Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lab-Scale Experimental Set Up
2.1.1. Bioreactor Construction
2.1.2. Development of the Monitoring System
Operational Algorithm for Bioreactor
2.1.3. Construction of the Lab-Scale Swine Barn
2.1.4. Collection and Input of Raw Swine Manure
2.1.5. Acid Absorption of Ammonia Gas
2.1.6. Operation of the Lab-Scale Simulation System
2.2. Sampling Procedure
2.3. Analytical Method
3. Results and Discussion
3.1. Anoxic and Aerobic Phase Control Using ORP and pH (mV) Time-Profiles
3.2. Performance Evaluation of the Bioreactor
3.3. Improvement of Swine Manure Properties in the Slurry Pit
3.4. NH3 Reduction Efficiency
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- De Haro Martí, M.E.; Neibling, W.H.; Chen, L.; Chahine, M. On-farm testing of a zeolite filter to capture ammonia and odors from a dairy manure flushing system. Trans. ASABE 2020, 63, 597–607. [Google Scholar] [CrossRef]
- Keck, M.; Mager, K.; Weber, K.; Keller, M.; Frei, M.; Steiner, B.; Schrade, S. Odour impact from farms with animal husbandry and biogas facilities. Sci. Total Environ. 2018, 645, 1432–1443. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Guarino, M.; Bacenetti, J. Measurements techniques and models to assess odor annoyance: A review. Environ. Int. 2020, 134, 105261. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S. Development of Real-Time Control Technology for Bio-Liquor Circulation Type Swine Farming System Ssing ORP and pH (mV) Time-Profiles. Ph.D. Thesis, Kangwon National University, Chuncheon, Korea, 2020. [Google Scholar]
- MoE; MAFRA. A Study on the Re-Establishment of Livestock Breeding Restricted Areas; Ministry of Environment and Ministry of Agriculture, Food and Rural Affairs: Sejong, Korea, 2015.
- CRI. Analysis and Policy Direction of Livestock Odor Generation in Chungcheongnam-do, Chungnam Report, No. 244; Chungnam Research Institute: Chungnam, Korea, 2016. [Google Scholar]
- ACRC. Voice of the People; Monthly Trends, No.456; Anti-Corruption and Civil Rights Commission: Sejong, Korea, 2018.
- Vikrant, K.; Kim, K.H.; Szulejko, J.E.; Pandey, S.K.; Singh, R.S.; Giri, B.S.; Lee, S.H. Bio-filters for the Treatment of VOCs and Odors-A Review. Asian J. Atmos. Environ. 2017, 11, 139–152. [Google Scholar] [CrossRef]
- Barbusinski, K.; Kalemba, K.; Kasperczyk, D.; Urbaniec, K.; Kozik, V. Biological methods for odor treatment—A review. J. Clean. Prod. 2017, 152, 223–241. [Google Scholar] [CrossRef]
- Mackie, R.I.; Stroot, P.G.; Varel, V.H. Biochemical identification and biological origin of key odor components in livestock waste. J. Anim. Sci. 1998, 76, 1331–1342. [Google Scholar] [CrossRef]
- Rappert, S.; Müller, R. Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manag. 2005, 25, 887–907. [Google Scholar] [CrossRef]
- Le, P.D.; Aarnink, A.J.A.; Ogink, N.W.M.; Becker, P.M.; Verstegen, M.W.A. Odour from animal production facilities: Its relationship to diet. Nutr. Res. Rev. 2005, 18, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, A. The Chemistry and Biology of Volatiles; Herrmann, A., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2010; p. 428. [Google Scholar]
- Sutton, A.L.; Kephart, K.B.; Verstegen, M.W.A.; Canh, T.T.; Hobbs, P.J. Potential for reduction of odorous compounds in swine manure through diet modification. J. Anim. Sci. 1999, 77, 430–439. [Google Scholar] [CrossRef]
- Zhu, J. A review of microbiology in swine manure odor control. Agric. Ecosyst. Environ. 2000, 78, 93–106. [Google Scholar] [CrossRef]
- Sunesson, A.L.; Gullberg, J.; Blomquist, G. Airbone chemical compounds on dairy farms. J. Environ. Monit. 2001, 3, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Nahm, K.H. Efficient feed nutrient utilization to reduce pollutants in poultry and swine manure. Crit. Rev. Environ. Sci. Technol. 2002, 32, 1–16. [Google Scholar] [CrossRef]
- Wagner, S.; Angenendt, E.; Beletskaya, O.; Zeddies, J. Costs and benefits of ammonia and particulate matter abatement in German agriculture including interactions with greenhouse gas emissions. Agric. Syst. 2015, 141, 58–68. [Google Scholar] [CrossRef]
