Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Chemical Analysis of Feeds and Excreta
2.3. Gaseous Emission Measurements
2.4. Statistical Analysis and Calculations
3. Results
3.1. Orange Pulps Chemical Composition
3.2. Apparent Digestibility of Diets and Orange Pulps
3.3. Daily Nutrient Intake and Composition of Effluents
3.4. Slurry Excretion and Gaseous Emissions
4. Discussion
4.1. Nutritional Value of Dried Orange Pulp Sources
4.2. Gaseous Emissions from Slurry
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Citrus Fruit—Fresh and Processed Statistical Bulletin 2016; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/3/a-i8092e.pdf (accessed on 10 November 2020).
- Martínez-Pascual, J.L.; Fernández-Carmona, J. Composition of citrus pulp. Anim. Feed Sci. Technol. 1980, 5, 1–10. [Google Scholar] [CrossRef]
- Ministerio de Agricultura, Pesca y Alimentación de España (MAPA). Available online: https://www.mapa.gob.es/estadistica/pags/anuario/2019-Avance/avance/AvAE19.pdf (accessed on 10 November 2020).
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Beccali, M.; Cellura, M.; Uidicello, M.; Mistretta, A. Resource Consumption and Environmental impacts of the agrofood sector: Life Cycle Assessment of Italian citrus-based products. Environ. Manag. 2009, 43, 707–724. [Google Scholar] [CrossRef]
- De Blas, J.C.; Ferrer, P.; Rodríguez, C.A.; Cerisuelo, A.; García-Rebollar, P.; Calvet, S.; Farias, C. Nutritive value of citrus co-products in rabbit feeding. World Rabbit Sci. 2018, 26, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Feedipedia, a Programme by INRA, CIRAD, AFZ and FAO. Citrus Pulp, Dried. Available online: http://www.feedipedia.org/node/680 (accessed on 10 November 2020).
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Moset, V.; Piquer, O.; Cervera, C.; Fernández, C.J.; Hernández, P.; Cerisuelo, A. Ensiled citrus pulp as a by-product feedstuff for finishing pigs: Nutritional value and effects on intestinal microflora and carcass quality. Span. J. Agric. Res. 2015, 13, e0607. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Panzera, M.F. Biomethane production tests on ensiled orange peel waste. Int. J. Heat Technol. 2017, 35, 130–136. [Google Scholar] [CrossRef]
- National Research Council (USA). Nutrient Requirements of Swine, 11th ed.; Committee on Nutrient Requirement of Swine, Board on Agriculture and Natural Resources, Division on Earth and Life Studies; National Academy Press: Washington, DC, USA, 2012; p. 400. ISBN 978-0-309-22423-9. [Google Scholar]
- de Blas, C.; García-Rebollar, P.; Gorrachategui, M.; Mateos, G.G. Tablas FEDNA de Composición y Valor Nutritivo de Alimentos para la Fabricación de Piensos Compuestos, 4th ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2019; p. 603. ISBN 978-84-09-15688-7. [Google Scholar]
- Brazilian Tables for Poultry and Swine. Feedstuff Composition and Nutrtional Requirements, 4th ed.; Rostagno, H., Ed.; Univ. Federal Viçosa: Viçosa, Brazil, 2017; p. 482. ISBN 978-85-8179-121-0. [Google Scholar]
- INRA-CIRAD-AFZ Feed Tables. Available online: https://www.feedtables.com/ (accessed on 10 November 2020).
