Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Data
2.2. Genes Data and Re-Sequencing
2.3. SNP Analysis
3. Results
3.1. CXCR1
3.2. DCK
3.3. NOD2
3.4. MBL2
3.5. MBL1
3.6. M-SAA3.2
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Maity, S.; Das, D.; Ambatipudi, K. Quantitative alterations in bovine milk proteome from healthy, subclinical and clinical mastitis during S. aureus infection. J. Proteom. 2020, 223, 103815. [Google Scholar] [CrossRef]
- Jashari, R.; Piepers, S.; De Vliegher, S. Evaluation of the composite milk somatic cell count as a predictor of intramammary infection in dairy cattle. J. Dairy Sci. 2016, 99, 9271–9286. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, T.; Yamaguchi, S.; Iwasa, Y. Bovine mastitis and optimal disease management: Dynamic programming analysis. J. Theor. Biol. 2020, 498, 110292. [Google Scholar] [CrossRef]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peralta, O.A.; Carrasco, C.; Vieytes, C.; Tamayo, M.J.; Muñoz, I.; Sepulveda, S.; Tadich, T.; Duchens, M.; Melendez, P.; Mella, A.; et al. Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci. Rep. 2020, 10, 2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, K.A.; Shook, G.E. Genetic selection for mastitis resistance. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Lush, J.L. Inheritance of susceptibility to mastitis. J. Dairy Sci. 1950, 33, 121–125. [Google Scholar] [CrossRef]
- Young, C.W.; Legates, J.E.; Lecce, J.G. Genetic and phenotypic relationships between clinical mastitis, laboratory criteria, and udder height. J. Dairy Sci. 1960, 43, 54–62. [Google Scholar] [CrossRef]
- Kennedy, B.W.; Sethar, M.S.; Moxley, J.E.; Downey, B.R. Heritability of Somatic Cell Count and its relationship with milk yield and composition in Holsteins. J. Dairy Sci. 1982, 65, 843–847. [Google Scholar] [CrossRef]
- Boopathi, N. QTL Analysis. In Genetic Mapping and Marker Assisted Selection; Springer: Singapore, 2020; pp. 253–326. [Google Scholar] [CrossRef]
- Camozzi, M.; Rusnati, M.; Bugatti, A.; Bottazzi, B.; Mantovani, A.; Bastone, A.; Inforzato, A.; Vincenti, S.; Bracci, L.; Mastroianni, D.; et al. Identification of an antiangiogenic FGF2-binding site in the N terminus of the soluble pattern recognition receptor PTX3. J. Biol. Chem. 2006, 281, 22605–22613. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A. Proinflammatory cytokines. Chest 2000, 118, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Lahouassa, H.; Rainard, P.; Caraty, A.; Riollet, C. Identification and characterization of a new interleukin-8 receptor in bovine species. Mol. Immunol. 2008, 45, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.J.; Zhu, X.R.; Li, R.; Chen, D.; Xin, S.Y.; Zhu, Y.H.; Liao, X.X.; Wang, X.L.; Zhang, H.M.; Yang, Z.P.; et al. Methylation analysis of CXCR1 in mammary gland tissue of cows with mastitis induced by Staphylococcus aureus. Genet. Mol. Res. 2015, 14, 12606–12615. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel-Eibrink, M.M.; Wiemer, E.A.C.; Kuijpers, M.; Pieters, R.; Sonneveld, P. Absence of mutations in the deoxycytidine kinase (dCK) gene in patients with relapsed and/or refractory acute myeloid leukemia (AML). Leukemia 2001, 15, 855–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, T.; Kawasaki, Y.; Aoki, Y.; Magata, F.; Kawashima, C.; Miyamoto, A. Effect of Single Nucleotide Polymorphisms of Toll-Like Receptor 4 (TLR 4) on reproductive performance and immune function in dairy cows. Biochem. Genet. 2017, 55, 212–222. [Google Scholar] [CrossRef]
