, J.; Zhao, M. The industrial applications of cassava: Current status, opportunities and prospects. J. Sci. Food Agric. 2017, 97, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Owiti, J.; Grossmann, J.; Gehrig, P.; Dessimoz, C.; Laloi, C.; Hansen, M.B. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration. Plant J. 2011, 67, 145–156. [Google Scholar] [CrossRef]
- Vanderschuren, H.; Nyaboga, E.; Poon, J.S.; Baerenfaller, K.; Grossmann, J.; Hirsch-Hoffmann, M. Large-scale proteomics of the cassava storage root and identification of a target gene to reduce postharvest deterioration. Plant Cell. 2014, 26, 1913–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef]
- Gomes, E.; Souza, S.R.; Grandi, R.P.; Silva, R.D. Production of thermostable glucoamylase by newly isolated Aspergillus flavus A 1.1 and Thermomyces lanuginosus A 13.37. Braz. J. Microbiol. 2005, 36, 75–82. [Google Scholar] [CrossRef]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef]
- Gacheru, P.K.; Abong, G.O.; Okoth, M.W.; Lamuka, P.O.; Katamaet, C. Microbiological safety and quality of dried cassava chips and flour sold in the Nairobi and coastal regions of Kenya. Afr. Crop Sci. J. 2016, 24, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, T.; Zambom, M.A.; Castagnara, D.D.; Souza, L.C.; Damasceno, D.O.; Schmidt, E.L. Use of dried waste of cassava starch extraction for feeding lactating cows. An. Acad. Bras. Cienc. 2015, 87, 1678–2690. [Google Scholar] [CrossRef] [Green Version]
- Pilajun, R.; Wanapat, M. Chemical composition and in vitro gas production of fermented cassava pulp with different types of supplements. J. Appl. Anim. Res. 2018, 46, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Udchachon, S.; Angthong, W.; Wongpanich, P.; Chainon, U. Effect of using yeast fermented cassava pulp replace concentrate feed on growth performance and carcass characteristic of Kabinburi beef cattle. Khon Kaen Agric. J. 2015, 43, 44–49. [Google Scholar]
- Xin, L.J.; Wang, L.X.; Liu, A.M. Regional production and consumption equilibrium of feed grain in China and its policy implication. Chin. J. Nat. Resour. 2018, 33, 965–977. [Google Scholar]
- Wang, M.L. China’s livestock industry development: Achievements, experiences and future trends. Chin. Issues Agric. Econ. 2018, 8, 60–70. [Google Scholar]
- Zhou, Z.Y.; Tian, W.M.; Malcolm, B. Supply and demand estimates for feed grains in China. Agric. Econ. 2008, 39, 111–122. [Google Scholar] [CrossRef]
- Hou, X.Y.; Zhang, Y.J. Analysis on driving factors of improvement of quality and efficiency and transformation development of grasslands and animal husbandry industry. Chin. Sci. Bull. 2018, 63, 1632–1641. [Google Scholar] [CrossRef] [Green Version]
- Abraham, I.; Michael, W. Dairy and Products Semi-Annual; United States Department of Agriculture: Washington, DC, USA, 2020. [Google Scholar]
- Yang, H.J.; Song, Z.H.; Zhu, S.P.; Mao, E.R. Yizhong Fajiao Weiliang Qitichanshengliang Shuju Zidong Caiji Cunchu Zhuangzhi Ji Fangfa; China Agricultural University: Beijing, China, 2007. (In Chinese) [Google Scholar]
- Groot, J.C.; Cone, J.W.; Williams, Z.A.; Debersaques, F.M.; Lantinga, E.A. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds. Anim. Feed. Sci. Technol. 1996, 64, 77–89. [Google Scholar] [CrossRef]
- Hongjian, Y.; Tamminga, S.; Williams, B.A.; Dijkstra, J.; Boer, H. In vitro gas and volatile fatty acids production profiles of barley and maize and their soluble and washout fractions after feed processing. Anim. Feed. Sci. Technol. 2005, 120, 125–140. [Google Scholar]