- Watanabe, P.H.; Thomaz, M.C.; dos Santos-Ruiz, U.; dos Santos, V.M.; Fraga, A.L.; Fonseca-Pascoal, L.A.; Zaneti-da Silva, S.; González-de Faria, H. Effect of inclusion of citrus pulp in the diet of finishing swines. Braz. Arch. Biol. Technol. 2010, 53, 709–718. [Google Scholar] [CrossRef] [Green Version]
- O’Sullivan, T.C.; Lynch, P.B.; Morrissey, P.A.; O’Grady, J.F. Evaluation of Citrus Pulp in Diets for Sows and Growing Pigs. Irish J. Agric. Food Res. 2003, 42, 243–253. [Google Scholar]
- Ruiz, U.S.; Tomaz, M.C.; Pascoal, L.A.F.; Watanabe, P.H.; Amorim, A.B.; Melo, G.M.P.; Daniel, E. Nutrient digestibility of degermed, dehulled corn, citrus pulp, and soy protein concentrate by barrows. J. Anim. Sci. 2012, 90, 170–172. [Google Scholar] [CrossRef]
- Cerisuelo, A.; Castelló, L.; Moset, V.; Martínez, M.; Hernández, P.; Piquer, O.; Gómez, E.; Gasa, J.; Lainez, M. The inclusion of ensiled citrus pulp in diets for growing pigs: Effects on voluntary intake, growth performance, gut microbiology and meat quality. Livest. Sci. 2010, 134, 180–182. [Google Scholar] [CrossRef]
- Antezana, W.; Calvet, S.; Beccaccia, A.; Ferrer, P.; De Blas, C.; García-Rebollar, P.; Cerisuelo, A. Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing pigs: III. Influence of varying the dietary level of calcium soap of palm fatty acids distillate with or without orange pulp supplementation. Anim. Feed Sci. Technol. 2015, 209, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Beccaccia, A.; Calvet, S.; Cerisuelo, A.; Ferrer, P.; García-Rebollar, P.; De Blas, C. Effects of nutrition on digestion efficiency and gaseous emissions from slurry in growing-finishing pigs. I. Influence of the inclusion of two levels of orange pulp and carob meal in isofibrous diets. Anim. Feed Sci. Technol. 2015, 208, 158–169. [Google Scholar] [CrossRef] [Green Version]
- de Blas, C.; Gasa, J.; Mateos, G.G. Necesidades Nutricionales para Ganado Porcino: Normas FEDNA, 2nd ed.; Fundación Española para el Desarrollo de la Nutrición Animal: Madrid, Spain, 2013; p. 109. ISBN 978-84-616-6813-7. [Google Scholar]
- Association of Official Analytical Chemists. Official Methods of Analysis, 17th ed.; Hortwiz, W., Ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000; p. 2200. ISBN 0-93558-67-6. [Google Scholar]
- Licitra, G.; Hernández, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feed. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Lees, R. Food Analysis: Analytical and Quality Control Methods for the Manufacturer and Buyer; Leonard Hill Books: London, UK, 1975; pp. 145–146. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Alvarez, I.; Vega, I.; Brenes, A. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chem. 2012, 133, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martín, L.; Beccaccia, A.; De Blas, C.; Sanz-Cobena, A.; García-Rebollar, P.; Estellés, F.; Marsden, K.A.; Chadwick, D.R.; Vallejo, A. Diet management to effectively abate N2O emissions from surface applied pig slurry. Agric. Ecosyst. Environ. 2017, 239, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Jouany, J.P. Volatile fatty acid and alcohol determination in digestive contents silage juices, bacterial cultures and anaerobic fermentor contents. Sci. Aliment. 1982, 2, 131–144. [Google Scholar]
- APHA; AWWA; WEF. Standard Methods for Examination of Water and Wastewater, 22nd ed.; American Public Health Association: Washington, DC, USA, 2012; p. 1360. ISBN 978-087553-013-0. [Google Scholar]
- Angelidaki, I.; Alves, M.; Bolzonella, D.; Borzacconi, L.; Campos, J.L.; Guwy, A.J.; Kalyuzhnyi, S.; Jenicek, P.; Van Lier, J.B. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays. Water Sci. Technol. 2009, 59, 927–934. [Google Scholar] [CrossRef] [Green Version]
- Bolarinwa, O.A.; Adeola, O. Direct and regression methods do not give different estimates of digestible and metabolizable energy of wheat for pigs. J. Anim. Sci. 2012, 90 (Suppl. 4), 390–392. [Google Scholar] [CrossRef] [PubMed]
- CVB Feed Table 2019. Chemical Composition and Nutritional Values of Feedstuffs. Available online: http://www.cvbdiervoeding.nl (accessed on 10 November 2020).