- Barth, C.L.; Polkowski, L.B. Identifying odorous components of stored dairy manure. Trans. ASAE 1974, 17, 737–741. [Google Scholar] [CrossRef]
- Lunn, F.; de Vyver, J.V. Sampling and analysis of air in pig houses. Agric. Environ. 1977, 3, 159–169. [Google Scholar] [CrossRef]
- Williams, A.G. Indicators of piggery slurry odour offensiveness. Agric. Waste 1984, 10, 15–36. [Google Scholar] [CrossRef]
- Riskowski, G.L.; Chang, A.C.; Steinberg, M.P.; Day, D.L. Methods for evaluating odor from swine manure. Appl. Eng. Agric. 1991, 7, 248–253. [Google Scholar] [CrossRef]
- Ogink, N.W.; Koerkamp, P.W. Comparison of odour emissions from animal housing systems with low ammonia emission. Water Sci. Technol. 2001, 44, 245–252. [Google Scholar] [CrossRef]
- Qamaruz-Zaman, N.; Milke, M.W. VFA and ammonia from residential food waste as indicators of odor potential. Waste Manag. 2012, 32, 2426–2430. [Google Scholar] [CrossRef] [Green Version]
- Dalby, F.R.; Svane, S.; Sigurdarson, J.J.; Sørensen, M.K.; Hansen, M.J.; Karring, H.; Feilberg, A. Synergistic tannic acid-fluoride inhibition of ammonia emissions and simultaneous reduction of methane and odor emissions from livestock waste. Environ. Sci. Technol. 2020, 54, 7639–7650. [Google Scholar] [CrossRef]
- Zhu, J.; Riskowski, G.L.; Torremorell, M. Volatile fatty acids as odor indicators in swine manure—A critical review. Trans. ASAE 1999, 42, 175–182. [Google Scholar] [CrossRef]
- Pagans, E.; Font, X.; Sánchez, A. Coupling composting and biofiltration for ammonia and volatile organic compound removal. Biosyst. Eng. 2007, 94, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Kai, P.; Kaspers, B.; van Kempen, T. Modeling sources of gaseous emissions in a pig house with recharge pit. Trans. ASABE 2006, 49, 1479–1485. [Google Scholar] [CrossRef]
- Lim, T.T.; Heber, A.J.; Ni, J.Q.; Kendall, D.C.; Richert, B.T. Effects of manure removal strategies on odor and gas emissions from swine finishing. Trans. ASAE 2004, 47, 2041–2050. [Google Scholar] [CrossRef]
- Blunden, J.; Aneja, V.P.; Westerman, P.W. Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina. Atmos. Environ. 2008, 42, 3315–3331. [Google Scholar] [CrossRef]
- Wi, J.; Lee, S.; Kim, E.; Lee, M.; Koziel, J.A.; Ahn, H. Evaluation of semi-continuous pit manure recharge system performance on mitigation of ammonia and hydrogen sulfide emissions from a swine finishing barn. Atmosphere 2019, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Reza, A.; Shim, S.; Kim, S.; Ahn, S.; Won, S.; Ra, C. Rational budgeting approach as a nutrient management tool for mixed crop-swine farms in Korea. Asian Australas. J. Anim. Sci. 2020, 33, 1520–1532. [Google Scholar] [CrossRef] [Green Version]
- Shim, S.; Reza, A.; Kim, S.; Ahmed, N.; Won, S.; Ra, C. Simultaneous removal of pollutants and recovery of nutrients from high-strength swine wastewater using a novel integrated treatment process. Animals 2020, 10, 835. [Google Scholar] [CrossRef]
- Ha, D.M.; Kim, D.H. The effect of liquid manure circulation system on the odor reduction of swine farm. J. Agric. Life Sci. 2015, 49, 57–64. [Google Scholar] [CrossRef]
- Kim, D.H.; Ha, D.M. The Manual of Bio-Liquor Circulation System for Odor Reduction in Swine Farms; Gyeongnam National University of Science and Technology: Gyungsangnam-do, Korea, 2014. [Google Scholar]
- Jeong, C.H.; Park, M.J.; Jeong, D.W. Reduction of odor from swine manure using soil microorganisms on liquid manure circulation system. J. Korean Soc. Water Sci. Technol. 2019, 27, 97–106. [Google Scholar] [CrossRef]
- Kim, S.S.; Shim, S.M.; Lee, T.H.; Jeon, T.B.; Won, S.G.; Song, J.I.; Jeong, B.D.; Lee, J.J.; Ra, C.S. Optimal Parameters of Bio-liquor Circulation Type Swine Manure Management System. Ann. Anim. Resour. Sci. 2019, 30, 133–144. [Google Scholar] [CrossRef]
- KPPA. Development of Sustainable Eco-Friendly Swine Farm Model; Korea Pork Producers Association: Seoul, Korea, 2012.