- Wang, W.; Cheng, L.; Yi, J.; Gan, J.; Tang, H.; Fu, M.Z.; Wang, H.; Lai, S.J. Health and production traits in bovine are associated with single nucleotide polymorphisms in the NOD2 gene. Genet. Mol. Res. 2015, 14, 3570–3578. [Google Scholar] [CrossRef]
- Wang, X.; Ju, Z.; Huang, J.; Hou, M.; Zhou, L.; Qi, C.; Zhang, Y.; Gao, Q.; Pan, Q.; Li, G.; et al. The relationship between the variants of the bovine MBL2 gene and milk production traits, mastitis, serum MBL-C levels and complement activity. Vet. Immunol. Immunopathol. 2012, 148, 311–319. [Google Scholar] [CrossRef]
- Larson, M.A.; Weber, A.; McDonald, T.L. Bovine serum amyloid A3 gene structure and promoter analysis: Induced transcriptional expression by bacterial components and the hormone prolactin. Gene 2006, 380, 104–110. [Google Scholar] [CrossRef]
- Kulseth, M.A.; Rogne, S. Cloning and characterization of the bovine immunoglobulin J Chain cDNA and its promoter region. DNA Cell Biol. 1994, 13, 37–42. [Google Scholar] [CrossRef]
- Shook, G.E. Genetic improvement of mastitis through selection on somatic cell count. Vet. Clin. N. Am. Food Anim. Pract. 1993, 9, 563–577. [Google Scholar] [CrossRef]
- Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; Canese, K.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016, 44, D7–D19. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Alam, M.; Fikse, F.; Rönnegård, L. A novel generalized ridge regression method for quantitative genetics. Genetics 2013, 193, 1255–1268. [Google Scholar] [CrossRef] [Green Version]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef] [Green Version]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2003. [Google Scholar]
- Kent, W.J.; Sugnet, C.W.; Furey, T.S.; Roskin, K.M.; Pringle, T.H.; Zahler, A.M.; Haussler, D. The human genome browser at UCSC. Genome Res. 2002, 12, 996–1006. [Google Scholar] [CrossRef] [Green Version]
- The RNAcentral Consortium. RNAcentral: A comprehensive database of non-coding RNA sequences. Nucleic Acids Res. 2017, 45, D128–D134. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Saini, H.K.; van Dongen, S.; Enright, A.J. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 2008, 36, D154–D158. [Google Scholar] [CrossRef] [Green Version]
- Carnevali, D.; Conti, A.; Pellegrini, M.; Dieci, G. Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines. DNA Res. 2017, 24, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Glazov, E.A.; Kongsuwan, K.; Assavalapsakul, W.; Horwood, P.F.; Mitter, N.; Mahony, T.J. Repertoire of bovine miRNA and miRNA-like small regulatory RNAs expressed upon viral infection. PLoS ONE 2009, 4, e6349. [Google Scholar] [CrossRef] [Green Version]
- Maciel-Dominguez, A.; Swan, D.; Ford, D.; Hesketh, J. Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2. Mol. Nutr. Food Res. 2013, 57, 2195–2205. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Zou, X.; Lin, H.J.; Zhao, B.C.; Zhang, M.L.; Luo, C.H.; Fu, S.X. miRNA-185 regulates the VEGFA signaling pathway in dairy cows with retained fetal membranes. Theriogenology 2018, 110, 116–121. [Google Scholar] [CrossRef]
- Shao, W.; Wang, T. Transcript assembly improves expression quantification of transposable elements in single-cell RNA-seq data. Genome Res. 2021, 31, 88–100. [Google Scholar] [CrossRef]