- Lindberg, J.E. Fiber effects in nutrition and gut health in pigs. J. Anim. Sci. Biotechnol. 2014, 5, 15–22. [Google Scholar] [CrossRef]
- Megías, M.D.; Martínez-Teruel, A.; Gallego, J.A.; Núñez, J.M. Chemical changes during the ensiling of orange peel. Anim. Feed Sci. Technol. 1993, 43, 269–274. [Google Scholar] [CrossRef]
- Grizotto, R.K.; Siqueira, G.R.; Campos, A.F.; Modesto, R.T. and Resende, F.D. Fermentative parameters and aerobic stability of orange peel silage with pelleted citrus pulp. Rev. Bras. Zootec. 2020, 49, e20190265. [Google Scholar] [CrossRef]
- Portejoie, S.; Dourmad, J.Y.; Martinez, J.; Lebreton, Y. Effect of lowering dietary crude protein on nitrogen excretion, manure composition and ammonia emission from fattening pigs. Livest. Prod. Sci. 2004, 9, 45–55. [Google Scholar] [CrossRef]
- Canh, T.T.; Verstegen, M.W.A.; Aarnink, A.J.A.; Schrama, J.W. Influence of dietary factors on nitrogen partitioning and composition of urine and feces of fattening pigs. J. Anim. Sci. 1997, 75, 700–706. [Google Scholar] [CrossRef]
- Patráš, P.; Nitrayová, S.; Brestenský, M.; Heger, J. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs. J. Anim. Sci. 2012, 90 (Suppl. 4), 158–160. [Google Scholar] [CrossRef]
- Hansen, M.J.; Chwalibog, A.; Tauson, A.H. Influence of different fibre sources in diets for growing pigs on chemical composition of faeces and slurry and ammonia emission from slurry. Anim. Feed Sci. Technol. 2007, 134, 326–336. [Google Scholar] [CrossRef]
- Ferrer, P.; García-Rebollar, P.; Cerisuelo, A.; Ibáñez, M.A.; Rodríguez, C.A.; Calvet, S.; De Blas, C. Nutritional value of crude and partially defatted olive cake in finishing pigs and effects on nitrogen balance and gaseous emissions. Anim. Feed Sci. Technol. 2018, 236, 131–140. [Google Scholar] [CrossRef]
- Noblet, J.; Le Goff, G. Effect of dietary fibre on the energy value of feeds for pigs. Anim. Feed Sci. Technol. 2001, 90, 35–52. [Google Scholar] [CrossRef]
- Gonthier, M.P.; Cheynier, V.; Donovan, J.L.; Manach, C.; Morand, C.; Mila, I.; Lapierre, C.; Rémésy, C.; Scalbert, A. Microbial aromatic acid metabolites formed in the gut account for a major fraction of the polyphenols excreted in urine of rats fed red wine polyphenols. J. Nutr. 2003, 133, 461–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Triolo, J.M.; Sommer, S.G.; Møller, H.B.; Weisbjerg, M.R.; Jiang, X.Y. A new algorithm to characterize biodegradability of biomass during anaerobic digestion: Influence of lignin concentration on methane production potential. Bioresour. Technol. 2011, 102, 9395–9402. [Google Scholar] [CrossRef] [PubMed]
- Beccaccia, A.; Ferrer, P.; Ibáñez, M.A.; Estellés, F.; Rodríguez, C.; Moset, V.; de Blas, C.; Calvet, S.; García-Rebollar, P. Relationships among slurry characteristics and gaseous emissions at different types of commercial Spanish pig farms. Span. J. Agric. Res. 2015, 13, 1–15. [Google Scholar] [CrossRef]
- Angelidaki, I.; Sanders, W. Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 2004, 3, 117–129. [Google Scholar] [CrossRef]
Item | Dehydrated | Silage Sun-Dried |
---|---|---|
Dry matter | 877 | 860 |
Ash | 59.9 | 83.7 |
HCl insoluble ash | 1.09 | 2.03 |
Crude protein | 64.5 | 79.3 |
NDICP 1 | 22.6 | 8.10 |
ADICP 2 | 5.40 | 1.30 |
Ether extract | 22.8 | 35.3 |