- Kim, S.S. Development of Diagnosis and Control Techniques for Liquid Composting-Slurry Pit Circulation System Based on ICT. Master’s Thesis, Kangwon National University, Chuncheon, Korea, 2017. [Google Scholar]
- Ra, C.S.; Lo, K.V.; Mavinic, D.S. Real-time control of two-stage sequencing batch reactor system for the treatment of animal wastewater. Environ. Technol. 1998, 19, 343–356. [Google Scholar] [CrossRef]
- Chen, M.; Qi, R.; An, W.; Zhang, H.; Wei, Y.; Zhou, Y. New concept of contaminant removal from swine wastewater by a biological treatment process. Front. Biol. 2009, 4, 402. [Google Scholar] [CrossRef]
- Ga, C.H.; Ra, C.S. Real-time control of oxic phase using pH (mV)-time profile in swine wastewater treatment. J. Hazard. Mater. 2009, 172, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Won, S.G.; Ra, C.S. Biological nitrogen removal with a real-time control strategy using moving slope changes of pH (mV)-and ORP-time profiles. Water Res. 2011, 45, 171–178. [Google Scholar] [CrossRef]
- Ra, C.S. Oxidation Reduction Potential (ORP) as a Real-Time Control Parameter in Swine Manure Treatment Process. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1997. [Google Scholar]
- KPPA. Standard Construction Guidelines for Swine Farms; Korea Pork Producers Association: Seoul, Korea, 2009.
- Canh, T.T.; Aarnink, A.J.A.; Schutte, J.B.; Sutton, A.L.; Langhout, D.J.; Verstegen, M.W.A. Dietary protein affects nitrogen excretion and ammonia emission from slurry of growing–Finishing pigs. Livest. Prod. Sci. 1998, 56, 181–191. [Google Scholar] [CrossRef]
- Otto, E.R.; Yokoyama, M.; Hengemuehle, S.; von Bermuth, R.D.; van Kempen, T.; Trottier, N.L. Ammonia, volatile fatty acids, phenolics, and odor offensiveness in manure from growing pigs fed diets reduced in protein concentration. J. Anim. Sci. 2003, 81, 1754–1763. [Google Scholar] [CrossRef]
- Hayes, E.T.; Leek, A.B.G.; Curran, T.P.; Dodd, V.A.; Carton, O.T.; Beattie, V.E.; O’Doherty, J.V. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol. 2004, 91, 309–315. [Google Scholar] [CrossRef] [Green Version]
- APHA; AWWA; WEF; WPCF. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Lackner, S.; Horn, H. Evaluating operation strategies and process stability of a single stage nitritation–Anammox SBR by use of the oxidation–Reduction potential (ORP). Bioresour. Technol. 2012, 107, 70–77. [Google Scholar] [CrossRef]
- Zanetti, L.; Frison, N.; Nota, E.; Tomizioli, M.; Bolzonella, D.; Fatone, F. Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review. Desalination 2012, 286, 1–7. [Google Scholar] [CrossRef]
- Kishida, N.; Kim, J.H.; Chen, M.; Sasaki, H.; Sudo, R. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. J. Biosci. Bioeng. 2003, 96, 285–290. [Google Scholar] [CrossRef]
- Kim, J.H.; Chen, M.; Kishida, N.; Sudo, R. Integrated real-time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Res. 2004, 38, 3340–3348. [Google Scholar] [CrossRef] [PubMed]