- Tobar-Tosse, F.; Veléz, P.E.; Ocampo-Toro, E.; Moreno, P.A. Structure, clustering and functional insights of repeats configurations in the upstream promoter region of the human coding genes. BMC Genom. 2018, 19, 862. [Google Scholar] [CrossRef]
- Thompson, P.J.; Macfarlan, T.S.; Lorincz, M.C. Long terminal repeats: From parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol. Cell. 2016, 62, 766–776. [Google Scholar] [CrossRef] [Green Version]
- Manghera, M.; Douville, R.N. Endogenous retrovirus-K promoter: A landing strip for inflammatory transcription factors? Retrovirology 2013, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Nani, J.P.; Raschia, M.A.; Poli, M.A.; Calvinho, L.F.; Amadio, A.F. Genome-wide association study for somatic cell score in Argentinean dairy cattle. Livest. Sci. 2015, 175, 1–9. [Google Scholar] [CrossRef]
- Koeck, A.; Miglior, F.; Kelton, D.F.; Schenkel, F.S. Alternative somatic cell count traits to improve mastitis resistance in Canadian Holsteins. J. Dairy Sci. 2012, 95, 432–439. [Google Scholar] [CrossRef] [Green Version]
- Muranty, H.; Goffinet, B. Selective genotyping for location and estimation of the effect of a quantitative trait locus. Biometrics 1997, 53, 629–643. [Google Scholar] [CrossRef]
- Xu, S.; Vogl, C. Maximum likelihood analysis of quantitative trait loci under selective genotyping. Heredity 2000, 84, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Siebert, L.; Headrick, S.; Lewis, M.; Gillespie, B.; Young, C.; Wojakiewicz, L.; Kerro-Dego, O.; Prado, M.E.; Almeida, R.; Oliver, S.P.; et al. Genetic variation in CXCR1 haplotypes linked to severity of Streptococcus uberis infection in an experimental challenge model. Vet. Immunol. Immunopathol. 2017, 190, 45–52. [Google Scholar] [CrossRef]
- Wu, X.; Lund, M.S.; Sahana, G.; Guldbrandtsen, B.; Sun, D.; Zhang, Q.; Su, G. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins. Genet. Sel. Evol. 2015, 47, 50. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Ma, P.; Liu, J.; Zhang, Q.; Zhang, Y.; Ding, X.; Jiang, L.; Wang, Y.; Zhang, Y.; Sun, D.; et al. Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet. 2015, 16, 111. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.; Peters, S.; Akwanji, K.; Akwanji, K.A.; Imumorin, I.G.; Zhao, X. High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci. Rep. 2016, 6, 31109. [Google Scholar] [CrossRef] [Green Version]
- Patrushev, L.I.; Kovalenko, T.F. Functions of noncoding sequences in mammalian genomes. Biochemistry 2014, 79, 1442–1469. [Google Scholar] [CrossRef]
- Yang, F.; Chen, F.; Li, L.; Yan, L.; Badri, T.; Lv, C.; Yu, D.; Zhang, M.; Jang, X.; Li, J.; et al. Three novel players: PTK2B, SYK, and TNFRSF21 were identified to be involved in the regulation of bovine mastitis susceptibility via GWAS and post-transcriptional analysis. Front. Immunol. 2019, 10, 1579. [Google Scholar] [CrossRef] [Green Version]
- Eimer, H.; Sureshkumar, S.; Yadav, A.S.; Kraupner-Taylor, C.; Bandaranayake, C.; Seleznev, A.; Thomason, T.; Fletcher, S.J.; Gordon, S.F.; Carroll, B.J.; et al. RNA-dependent epigenetic silencing directs transcriptional downregulation caused by intronic repeat expansions. Cell 2018, 5, 1095–1105. [Google Scholar] [CrossRef]
