The Influence of Skin Thickness on Flash Glucose Monitoring System Accuracy in Dogs with Diabetes Mellitus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Diabetic Dogs
2.2. Data Collection
2.3. Ultrasonography of the Neck
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Corradini, S.; Pilosio, B.; Dondi, F.; Linari, G.; Testa, S.; Brugnoli, F.; Gianella, P.; Pietra, M.; Fracassi, F. Accuracy of a Flash Glucose Monitoring System in Diabetic Dogs. J. Vet. Intern. Med. 2016, 30, 983–988. [Google Scholar] [CrossRef] [Green Version]
- Malerba, E.; Cattani, C.; Del Baldo, F.; Carotenuto, G.; Corradini, S.; Golinelli, S.; Drudi, I.; Fracassi, F. Accuracy of a flash glucose monitoring system in dogs with diabetic ketoacidosis. J. Vet. Intern. Med. 2019, 34, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Metzger, M.; Leibowitz, G.; Wainstein, J.; Glaser, B.; Raz, I. Reproducibility of glucose measurements using the glucose sensor. Diabetes Care 2002, 25, 1185–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, L.J.; Slater, L.A.; Herrtage, M.E.; Church, D.B.; Judge, S.; Ristic, J.M.E.; Catchpole, B. Evaluation of a continuous glucose monitoring system in diabetic dogs. J. Small Anim. Pract. 2003, 44, 435–442. [Google Scholar] [CrossRef]
- DeClue, A.E.; Cohn, L.A.; Kerl, M.E.; Wiedmeyer, C.E. Use of Continuous Blood Glucose Monitoring for Animals With Diabetes Mellitus. J. Am. Anim. Hosp. Assoc. 2004, 40, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Wiedmeyer, C.; DeClue, A.E. Continuous Glucose Monitoring in Dogs and Cats. J. Vet. Intern. Med. 2008, 22, 2–8. [Google Scholar] [CrossRef]
- Hafner, M.; Lutz, T.A.; Reusch, C.E.; Zini, E. Evaluation of sensor sites for continuous glucose monitoring in cats with diabetes mellitus. J. Feline Med. Surg. 2013, 15, 117–123. [Google Scholar] [CrossRef]
- Reineke, E.L.; Fletcher, D.J.; King, L.G.; Drobatz, K.J. Accuracy of a continuous glucose monitoring system in dogs and cats with diabetic ketoacidosis. J. Veter-Emerg. Crit. Care 2010, 20, 303–312. [Google Scholar] [CrossRef]
- Wiedmeyer, C.E.; Johnson, P.J.; Cohn, L.A.; Meadows, R.L. Evaluation of a continuous glucose monitoring system for use in dogs, cats, and horses. J. Am. Veter-Med. Assoc. 2003, 223, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Wiedmeyer, C.E.; Johnson, P.J.; Cohn, L.A. Evaluation of a continuous glucose monitoring system for use in veterinary med-icine. Diabetes Technol. Ther. 2005, 7, 885–895. [Google Scholar] [CrossRef]
- Affenzeller, N.; Thalhammer, J.G.; Willmann, M. Home-based subcutaneous continuous glucose monitoring in 10 diabetic dogs. Vet. Rec. 2011, 169, 206. [Google Scholar] [CrossRef]
- Summers, L.K.M.; Clark, M.L.; Humphreys, S.M.; Bugler, J.; Frayn, K.N. The Use of Microdialysis to Monitor Rapid Changes in Glucose Concentration. Horm. Metab. Res. 1999, 31, 424–428. [Google Scholar] [CrossRef]
- Moberg, E.; Hagstrom-Toft, E.; Arner, P. Protracted glucose fall in subcutaneous adipose tissue and skeletal muscle com-pared with blood during insulin-induced hypoglycaemia. Diabetologia 1997, 40, 1320–1326. [Google Scholar] [CrossRef] [Green Version]
- Horejsi, R.; Möller, R.; Pieber, T.R.; Wallner, S.; Sudi, K.; Reibnegger, G.; Tafeit, E. Differences of subcutaneous adipose tissue topography between type-2 diabetic men and healthy controls. Exp. Biol. Med. 2002, 227, 794–798. [Google Scholar] [CrossRef]
- Fracassi, F.; Hadar, G.S.; Pietra, M. Assessment of two portable blood glucose meters for use in cats and dogs. J. Vet. Clin. Sci. 2009, 2, 108–121. [Google Scholar]
- Diana, A.; Preziosi, R.; Guglielmini, C.; Degliesposti, P.; Pietra, M.; Cipone, M. High-frequency ultrasonography of the skin of clinically normal dogs. Am. J. Vet. Res. 2004, 65, 1625–1630. [Google Scholar] [CrossRef]