- Hoover, S.R.; Porges, N. Assimilation of Dairy Wastes by Activated Sludge: II. The Equation of Synthesis and Rate of Oxygen Utilization. Sewage Ind. Waste 1952, 24, 306–312. [Google Scholar]
- Kuo, W.C.; Parkin, G.F. Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties. Water Res. 1996, 30, 915–922. [Google Scholar] [CrossRef]
- Li, Y.; Li, A.M.; Xu, J.; Li, W.W.; Yu, H.Q. Formation of soluble microbial products (SMP) by activated sludge at various salinities. Biodegradation 2013, 24, 69–78. [Google Scholar] [CrossRef]
- Hong, S.W.; Choi, Y.S.; Kwon, G.; Park, K.Y. Performance evaluation of physicochemical processes for biologically pre-treated livestock wastewater. Water Sci. Technol. 2005, 52, 107–115. [Google Scholar] [CrossRef]
- Riaño, B.; Coca, M.; García-González, M.C. Evaluation of Fenton method and ozone-based processes for colour and organic matter removal from biologically pre-treated swine manure. Chemosphere 2014, 117, 193–199. [Google Scholar] [CrossRef]
- Trabue, S.; Kerr, B.; Bearson, B.; Ziemer, C. Swine odor analyzed by odor panels and chemical techniques. J. Environ. Qual. 2011, 40, 1510–1520. [Google Scholar] [CrossRef]
- Bibbiani, C.; Russo, C. Odour emission from intensive livestock production system: Approaches for emission abatement and evaluation of their effectiveness. Large Anim. Rev. 2012, 18, 135–138. [Google Scholar]
- Kafle, G.K.; Chen, L. Emissions of odor, ammonia, hydrogen sulfide, and volatile organic compounds from shallow-pit pig nursery rooms. J. Biosyst. Eng. 2014, 39, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Schauberger, G.; Lim, T.T.; Ni, J.Q.; Bundy, D.S.; Haymore, B.L.; Diehl, C.A.; Heber, A.J. Empirical model of odor emission from deep-pit swine finishing barns to derive a standardized odor emission factor. Atmos. Environ. 2013, 66, 84–90. [Google Scholar] [CrossRef]
- Van Weelden, M.B. Investigating the Causes of Foam Formation in Deep Pit Swine Manure Storages. Master’s Thesis, Iowa State University, Ames, IA, USA, 2014. [Google Scholar]
- Trabue, S.L.; Kerr, B.J.; Scoggin, K.D.; Andersen, D.; Van Weelden, M. Swine diets impact manure characteristics and gas emissions: Part I protein level. Sci. Total Environ. 2020, 755, 142528. [Google Scholar] [CrossRef] [PubMed]
Parameter | Concentration (mg/L) |
---|---|
TS 1 | 46,179.2 ± 22,581.9 |
TVS 2 | 33,227.1 ± 17,742.2 |
TSS 3 | 39,567.5 ± 24,987.0 |
TVSS 4 | 30,565.0 ± 19,152.8 |
STOC 5 | 2719.3 ± 522.8 |
NH4-N 6 | 12,305.8 ± 5040.0 |
T-N 7 | 5187.4 ± 2015.2 |
Parameters | Concentration (mg/L) |
---|---|
TS 1 | 12,616.7 ± 23.6 |
TVS 2 | 6200.0 ± 47.1 |
TSS 3 | 7244.4 ± 126.2 |
TVSS 4 | 5444.4 ± 167.8 |
STOC 5 | 1132.0 ± 43.0 |
NH4-N 6 | 20.1 ± 1.5 |
NOX-N 7 | ND 10 |
TKN 8 | 1230.3 ± 5.6 |
T-N 9 | 1569.1 ± 12.7 |
Parameters | Bioreactor | CT Slurry Pit | NCT Slurry Pit |
---|---|---|---|
Working volume (L) | 30 | 60 | 60 |
Initial condition | filled with bio-liquor | filled with bio-liquor | empty |
Manure input (L/d) | - | 0.43 | 0.43 |
