High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Laboratory Analyses
2.3. Genetic Diversity
2.4. Individual Assignments
2.5. Population Demography
3. Results
3.1. Genetic Diversity
3.2. Individual Assignments
3.3. Population Demography
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsutsui, N.D.; Suarez, A.V.; Holway, D.A.; Case, T.J. Reduced genetic variation and the success of an invasive species. Proc. Natl. Acad. Sci. USA 2000, 97, 5948–5953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakai, A.K.; Allendorf, F.W.; Holt, J.S.; Lodge, D.M.; Molofsky, J.; With, K.A.; McCauley, D.E. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 2001, 32, 305–332. [Google Scholar] [CrossRef] [Green Version]
- Dlugosch, K.M.; Parker, I.M. Founding events in species invasions: Genetic variation, adaptive evolution, and the role of multiple introductions. Mol. Ecol. 2008, 17, 431–449. [Google Scholar] [CrossRef]
- Sax, D.F.; Brown, J.H. The paradox of invasion. Global Ecol. Biogeogr. 2000, 9, 363–371. [Google Scholar] [CrossRef]
- Grapputo, A.; Boman, S.; Lindstroem, L.; Lyytinen, A.; Mappes, J. The voyage of an invasive species across continents: Genetic diversity of North American and European Colorado potato beetle populations. Mol. Ecol. 2005, 14, 4207–4219. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.; Moe, R.; Hagen, I.J.; Holand, A.M.; Kekkonen, J.; Tufto, J.; Sæther, B.E. Genetic variation and structure of house sparrow populations: Is there an island effect? Mol. Ecol. 2013, 22, 1792–1805. [Google Scholar] [CrossRef] [Green Version]
- García, K.; Melero, Y.; Palazón, S.; Gosálbez, J.; Castresana, J. Spatial mixing of mitochondrial lineages and greater genetic diversity in some invasive populations of the American mink (Neovison vison) compared to native populations. Biol. Invasions. 2017, 19, 2663–2673. [Google Scholar] [CrossRef]
- Xiu, Y.F.; Liu, C.C.; Xu, S.H.; Lin, C.S.; Chou, C.C. The genetic diversity and population genetic structure of the red panda, Ailurus fulgens, in zoos in China. Animals 2020, 10, 1008. [Google Scholar] [CrossRef]
- Lockwood, J.L.; Cassey, P.; Blackburn, T. The role of propagule pressure in explaining species invasions. Trends Ecol. Evol. 2005, 20, 223–228. [Google Scholar] [CrossRef]
- Facon, B.; Pointier, J.P.; Jarne, P.; Sarda, V.; David, P. High genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr. Biol. 2008, 18, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Dunstone, N. The Mink; T & A D Poyser Natural History: London, UK, 1993. [Google Scholar]
- Zalewski, A.; Michalska-Parda, A.; Ratkiewicz, M.; Kozakiewicz, M.; Bartoszewicz, M.; Brzeziński, M. High mitochondrial DNA diversity of an introduced alien carnivore: Comparison of feral and ranch American mink Neovison vison in Poland. Divers. Distrib. 2011, 17, 757–768. [Google Scholar] [CrossRef]
- Lecis, R.; Ferrando, A.; Ruiz-Olmo, J.; Manas, S.; Domingo-Roura, X. Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation. Conserv. Genet. 2008, 9, 1149–1161. [Google Scholar] [CrossRef]
- Heptner, V.G.; Sludskii, A.A. Mammals of the Soviet Union; Volume II, Part 1b, Carnivores (Mustelidae and Procyonidae); Smithsonian Institution Libraries and National Science Foundation: Washington, DC, USA, 2002. [Google Scholar]
- Bonesi, L.; Palazon, S. The American mink in Europe: Status, impacts, and control. Biol. Conserv. 2007, 134, 470–483. [Google Scholar] [CrossRef]
- Jiang, Z.G.; Jiang, J.P.; Wang, Y.Z. Red list of China’s vertebrates. Biodivers. J. 2016, 4, 500–551. (In Chinese) [Google Scholar]
- Guo, W.C.; Yang, Z.K. Mink farming. Xinjiang Agric. Sci. 1963, 12, 480–485. (In Chinese) [Google Scholar]
- Ma, Z.F. American mink breeding and its breeding technology. J. Econ. Anim. 2015, 19, 6–9. (In Chinese) [Google Scholar]
- Hale, M.L.; Burg, T.M.; Steeves, T.E. Sampling for microsatellite-based population Genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 2012, 7, e45170. [Google Scholar] [CrossRef] [PubMed]
- Song, X.C.; Xu, C.; Liu, Z.Y.; Yue, Z.G.; Liu, L.L.; Yang, T.; Cong, B.; Yang, F.H. Comparative transcriptome analysis of mink (Neovison vison) skin reveals the key genes involved in the melanogenesis of black and white coat colour. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vincent, I.R.; Farid, A.; Otieno, C.J. Variability of thirteen microsatellite markers in American mink (Mustela vison). Can. J. Anim. Sci. 2003, 83, 597–599. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.A.; Ginja, C.; Pereira, I.; Tenreiro, R.; Bruford, M.W.; Santos-Reis, M. Species-specific mitochondrial DNA markers for identification of non-invasive samples from sympatric carnivores in the Iberian Peninsula. Conserv. Genet. 2008, 9, 681–690. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Excoffier, L.; Lischer, H.E. ARLEQUIN suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic. Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Goudet, J. FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9. 3). 2001. Available online: http://www2.unil.ch/popgen/softwares/fstat.htm (accessed on 20 November 2017).