- Welderufael, B.G.; Løvendahl, P.; de Koning, D.-J.; Janss, L.L.G.; Fikse, W.F. Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet. 2018, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Opsal, M.A.; Lien, S.; Brenna-Hansen, S.; Olsen, H.G.; Våge, D.I. Association analysis of the constructed linkage maps covering TLR2 and TLR4 with clinical mastitis in Norwegian red cattle. J. Anim. Breed. Genet. 2008, 125, 110–118. [Google Scholar] [CrossRef]
GENE (CHR) | Gene Position | ReSeq Region | Upstream | Downstream | COV | ||
---|---|---|---|---|---|---|---|
PTX3 (BTA1) 1 | 111,027,803 | 111,033,868 | 111,026,949 | 111,032,707 | 854 | −1161 | 64% |
CXCR1 (BTA2) | 106,936,878 | 106,938,583 | 106,935,752 | 106,942,024 | 1126 | 3441 | 88% |
CXCR2 (BTA2) | 106,900,475 | 106,915,876 | 106,899,301 | 106,917,188 | 1174 | 1312 | 73% |
JCHAIN (BTA6) | 87,759,435 | 87,768,832 | 87,758,532 | 87,770,133 | 903 | 1301 | 85% |
DCK (BTA6) | 88,049,498 | 88,077,488 | 88,043,812 | 88,077,721 | 5686 | 233 | 78% |
TLR4 (BTA8) | 108,828,899 | 108,839,913 | 108,818,057 | 108,841,671 | 10,842 | 1758 | 81% |
NOD2 (BTA18) | 19,177,563 | 19,212,607 | 19,166,798 | 19,213,798 | 10,765 | 1191 | 83% |
MBL2 (BTA26) | 6,343,615 | 6,348,912 | 6,332,528 | 6,349,772 | 11,087 | 860 | 64% |
MBL1 (BTA28) 1 | 35,840,848 | 35,846,070 | 35,839,722 | 35,856,132 | 10,062 | 1126 | 88% |
M-SAA3.2 (BTA29) | 26,755,567 | 26,759,547 | 26,749,896 | 26,760,832 | 5671 | 1285 | 82% |
Gene | Chr | Position | rs | Allele | Annotation | WMW p 5 | HEM | MG p 5 |
---|---|---|---|---|---|---|---|---|
PTX31 | 1 | 111,028,365 | rs378618073 | G/T | 3′ UTR | *** | ns | ns |
111,028,516 | rs208223246 | C/T | exon 3 (E347K) | *** | ns | ns | ||
111,028,532 | rs43263271 | A/C | exon 3 (D341E) | * | ns | ns | ||
111,030,195 | rs207576885 | A/T | intron 2 | *** | ns | ns | ||
111,030,376 | rs210764862 | G/A | intron 2 | *** | ns | ns | ||
111,030,399 | rs381383694 | A/C | intron 2 | *** | ns | ns | ||
111,030,410 | NA 2 | A/G | intron 2 | *** | ns | ns | ||
111,030,413 | rs208776659 | C/G | intron 2 | *** | ns | ns | ||
111,030,423 | NA | T/C | intron 2 | *** | ns | ns | ||
111,030,988 | rs381920578 | C/T | intron 2 | ** | ns | ns | ||
111,031,525 | rs207709330 | T/A | intron 2 | * | ns | ns | ||
111,031,892 | rs43263268 | A/C | intron 2 | *** | ns | ns | ||
CXCR1 | 2 | 106,939,924 | rs109694601 | G/A | intron 1 | ** | ns | −0.159 (A) * |
JCHAIN | 6 | 87,762,375 | rs110597692 | C/G | intron 2 | * | ns | ns |
87,762,415 | rs110854643 | G/A | intron 2 | * | ns | ns | ||
87,764,301 | rs382005122 | C/T | intron 2 | * | ns | ns | ||
DCK | 6 | 88,043,981 | rs1115177107 | G/A | intergenic | * | ns | ns |
88,044,420 | NA | G/T | intergenic | * | 0.432 (T) * | 0.125 (T) * | ||
88,048,414 | rs137327740 | C/G | −1.084 5′ UTR | * | ns | ns | ||
88,054,256 | rs43472176 | T/C | intron 1 | *** | ns | −0.205 (C) ** | ||
88,054,483 | rs43472177 | C/T | intron 1 | *** | ns | ns | ||
88,055,035 | rs43472180 | T/C | intron 1 | *** | −0.451 (C) * | ns | ||
88,059,177 | rs379452380 | -/T | intron 2 | * | ns | ns | ||
88,069,402 | rs452449360 | T/C | intron 4 | * | −0.418 (C) * | ns | ||
88,069,428 | NA | T/A | intron 4 | ** | −0.699 (T) * | −0.186 (T) ** | ||
TLR4 | 8 | 108,822,089 | rs43578057 | T/C | intergenic | * | ns | ns |
108,822,381 | rs43578059 | A/C | intergenic | * | ns | ns | ||
108,822,406 | rs43578060 | C/T | intergenic | * | ns | ns | ||