Circulation rate (L/cycle) | 1.2 | 1.2 | - |
Circulation rate based on volume (%/cycle) | 4 | 2 | - |
Aeration rate (L/L·min) | 0.05 | - | - |
Parameter | Bioreactor Loading Rate (kg/m3/Cycle) | ||||||
---|---|---|---|---|---|---|---|
TS 1 | TVS 2 | TSS 3 | TVSS 4 | STOC 5 | NH4-N 6 | T-N 7 | |
16~17 (d) | 0.393~0.418 | 0.153~0.158 | 0.163~0.171 | 0.107~0.125 | 0.072~0.073 | 0.005~0.006 | 0.011~0.014 |
27~28 (d) | 0.518~0.630 | 0.169~0.184 | 0.132~0.151 | 0.106~0.122 | 0.075~0.077 | 0.007~0.009 | 0.016~0.018 |
60~61 (d) | 0.471~0.484 | 0.163~0.191 | 0.253~0.261 | 0.154~0.186 | 0.079~0.081 | 0.011~0.013 | 0.021~0.024 |
72~73 (d) | 0.465~0.471 | 0.155~0.172 | 0.214~0.248 | 0.147~0.149 | 0.091~0.102 | 0.009~0.011 | 0.028~0.024 |
Parameter | Value | |
---|---|---|
Duration | anoxic phase (h/d) | 19.4 ± 2.9 |
aerobic phase (h/d) | 4.6 ± 2.9 | |
Number of circulation | total (cycle) | 311 |
average (cycle/d) | 3.9 ± 2.7 | |
Circulation rate | based on bio-reactor volume (%/d) | 15.7 ± 10.9 |
based on slurry pit volume (%/d) | 7.9 ± 5.5 |
Parameter | Swine Manure (mg/L) | Bio-Liquor (mg/L) | Bio-Liquor /Swine Manure (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Average | Min. | Max. | Std. Dev. | Average | Min. | Max. | Std. Dev. | ||||
NH4-N 1 | 229.7 | 158.6 | 344.8 | 61.2 | ND 4 | - | |||||
NOX-N 2 | ND 4 | 8.3 | 2.3 | 15.7 | 2.3 | - | |||||
STOC 3 | 2100.0 | 1795.7 | 2694.4 | 335.4 | 1570.9 | 1071.8 | 1968.0 | 312.0 | 74.8 |
Parameter | CT Slurry Pit | NCT Slurry Pit | Reduction Efficiency (%) |
---|---|---|---|
TS 1 | 9233.3 ± 1663.9 | 71,650.9 ± 39,616.6 | 87.1 |
TVS 2 | 2585.8 ± 1219.9 | 50,362.1 ± 28,798.2 | 94.9 |
TSS 3 | 2817.6 ± 1579.0 | 64,494.9 ± 39,647.0 | 95.6 |
TVSS 4 | 1961.5 ± 1174.6 | 47,082.9 ± 28,420.9 | 95.8 |
STOC 5 | 2047.1 ± 372.2 | 9461.3 ± 5350.3 | 78.4 |
NH4-N 6 | 208.8 ± 81.9 | 2893.2 ± 612.4 | 92.8 |
T-N 7 | 472.5 ± 233.5 | 5350.0 ± 1691.4 | 91.2 |
Parameter | CT Slurry Pit | NCT Slurry Pit | Reduction Efficiency (%) |
---|---|---|---|
Total emission (mg/m2) | 340.4 | 19,850.0 | 98.3 |
Average emission (mg/m2·d) | 3.7 ±4.4 | 218.1 ±151.2 | |
Maximum emission (mg/m2·d) | 11.6 | 245.2 | |
Minimum emission (mg/m2·d) | 0.03 | 54.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Reza, A.; Shim, S.; Won, S.; Ra, C. Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study. Animals 2021, 11, 311. https://doi.org/10.3390/ani11020311
Kim S, Reza A, Shim S, Won S, Ra C. Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study. Animals. 2021; 11(2):311. https://doi.org/10.3390/ani11020311
Chicago/Turabian StyleKim, Seungsoo, Arif Reza, Soomin Shim, Seunggun Won, and Changsix Ra. 2021. "Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study" Animals 11, no. 2: 311. https://doi.org/10.3390/ani11020311
APA StyleKim, S., Reza, A., Shim, S., Won, S., & Ra, C. (2021). Development of a Real-Time Controlled Bio-Liquor Circulation System for Swine Farms: A Lab-Scale Study. Animals, 11(2), 311. https://doi.org/10.3390/ani11020311