Total sugars | 355 | 101 |
Soluble fiber | 287 | 271 |
aNDFom 3 | 206 | 247 |
ADFom 4 | 145 | 176 |
ADL 5 | 24.1 | 18.9 |
Total polyphenols | 3.59 | 3.27 |
Lactic acid | 8.30 | 63.2 |
Citric acid | 21.4 | 47.0 |
Acetic acid | 2.51 | 1.60 |
Propionic acid | 3.40 | 2.28 |
Butyric acid | 0 | 1.25 |
Calcium | 16.6 | 22.3 |
Phosphorous | 1.26 | 1.17 |
Gross energy (MJ/kg) | 17.4 | 17.4 |
Ingredient | Proportion |
---|---|
Corn | 520 |
Wheat | 180 |
Soybean meal 45.5 | 270 |
Calcium carbonate | 9.7 |
Dicalcium phosphate | 10.0 |
Sodium chloride | 4.2 |
DL-methionine | 0.5 |
L-lysine HCL | 2.0 |
L-threonine | 0.6 |
Premix 1 | 3.0 |
Total amount | 1000 |
Orange Pulp Diets 1 | |||
---|---|---|---|
Basal Diet | Dehydrated | Silage Sun-Dried | |
Dry matter | 888 | 881 | 876 |
Ash | 53.2 | 55.2 | 64.8 |
Crude protein | 214 | 149 | 157 |
NDICP 2 | 25.6 | 23.0 | 17.4 |
Ether extract | 28.5 | 25.2 | 29.3 |
Total sugars | 48.2 | 208 | 72.6 |
Soluble fiber | 53.6 | 162 | 157 |
aNDFom 3 | 108 | 156 | 183 |
ADFom 4 | 32.9 | 79.3 | 100 |
ADL 5 | 8.86 | 16.5 | 13.9 |
Total polyphenols | 0.25 | 1.27 | 1.27 |
Calcium 6 | 7.20 | 11.9 | 14.9 |
Phosphorous 6 | 6.12 | 3.71 | 3.73 |
Benzoic acid (mg/kg) | <10 | 14 | 27 |
Gross energy (MJ/kg) | 18.1 | 17.6 | 17.6 |
Standardized ileal digestibility of amino acids 6 | |||
Lysine | 10.9 | 5.92 | 6.04 |
Methionine | 3.42 | 1.88 | 1.92 |
Methionine + Cysteine | 6.40 | 3.37 | 3.77 |
Threonine | 7.20 | 4.19 | 4.34 |
Tryptophan | 2.11 | 1.25 | 1.30 |
Isoleucine | 7.54 | 4.36 | 4.52 |
Valine | 8.48 | 5.17 | 5.41 |
Orange Pulp 1 | Significance 2 | |||||
---|---|---|---|---|---|---|
Item | Basal | Dehydrated | Silage Sun-Dried | SEM 3 | 1 | 2 |
Dry matter | 0.892 | 0.864 | 0.832 | 0.0073 | <0.001 | 0.006 |
Ash | 0.639 | 0.586 | 0.509 | 0.019 | <0.001 | 0.001 |
Crude protein | 0.859 | 0.738 | 0.694 | 0.016 | <0.001 | 0.070 |
Ether extract | 0.450 | 0.308 | 0.394 | 0.031 | 0.016 | 0.065 |
Soluble fiber | 0.807 | 0.902 | 0.856 | 0.017 | 0.002 | 0.068 |
aNDFom 4 | 0.697 | 0.749 | 0.752 | 0.016 | 0.013 | 0.875 |
ADFom 5 | 0.656 | 0.775 | 0.767 | 0.031 | 0.006 | 0.869 |
Hemicelluloses 6 | 0.705 | 0.722 | 0.743 | 0.011 | 0.092 | 0.427 |
Cellulose 7 | 0.636 | 0.817 | 0.816 | 0.038 | <0.001 | 0.988 |
Gross energy | 0.882 | 0.843 | 0.815 | 0.008 | <0.001 | 0.026 |
Energy balance, MJ/kg DM | ||||||
Digestible energy | 16.0 | 14.9 | 14.4 | 0.145 | <0.001 | 0.021 |
UE/DE 8 | 0.022 | 0.052 | 0.046 | 0.0026 | <0.001 | 0.147 |
Orange Pulp 1 | ||||
---|---|---|---|---|
Item | Dehydrated | Silage Sun-Dried | SEM 2 | Significance |
Dry matter | 0.836 | 0.771 | 0.017 | 0.019 |
Ash | 0.534 | 0.378 | 0.043 | 0.025 |
Crude protein | 0.617 | 0.530 | 0.039 | 0.133 |
Soluble fiber | 0.997 | 0.904 | 0.034 | 0.075 |
ANDFom 3 | 0.800 | 0.807 | 0.015 | 0.733 |
ADFom 4 | 0.892 | 0.878 | 0.028 | 0.719 |
Hemicelluloses 5 | 0.739 | 0.764 | 0.020 | 0.383 |
Cellulose 6 | 0.997 | 0.996 | 0.033 | 0.973 |
Gross energy | 0.804 | 0.748 | 0.019 | 0.058 |
Digestible energy, MJ/kg DM | 14.2 | 13.2 | 0.338 | 0.058 |
Orange Pulp 1 | Significance 2 | |||||
---|---|---|---|---|---|---|
Item | Basal | Dehydrated | Silage Sun-Dried | SEM 3 | 1 | 2 |
Dietary intake | ||||||
Dry matter | 1922 | 1488 | 1522 | 73.4 | <0.001 | 0.752 |
Nitrogen | 65.8 | 35.5 | 38.1 | 2.01 | <0.001 | 0.371 |