- Verdouw, H.; Van Echteld, C.J.A.; Dekkers, E.M.J. Ammonia determination based on indophenol formation with sodium salicylate. Water Res. 1978, 12, 399–402. [Google Scholar] [CrossRef]
- Makkar, H.; Sharma, O.; Dawra, R.; Negi, S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef]
- Erwin, E.; Marco, G.; Emery, E. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Prasad, C.S.; Wood, C.D.; Sampath, K.T. Use of in vitro gas production to evaluate rumen fermentation of untreated and urea-treated finger millet straw (Eleusine coracana) supplemented with different levels of concentrate. J. Sci. Food Agric. 1994, 65, 457–464. [Google Scholar] [CrossRef]
- Liu, J.X.; Susenbeth, A.; Südekum, K.H. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. J. Anim. Sci. 2002, 80, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.G.; Yang, H.J.; Cao, B.B.; Wu, T.T.; Wang, J.Q. The beneficial effect of Enterococcus faecium on the in vitro ruminal fermentation rate and extent of three typical total mixed rations in northern China. Livest. Sci. 2014, 167, 154–160. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Zhang, Q.; Yang, Y.; Zou, C.; Li, L.; Liang, X.; Wei, S.; Lin, B. Ruminal fermentation and microbial community differently influenced by four typical subtropical forages in vitro. Anim. Nutr. 2018, 4, 100–108. [Google Scholar] [CrossRef]
- Smith, O.B.; Idowu, O.; Asaolu, V.O.; Odunlami, O. Comparative rumen degradability of forages, browse, crop residues and Agricultural by-products. Livest. Res. Rural Dev. 1991, 3, 1–7. [Google Scholar]
- Zhao, G.Y. Research progress on available crude protein and available amino acid in ruminant feed. Chin. J. Anim. Husb. 2005, 3, 5–7. [Google Scholar]
- Storm, E.; Orskov, E.R. The nutritive value of rumen micro-organisms in ruminants: 1. Large-scale isolation and chemical composition of rumen micro-organisms. Br. J. Nutr. 1983, 50, 463–470. [Google Scholar] [CrossRef]
- Assoumani, M.B.; Vedeau, F.; Jacquot, L. Refinement of an enzymatic method for estimating the theoretical degradability of proteins in feedstuffs for ruminants. Anim. Feed Sci. Technol. 1992, 39, 357–368. [Google Scholar] [CrossRef]
- Erdman, R.A.; Hemken, R.W.; Bull, L.S. Dietary sodium bicarbonate and magnesium oxide for early postpartum lactating dairy cows: Effects on production, acid–base metabolism, and digestion. J. Dairy Sci. 1988, 1, 754–761. [Google Scholar] [CrossRef]
- Santos, E.; Thompson, F. The family Succinivibrionaceae. In The Prokaryotes; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., Stackebrandt, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 639–648. [Google Scholar]
- Newbold, C.J.; de la Fuente, G.; Belanche, A.; Ramos-Morales, E.; McEwan, N.R. The role of ciliate protozoa in the rumen. Front. Microbiol. 2015, 26, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, G.S. The rate of uptake and metabolism of starch grains and cellulose particles by Entodinium species, Eudiplodinium maggii, some other entodiniomorphid protozoa and natural protozoal populations taken from the ovine rumen. J. Appl. Bacteriol. 1992, 73, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Chen, Y.Y.; Wang, Y.L.; Wang, W.K.; Zhang, Z.W.; Si, X.M.; Cao, Z.J.; Li, S.L.; Yang, H.J. Beneficial effect of Rhodopseudomonas palustris on in vitro rumen digestion and fermentation. Benef. Microbes 2020, 11, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ballard, F.J. Supply and utilization of acetate in mammals. Am. J. Clin. Nutr. 1972, 25, 773–779. [Google Scholar] [CrossRef]