- Diana, A.; Guglielmini, C.; Fracassi, F.; Pietra, M.; Balletti, E.; Cipone, M. Use of high-frequency ultrasonography for evaluation of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs. Am. J. Vet. Res. 2008, 69, 1148–1152. [Google Scholar] [CrossRef] [PubMed]
- Parkes, J.L.; Slatin, S.L.; Pardo, S.; Ginsberg, B.H. A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 2000, 23, 1143–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanna, G.; Fondevila, D.; Ferrer, L.; Espada, Y. Evaluation of ultrasonography for measurement of skin thickness in Shar-Peis. Am. J. Vet. Res. 2012, 73, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Milner, S.M.; Memar, O.M.; Gherardini, G.; Bennett, J.C.; Phillips, L.G. The Histological Interpretation of High Frequency Cutaneous Ultrasound Imaging. Dermatol. Surg. 1997, 23, 43–45. [Google Scholar] [CrossRef]
- Szymańska, E.; Nowicki, A.; Mlosek, K.; Litniewski, J.; Lewandowski, M.; Secomski, W.; Tymkiewicz, R. Skin imaging with high frequency ultrasound—preliminary results. Eur. J. Ultrasound 2000, 12, 9–16. [Google Scholar] [CrossRef]
- Eisenbeiss, C.; Welzel, J.; Eichler, W.; Klotz, K. Influence of body water distribution on skin thickness: Measurements using high-frequency ultrasound. Br. J. Dermatol. 2001, 144, 947–951. [Google Scholar] [CrossRef]
- Miller, W.H. Structure and Function of the Skin. In Muller and Kirk’s Small Animal Dermatology, 7th ed.; Miller, W.H., Griffin, C., Campbell, K., Eds.; Saunders: Philadelphia, PA, USA, 2012; pp. 1–56. [Google Scholar]
- Pavletic, M.M. Anatomy and circulation of the canine skin. Microsurgery 1991, 12, 103–112. [Google Scholar] [CrossRef]
- Young, L.A.; Dodge, J.C.; Guest, K.J.; Cline, J.L.; Kerr, W.W. Age, Breed, Sex and Period Effects on Skin Biophysical Parameters for Dogs Fed Canned Dog Food. J. Nutr. 2002, 132, 1695S–1697S. [Google Scholar] [CrossRef] [Green Version]
- Rème, C.A.; Dufour, P. Effects of repeated topical application of a 0.0584% hydrocortisone aceponate spray on skin thickness in beagle dogs. Int. J. Appl. Res. Vet. M 2008, 8, 1–6. [Google Scholar]
- Mantis, P.; Tontis, D.; Church, D.; Lloyd, D.; Stevens, K.; Balomenos, D.; Gouletsou, P.G.; Gianoulopoulos, G.; Doukas, D.; Galatos, A.D.; et al. High-frequency ultrasound biomicroscopy of the normal canine haired skin. Vet. Dermatol. 2014, 25, 176-e45. [Google Scholar] [CrossRef] [PubMed]
- Koenig, A.; Hoenig, M.E.; Jimenez, D.A. Effects of sensor location in dogs on performance of an interstitial glucose monitor. Am. J. Vet. Res. 2016, 77, 805–817. [Google Scholar] [CrossRef]
- Heo, S.; Hwang, T.; Lee, H.C. Ultrasonographic evaluation of skin thickness in small breed dogs with hyperadrenocorticism. J. Vet. Sci. 2018, 19, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Murphy-Chutorian, B.; Han, G.; Cohen, S.R. Dermatologic manifestations of diabetes mellitus: A review. Endocrinol. Metab. Clin. N. Am. 2013, 42, 869–898. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.; Lupsor, M.; Crisan, D.; Boca, A.; Badea, R. Ultrasonographic assessment of skin structure according to age. Indian J. Dermatol. Venereol. Leprol. 2012, 78, 519. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.C.; Nelson, R.W.; Reusch, C.E.; Scott-Moncrieff, J.C.R. Canine and Feline Endocrinology, 4th ed.; Elsevier Saunders: St. Louis, MO, USA, 2015; pp. 258–308. [Google Scholar]
- Eichler, W.; Eisenbeiss, C.; Schumacher, J.; Klaus, S.; Vogel, R.; Klotz, K.F. Changes of interstitial fluid volume in superficial tissues detected by a miniature ultrasound device. J. Appl. Physiol. 2000, 89, 359–363. [Google Scholar] [CrossRef]
- Cengiz, E.; Tamborlane, W.V. A Tale of Two Compartments: Interstitial Versus Blood Glucose Monitoring. Diabetes Technol. Ther. 2009, 11 (Suppl. 1), S11–S16. [Google Scholar] [CrossRef]
- Wang, P.M.; Cornwell, M.; Prausnitz, M.R. Minimally Invasive Extraction of Dermal Interstitial Fluid for Glucose Monitoring Using Microneedles. Diabetes Technol. Ther. 2005, 7, 131–141. [Google Scholar] [CrossRef]