108,822,446 | rs43578061 | G/A | intergenic | * | ns | ns | ||
108,822,466 | rs43578062 | T/A | intergenic | * | ns | ns | ||
108,822,579 | rs43578063 | T/A | intergenic | * | ns | ns | ||
NOD2 | 18 | 19,168,779 | rs111017375 | A/C | intergenic | * | ns | ns |
19,168,902 | rs109352180 | T/C | intergenic | ** | ns | 0.162 (C) * | ||
19,186,138 | rs209462767 | G/A | splice exon 4 | * | ns | ns | ||
19,205,258 | rs209159307 | G/A | intron 11 | * | ns | −0.195 (A) * | ||
19,210,095 | rs110918103 | T/A | intron 12 | ** | 0.303 (A) * | 0.159 (A) ** | ||
19,210,136 | rs210362219 | G/A | intron 12 | ** | 0.303 (A) * | ns | ||
MBL2 | 26 | 6,332,839 | rs110884426 | C/T | intergenic | ns | −0.421 (T) * | ns |
6,332,909 | rs208727559 | T/A | intergenic | * | ns | ns | ||
6,332,959 | rs209975765 | C/T | intergenic | * | ns | ns | ||
6,334,846 | rs520561418 | C/T | intergenic | * | ns | ns | ||
6,335,302 | rs442274187 | G/T | intergenic | * | ns | ns | ||
6,341,013 | rs380597712 | A/C | intergenic | * | ns | ns | ||
6,341,147 | rs465968175 | T/C | intergenic | * | ns | ns | ||
6,342,415 | rs459506838 | TTAA/- | −1200 5′ UTR | * | ns | ns | ||
6,342,906 | rs482417200 | T/A | −709 5′ UTR | * | ns | ns | ||
6,343,309 | rs798205710 | C/T | −306 5′ UTR | * | ns | ns | ||
6,343,517 | rs384805952 | T/C | −98 5′ UTR | * | ns | ns | ||
6,343,820 | rs438573157 | G/T | intron 1 | * | ns | ns | ||
6,344,627 | rs436853860 | A/G | intron 1 | * | ns | ns | ||
6,344,678 | rs455369386 | C/T | intron1 | * | ns | ns | ||
6,344,920 | rs209940244 | G/A | exon 2 (P42P) | * | ns | ns | ||
6,344,929 | rs210820536 | T/C | exon 2 (N45N) | * | ns | ns | ||
6,345,350 | rs438686412 | A/G | intron 2 | * | ns | ns | ||
6,345,401 | rs463533307 | C/T | exon 3 (P73P) | * | ns | ns | ||
6,345,502 | rs475632625 | C/G | intron 3 | * | ns | ns | ||
6,349,735 | rs136687134 | A/C | +823 3′ UTR | ns | 0.242 (C) * | ns | ||
MBL11 | 28 | 35,842,351 | rs208247354 | G/A | intron 3 | * | ns | ns |
35,844,679 | rs208491630 | G/T | intron 1 | * | ns | ns | ||
35,852,741 | rs211629255 | C/T | intron 2 SFPTA1 3 | ** | 0.323 (T) * | ns | ||
M-SAA3.2 | 29 | 26,741,245 | rs42175273 | A/T | intergenic SAA4 4 | ns | ns | −0.126 (T) * |
26,755,302 | rs136687125 | T/C | −265 5′ UTR | * | ns | ns | ||
26,755,410 | rs137746604 | G/A | −157 5′ UTR | * | ns | ns | ||
26,755,477 | rs210417381 | T/C | −90 5′ UTR | * | ns | −0.181 (C) * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moretti, R.; Soglia, D.; Chessa, S.; Sartore, S.; Finocchiaro, R.; Rasero, R.; Sacchi, P. Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals 2021, 11, 366. https://doi.org/10.3390/ani11020366
Moretti R, Soglia D, Chessa S, Sartore S, Finocchiaro R, Rasero R, Sacchi P. Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals. 2021; 11(2):366. https://doi.org/10.3390/ani11020366
Chicago/Turabian StyleMoretti, Riccardo, Dominga Soglia, Stefania Chessa, Stefano Sartore, Raffaella Finocchiaro, Roberto Rasero, and Paola Sacchi. 2021. "Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls" Animals 11, no. 2: 366. https://doi.org/10.3390/ani11020366
APA StyleMoretti, R., Soglia, D., Chessa, S., Sartore, S., Finocchiaro, R., Rasero, R., & Sacchi, P. (2021). Identification of SNPs Associated with Somatic Cell Score in Candidate Genes in Italian Holstein Friesian Bulls. Animals, 11(2), 366. https://doi.org/10.3390/ani11020366