- Herdt, T.H. Fuel homeostasis in the ruminant. Veterinary Clinics of North America. Food Anim. Pract. 1988, 4, 213–231. [Google Scholar] [CrossRef]
Items | Concentrate | Cassava Residue |
---|---|---|
Dry Matter | 96.94 | 96.51 |
Neutral Detergent Fiber | 19.12 | 30.54 |
Acid Detergent Fiber | 7.61 | 23.09 |
Crude Protein | 20.60 | 8.46 |
Ether Extract | 3.39 | 0.05 |
Calcium | 0.52 | 0.91 |
Phosphorus | 0.85 | 0.21 |
Ash | 9.05 | 5.79 |
Items | Treatments | ||||||
---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | |
Ingredients | |||||||
Concentrate | 100.00 | 95.00 | 90.00 | 85.00 | 80.00 | 75.00 | 70.00 |
Cassava residue | 0.00 | 5.00 | 10.00 | 15.00 | 20.00 | 25.00 | 30.00 |
Nutrient contents | |||||||
Dry Matter | 96.94 | 96.92 | 96.90 | 96.88 | 96.85 | 96.83 | 96.81 |
Ether Extract | 3.39 | 3.22 | 3.06 | 2.89 | 2.72 | 2.56 | 2.39 |
Crude Protein | 20.60 | 19.99 | 19.39 | 18.78 | 18.17 | 17.57 | 16.96 |
Ash | 9.05 | 8.89 | 8.72 | 8.56 | 8.40 | 8.24 | 8.07 |
Neutral Detergent Fiber | 19.12 | 19.69 | 20.26 | 20.83 | 21.40 | 21.98 | 22.55 |
Acid Detergent Fiber | 7.61 | 8.38 | 9.16 | 9.93 | 10.71 | 11.48 | 12.25 |
Phosphorus | 0.45 | 0.44 | 0.43 | 0.41 | 0.40 | 0.39 | 0.38 |
Calcium | 0.52 | 0.54 | 0.56 | 0.58 | 0.60 | 0.62 | 0.64 |
Addition Order | Component Solution | Volume (mL) |
---|---|---|
1 | Distilled water | 1200 |
2 | Trace element solution A | 0.3 |
3 | Artificial saliva B | 600 |
4 | Constant element solution C | 600 |
5 | Resazurin solution D | 3 |
6 | Reducing agent solution | 120 |
Total (mL) | 2523.3 |
In Vitro Incubation Time | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
3 h | 36.33 | 38.14 | 39.19 | 39.15 | 38.92 | 41.42 | 39.01 | 0.01 | 0.63 | 0.19 | 0.31 |
6 h | 50.62 | 48.40 | 47.98 | 49.96 | 47.68 | 50.30 | 51.86 | 0.01 | 0.97 | 0.67 | 0.61 |
12 h | 68.17 | 66.84 | 67.08 | 67.64 | 69.46 | 70.41 | 69.18 | 0.01 | 0.19 | 0.02 | 0.06 |
24 h | 81.88 | 83.32 | 81.80 | 84.00 | 83.74 | 82.13 | 84.08 | 0.01 | 0.98 | 0.49 | 0.79 |
48 h | 83.41 | 85.99 | 83.85 | 81.08 | 82.96 | 84.28 | 84.29 | 0.01 | 0.46 | 0.96 | 0.68 |
Items | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
GP48 (mL/g) | 108.32 d | 113.06 cd | 116.08 cd | 150.82 bcd | 149.64 bc | 188.58 a | 172.71 ab | 6.71 | <0.01 | <0.01 | <0.01 |
A (mL) | 114.11 c | 116.51 c | 115.11 c | 143.92 bc | 173.21 ab | 189.93 a | 170.94 ab | 6.75 | <0.01 | <0.01 | <0.01 |
B (h) | 1.19 abc | 1.07 c | 1.10 c | 1.11 bc | 1.28 abc | 1.45 ab | 1.15 abc | 0.04 | 0.03 | 0.33 | 0.44 |
C (h) | 2.85 cd | 3.93 a | 2.85 cd | 4.34 a | 2.46 d | 2.92 bc | 3.30 b | 0.17 | <0.01 | 0.99 | 0.61 |
TRmaxG (h) | 0.47 cd | 0.85 abc | 1.21 a | 0.80 bcd | 0.43 d | 1.09 ab | 0.41 d | 0.07 | <0.01 | 0.84 | 0.06 |
RmaxG (h) | 25.03 cd | 20.77 d | 21.18 d | 21.95 d | 27.76 ab | 39.84 a | 33.00 b | 1.45 | <0.01 | <0.01 | <0.01 |
TRmaxS (h) | 1.14 b | 1.58 ab | 2.20 a | 1.51 ab | 0.83 b | 1.63 ab | 0.79 b | 0.11 | <0.01 | 0.20 | 0.06 |
RmaxS (mL/h) | 0.29 | 0.26 | 0.26 | 0.23 | 0.27 | 0.28 | 0.28 | 0.01 | 0.79 | 0.84 | 0.35 |
In Vitro Incubation Time | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
3 h | 7.58 | 7.64 | 7.60 | 7.68 | 7.63 | 7.68 | 7.65 | 0.02 | 0.74 | 0.19 | 0.37 |
6 h | 7.73 | 7.72 | 7.74 | 7.73 | 7.75 | 7.67 | 7.71 | 0.02 | 0.94 | 0.56 | 0.79 |