- Groenendaal, W.; Schmidt, K.; Von Basum, G.; Van Riel, N.A.W.; Hilbers, P. Modeling Glucose and Water Dynamics in Human Skin. Diabetes Technol. Ther. 2008, 10, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.; Bode, B.W.; Christiansen, M.P. The performance and usability of a factory-calibrated Flash Glucose Monitoring System. Diabetes Technol. Ther. 2015, 17, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.L.; Schwartz, S.L.; Brazg, R.L.; Bugler, J.R.; Peyser, T.A.; McGarraugh, G.V. Accuracy of the 5-Day FreeStyle Navigator Continuous Glucose Monitoring System: Comparison with frequent laboratory reference measurements. Diabetes Care 2007, 30, 1125–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, O.A.; Lassen, N.A.; Quaade, F. Blood Flow through Human Adipose Tissue Determined with Radioactive Xenon. Acta Physiol. Scand. 1966, 66, 337–345. [Google Scholar] [CrossRef]
- Heinemann, L.; Kamann, S. Adhesive used for diabetes medical devices: A neglected risk with serious consequences? J. Diabetes Sci. Technol. 2016, 10, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Herman, A.; Aerts, O.; Baeck, M. Allergic contact dermatitis caused by isobornyl acrylate in Freestyle_Libre, a newly in-troduced glucose sensor. Contact Dermat. 2017, 77, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Kamann, S.; Aerts, O.; Heinemann, L. Further Evidence of Severe Allergic Contact Dermatitis from Isobornyl Acrylate While Using a Continuous Glucose Monitoring System. J. Diabetes Sci. Technol. 2018, 12, 630–633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, A.K.; Norgaard, K.; Thyssen, J.P. Skin problems associated with insulin pumps and sensors in adults with Type 1 dia-betes: A cross-sectional study. Diabetes Technol. Ther. 2018, 20, 475–482. [Google Scholar] [CrossRef]
- Berg, A.K.; Simonsen, A.B.; Svensson, J. Perception and possible causes of skin problems to insulin pump and glucose sensor: Re-sults from pediatric focus groups. Diabetes Technol. Ther. 2018, 20, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.-H.; Rasool, S.; Johnston, G.A. Contact dermatitis: Allergic and irritant. Clin. Dermatol. 2014, 32, 116–124. [Google Scholar] [CrossRef]
- Kamann, S.; Oppel, E.; Liu, F.; Reichl, F.-X.; Heinemann, L.; Högg, C. Evaluation of Isobornyl Acrylate Content in Medical Devices for Diabetes Treatment. Diabetes Technol. Ther. 2019, 21, 533–537. [Google Scholar] [CrossRef]
- Hoss, U.; Budiman, E.S. Factory-Calibrated Continuous Glucose Sensors: The Science Behind the Technology. Diabetes Technol. Ther. 2017, 19, S44. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Guo, X.; Guo, L.; Ren, Q.; Yu, N.; Zhang, J. A Multicenter Evaluation of the Performance and Usability of a Novel Glucose Monitoring System in Chinese Adults with Diabetes. J. Diabetes Sci. Technol. 2016, 11, 290–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ólafsdóttir, A.F.; Attvall, S.; Sandgren, U.; Dahlqvist, S.; Pivodic, A.; Skrtic, S.; Theodorsson, E.; Lind, M. A Clinical Trial of the Accuracy and Treatment Experience of the Flash Glucose Monitor FreeStyle Libre in Adults with Type 1 Diabetes. Diabetes Technol. Ther. 2017, 19, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Rigla, M.; Pons, B.; Rebasa, P.; Luna, A.; Pozo, F.J.; Caixàs, A.; Villaplana, M.; Subías, D.; Bella, M.R.; Combalia, N. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy. Diabetes Technol. Ther. 2018, 20, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Silva, D.; Cecci, G.; Biz, G.; Chiaro, F.; Zanutto, M. Evaluation of a flash glucose monitoring system in dogs with diabetic ketoacidosis. Domest. Anim. Endocrinol. 2021, 74, 106525. [Google Scholar] [CrossRef]