Gross energy, MJ | 34.9 | 26.3 | 26.9 | 1.31 | <0.001 | 0.768 |
Fecal excretion | ||||||
Dry matter | 209 | 202 | 259 | 18.9 | 0.359 | 0.049 |
Organic matter | 172 | 168 | 210 | 15.9 | 0.382 | 0.080 |
Nitrogen | 9.34 | 9.29 | 11.8 | 1.01 | 0.329 | 0.093 |
Ether extract | 30.1 | 25.8 | 27.1 | 1.80 | 0.107 | 0.638 |
aNDFom 4 | 69.3 | 58.2 | 69.3 | 4.34 | 0.305 | 0.089 |
ADFom 5 | 25.9 | 25.6 | 36.0 | 2.83 | 0.134 | 0.031 |
ADL 6 | 5.42 | 9.48 | 11.4 | 0.642 | <0.001 | 0.052 |
Total polyphenols | 0.316 | 0.488 | 0.458 | 0.050 | 0.019 | 0.688 |
Gross energy, MJ | 4.13 | 4.12 | 5.03 | 0.371 | 0.332 | 0.103 |
Urine excretion | ||||||
Dry matter | 84.5 | 97.3 | 85.6 | 6.06 | 0.353 | 0.190 |
Organic matter | 56.8 | 68.7 | 61.4 | 4.16 | 0.120 | 0.235 |
Total Kjeldahl N | 15.3 | 9.94 | 7.90 | 0.850 | <0.001 | 0.110 |
Benzoic acid, mL | 575 | 1585 | 1677 | 140 | <.0001 | 0.653 |
Hippuric acid, mL | 713 | 3076 | 3115 | 350 | 0.002 | 0.939 |
Gross energy, MJ | 0.69 | 1.15 | 1.01 | 0.077 | <0.001 | 0.222 |
Orange Pulp Diets 1 | Significance 2 | |||||
---|---|---|---|---|---|---|
Basal | Dehydrated | Silage Sun-Dried | SEM 3 | 1 | 2 | |
Slurry excretion (kg/day) | 2.11 | 2.15 | 2.20 | 0.15 | 0.720 | 0.810 |
Slurry composition | ||||||
Dry matter (g/kg) | 135 | 137 | 162 | 12.6 | 0.370 | 0.190 |
Organic matter (g/kg) | 103 | 108 | 128 | 10.8 | 0.280 | 0.220 |
Total ammonia nitrogen (g/L) | 7.88 | 4.07 | 4.40 | 0.85 | 0.002 | 0.790 |
TKN (g/L) 4 | 13.4 | 10.1 | 9.40 | 0.61 | <0.001 | 0.450 |
pH | 8.69 | 7.79 | 7.45 | 0.15 | <0.001 | 0.130 |
Total volatile fatty acids (mmol/L) | 79.2 | 70.0 | 107 | 12.7 | 0.520 | 0.055 |
Acetic acid (mmol/L) | 58.2 | 57.8 | 72.2 | 7.07 | 0.390 | 0.150 |
Propionic acid (mmol/L) | 8.97 | 5.47 | 10.7 | 1.13 | 0.470 | 0.004 |
Butyric acid (mmol/L) | 5.63 | 3.26 | 6.29 | 1.03 | 0.440 | 0.045 |
Gas emissions | ||||||
g NH3/kg slurry | 2.82 | 1.13 | 1.03 | 0.17 | <0.001 | 0.210 |
g N-NH3/kg initial TKN | 212 | 135 | 112 | 14.5 | <0.001 | 0.270 |
mg NH3/animal and day | 543 | 261 | 201 | 42.8 | <0.001 | 0.330 |
mL CH4/g organic matter | 396 | 344 | 276 | 26.0 | 0.010 | 0.070 |
L CH4/animal and day | 82.0 | 71.4 | 73.9 | 6.04 | 0.200 | 0.770 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrer, P.; García-Rebollar, P.; Calvet, S.; de Blas, C.; Piquer, O.; Rodríguez, C.A.; Cerisuelo, A. Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry. Animals 2021, 11, 387. https://doi.org/10.3390/ani11020387
Ferrer P, García-Rebollar P, Calvet S, de Blas C, Piquer O, Rodríguez CA, Cerisuelo A. Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry. Animals. 2021; 11(2):387. https://doi.org/10.3390/ani11020387
Chicago/Turabian StyleFerrer, Pablo, Paloma García-Rebollar, Salvador Calvet, Carlos de Blas, Olga Piquer, Carlos A. Rodríguez, and Alba Cerisuelo. 2021. "Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry" Animals 11, no. 2: 387. https://doi.org/10.3390/ani11020387
APA StyleFerrer, P., García-Rebollar, P., Calvet, S., de Blas, C., Piquer, O., Rodríguez, C. A., & Cerisuelo, A. (2021). Effects of Orange Pulp Conservation Methods (Dehydrated or Ensiled Sun-Dried) on the Nutritional Value for Finishing Pigs and Implications on Potential Gaseous Emissions from Slurry. Animals, 11(2), 387. https://doi.org/10.3390/ani11020387