12 h | 7.65 c | 7.67 bc | 7.73 a | 7.67 abc | 7.71 ab | 7.67 abc | 7.72 ab | 0.01 | <0.01 | 0.04 | 0.09 |
24 h | 7.48 | 7.54 | 7.55 | 7.55 | 7.59 | 7.57 | 7.52 | 0.01 | 0.13 | 0.28 | 0.02 |
48 h | 6.44 | 6.45 | 6.49 | 6.48 | 6.50 | 6.52 | 6.53 | 0.02 | 0.65 | 0.04 | 0.13 |
In Vitro Incubation Time | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
3 h | 10.94 | 11.10 | 11.12 | 10.00 | 10.21 | 9.31 | 9.58 | 0.23 | 0.07 | 0.01 | 0.01 |
6 h | 13.44 | 13.11 | 13.20 | 11.60 | 11.14 | 10.50 | 10.77 | 0.47 | 0.37 | 0.01 | 0.03 |
12 h | 16.47 a | 16.57 a | 14.90 ab | 15.23 ab | 14.20 ab | 13.33 b | 13.01 b | 0.33 | <0.01 | <0.01 | <0.01 |
24 h | 24.44 | 24.72 | 22.56 | 22.63 | 21.40 | 20.47 | 20.18 | 0.84 | 0.68 | 0.01 | 0.04 |
48 h | 31.65 | 32.25 | 30.13 | 31.10 | 29.25 | 28.59 | 25.71 | 0.80 | 0.38 | 0.02 | 0.04 |
In Vitro Incubation Time | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
3 h | 170.33 | 170.67 | 178.61 | 167.51 | 180.06 | 174.41 | 175.97 | 2.32 | 0.23 | 0.20 | 0.44 |
6 h | 195.85 | 197.27 | 199.08 | 188.07 | 204.81 | 191.96 | 198.41 | 5.00 | 0.99 | 0.97 | 0.99 |
12 h | 218.15 | 220.31 | 219.51 | 228.78 | 232.38 | 224.54 | 228.56 | 2.89 | 0.55 | 0.08 | 0.18 |
24 h | 205.13 | 207.65 | 209.89 | 204.69 | 215.16 | 214.81 | 211.16 | 2.58 | 0.83 | 0.25 | 0.51 |
48 h | 174.70 | 174.33 | 179.03 | 172.59 | 182.26 | 169.42 | 175.03 | 5.86 | 0.74 | 0.83 | 0.85 |
In Vitro Incubation Time | Treatments | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CON | 5% | 10% | 15% | 20% | 25% | 30% | Treatment | Linear | Quadratic | ||
Acetate | 34.99 bc | 35.22 bc | 36.05 bc | 37.19 a | 37.23 a | 37.45 a | 33.74 b | 0.40 | 0.04 | 0.49 | 0.04 |
Propionate | 15.73 b | 15.94 b | 16.28 ab | 16.17 ab | 16.55 ab | 17.95 a | 15.76 b | 0.22 | 0.03 | 0.29 | 0.34 |
Iso-butyrate | 0.49 c | 0.55 bc | 0.70 abc | 0.71 abc | 0.80 abc | 0.87 a | 0.60 abc | 0.04 | <0.01 | 0.09 | 0.02 |
Butyrate | 7.13 b | 7.18 b | 7.28 ab | 7.53 ab | 7.54 ab | 7.78 a | 7.12 b | 0.07 | 0.03 | 0.10 | 0.05 |
Iso-valerate | 1.84 ab | 1.98 a | 2.06 a | 1.92 ab | 2.10 a | 2.00 a | 1.70 b | 0.04 | 0.05 | 0.78 | 0.01 |
Valerate | 2.68 ab | 2.44 ab | 2.24 ab | 2.37 ab | 2.45 ab | 2.92 a | 1.79 b | 0.12 | <0.01 | 0.42 | 0.64 |
Acetate/Propionate | 2.26 | 2.05 | 2.17 | 2.26 | 2.23 | 2.05 | 2.27 | 0.06 | 0.93 | 0.96 | 0.97 |
tVFA | 51.94 b | 63.83 ab | 66.32 ab | 66.19 ab | 67.26 ab | 69.13 a | 60.70 ab | 1.92 | 0.25 | 0.17 | 0.02 |
Items | p-Value | ||
---|---|---|---|
Treatment | Time | Treatment × Time | |
IVDMD | 0.45 | 0.43 | 0.47 |
NH3-N | <0.01 | <0.01 | 0.99 |
MCP | 0.04 | <0.01 | 0.96 |
pH | 0.97 | <0.01 | 0.96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Zhao, Y.; Xue, S.; Wang, W.; Wang, Y.; Cao, Z.; Yang, H.; Li, S. Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test. Animals 2021, 11, 307. https://doi.org/10.3390/ani11020307
Zheng Y, Zhao Y, Xue S, Wang W, Wang Y, Cao Z, Yang H, Li S. Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test. Animals. 2021; 11(2):307. https://doi.org/10.3390/ani11020307
Chicago/Turabian StyleZheng, Yuhui, Yanyan Zhao, Shenglin Xue, Wei Wang, Yajing Wang, Zhijun Cao, Hongjian Yang, and Shengli Li. 2021. "Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test" Animals 11, no. 2: 307. https://doi.org/10.3390/ani11020307
APA StyleZheng, Y., Zhao, Y., Xue, S., Wang, W., Wang, Y., Cao, Z., Yang, H., & Li, S. (2021). Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test. Animals, 11(2), 307. https://doi.org/10.3390/ani11020307