Age | Breed | Weight (kg) | BCS | Concurrent Disease | Initial Skin Thickness (mm) | Final Skin Thickness (mm) | Absolute Mean Bias (mmol/L) | |
---|---|---|---|---|---|---|---|---|
Patient 1 | 9y5m | Pinscher | 6 | 5 | / | 3.045 | 3.073 | 8.33 |
Patient 2 | 12y2m | English Setter | 16.7 | 5 | Hypothyroidism | 3.376 | 3.328 | 4.21 |
Patient 3 | 9y5m | Small mixed breed | 11.8 | 5 | / | 6.303 | 5.286 | 1.32 |
Patient 4 | 10y5m | Bichon Poodle | 7.4 | 6 | / | 5.583 | 5.255 | 3.79 |
Patient 5 | 7y2m | Maltese | 6.5 | 6 | Hypercortisolism | 5.510 | 4.950 | 5.11 |
Patient 6 | 7y8m | Large mixed breed | 26.5 | 8 | Hypothyroidism | 5.858 | 7.770 | 3.60 |
Patient 7 | 11y | Large mixed breed | 30.6 | 6 | / | 6.028 | / | 1.25 |
Patient 8 | 13y8m | Small mixed breed | 6.1 | 5 | / | 4.675 | 5.306 | 2.44 |
Patient 9 | 13y2m | English setter | 22.3 | 6 | / | 6.201 | 7.023 | 1.51 |
Patient 10 | 9y8m | Small mixed breed | 5.3 | 5 | Hypercortisolism | 4.978 | 3.995 | 5.22 |
Patient 11 | 10y3m | Small mixed breed | 8 | 4 | Hypothyroidism | 5.591 | / | 3.48 |
Patient 12 | 10y3m | Medium mixed breed | 16.2 | 5 | Hypercortisolism | 3.241 | / | 4.33 |
Patient 13 | 13y6m | Labrador retriever | 29.4 | 5 | / | 6.936 | 7.263 | 0.03 |
Patient 14 | 10y6m | Small mixed breed | 6.3 | 4 | Hypercortisolism | 2.248 | 2.015 | 2.71 |
Day 1 of Monitoring (T0) | End of Monitoring (T1) | |
---|---|---|
Patient 1 * | Entry echo not well defined and irregular | Entry echo not well defined and irregular |
Patient 2 | Presence of oblique and hyperechogenic bands in the dermis | Presence of oblique and hyperechogenic bands in the dermis |
Patient 3 | Double dermal layer | Entry echo not well defined and irregular, double dermal layer |
Patient 4 | Entry echo not well defined and irregular and double dermal layer | Entry echo not well defined and irregular and double dermal layer |
Patient 5 | Entry echo not well defined and irregular and double dermal layer | Double dermal layer |
Patient 6 | Nothing of relevance | Entry echo not well defined and irregular |
Patient 7 | Entry echo not well defined and irregular and double dermal layer | No ultrasound examination |
Patient 8 * | Nothing of relevance | Nothing of relevance |
Patient 9 | Presence of oblique and hyperechogenic bands in the dermis and double dermal layer | Entry echo not well defined and irregular, presence of oblique and hyperechogenic bands in the dermis |
Patient 10 * | Nothing of relevance | Entry echo not well defined and irregular |
Patient 11 | Double dermal layer | No ultrasound examination |
Patient 12 | Nothing of relevance | No ultrasound examination |
Patient 13 | Entry echo not well defined and irregular | Entry echo not well defined and irregular and double dermal layer |
Patient 14 | Double dermal layer | Double dermal layer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Baldo, F.; Diana, A.; Canton, C.; Linta, N.; Chiocchetti, R.; Fracassi, F. The Influence of Skin Thickness on Flash Glucose Monitoring System Accuracy in Dogs with Diabetes Mellitus. Animals 2021, 11, 408. https://doi.org/10.3390/ani11020408
Del Baldo F, Diana A, Canton C, Linta N, Chiocchetti R, Fracassi F. The Influence of Skin Thickness on Flash Glucose Monitoring System Accuracy in Dogs with Diabetes Mellitus. Animals. 2021; 11(2):408. https://doi.org/10.3390/ani11020408
Chicago/Turabian StyleDel Baldo, Francesca, Alessia Diana, Claudia Canton, Nikolina Linta, Roberto Chiocchetti, and Federico Fracassi. 2021. "The Influence of Skin Thickness on Flash Glucose Monitoring System Accuracy in Dogs with Diabetes Mellitus" Animals 11, no. 2: 408. https://doi.org/10.3390/ani11020408
APA StyleDel Baldo, F., Diana, A., Canton, C., Linta, N., Chiocchetti, R., & Fracassi, F. (2021). The Influence of Skin Thickness on Flash Glucose Monitoring System Accuracy in Dogs with Diabetes Mellitus. Animals, 11(2), 408. https://doi.org/10.3390/ani11020408