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [PubMed]
- Evanno, S.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.; von Holdt, B. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Zalewski, A.; Michalska-Parda, A.; Bartoszewicz, M.; Kozakiewicz, M.; Brzeziński, M. Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol. Conserv. 2010, 143, 1355–1363. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.H.; Xie, D.; Suchard, M.A.; Rambaut, A.; Drummond, A.J. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [CrossRef] [PubMed]
- Luikart, G.; Cornuet, J.M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv. Biol. 1998, 12, 228–237. [Google Scholar] [CrossRef]
- Zalewski, A.; Piertney, S.B.; Zalewska, H.; Lambin, X. Landscape barriers reduce gene flow in an invasive carnivore: Geographical and local genetic structure of American mink in Scotland. Mol. Ecol. 2009, 18, 1601–1615. [Google Scholar] [CrossRef] [PubMed]
- Estoup, A.; Wilson, I.J.; Sullivan, C.; Cornuet, J.M.; Moritz, C. Inferring population history from microsatellite and enzyme data in serially introduced cane toads, Bufo marinus. Genetics 2001, 159, 1671–1687. [Google Scholar] [PubMed]
- Burokiene, D.; Prospero, S.; Jung, E.; Marciulyniene, D.; Moosbrugger, K.; Norkute, G.; Schoebel, C.N. Genetic population structure of the invasive ash dieback pathogen Hymenoscyphus fraxineus in its expanding range. Biol. Invasions 2015, 17, 2743–2756. [Google Scholar] [CrossRef]
- Guichoux, E.; Lagache, L.; Wagner, S.; Chaumeil, P.; Léger, P.; Lepais, O.; Lepoittevin, C.; Malausa, T.; Revardel, E.; Salin, F.; et al. Current trends in microsatellite genotyping. Mol. Ecol. Resour. 2011, 11, 591–611. [Google Scholar] [CrossRef] [PubMed]
Loci | Primer Sequence (5′–3′) | Repeat Motif | TA (°C) | No. Alleles | Size Range | HO | HE | PIC |
---|---|---|---|---|---|---|---|---|
Mvi 1271 | F: TAA ACA CGG CTC ACT AAC TC R: GTG GTA TGC ACT CAA GGT | (CA)15 | 61.0 | 6 | 180–190 | 0.73 | 0.73 | 0.68 |
Mvi 1272 | F: CCT CCC CTT CTC GTG R: TCT TTC TGC TAT TCG GTA AG | (TC)14 AT(TC)4 | 60.3 | 7 | 165–179 | 0.50 | 0.68 | 0.64 |
Mvi 1273 | F: GCT TAA TTC GTA TAG CAT CCC T R: CCT CCA GAC CTC TAG CAT C | (GGAA)6 | 59.0 | 15 | 183–213 | 0.80 | 0.88 | 0.86 |
Mvi 1302 | F: CAT AGG TTC CAG GGA TTA GAA R: ATG CCA TTA CAG TAC GAC TCA | (GT)17 | 64.0 | 8 | 204–224 | 0.44 | 0.69 | 0.64 |
Mvi 1321 | F: TTA AAC ACG AGA CCG TAT GTA R: GAA AGT GTG CCA ATT CCT A | (CA)13 | 63.5 | 15 | 91–179 | 0.61 | 0.85 | 0.83 |
Mvi 1322 | F: GGC TGA TTA ATA TTT TAC ACA R: CAA AAA CCA CTA CCT CAA | (CA)12 | 50.0 | 11 | 160–180 | 0.62 | 0.84 | 0.82 |
Mvi 1323 | F: AAT GGG GGA ATT TAC AGG T R: CTG AAA TAC AAG GGC ATT CTT | (GT)9 GC (GT)4 | 60.0 | 4 | 104–110 | 0.29 | 0.52 | 0.43 |
Mvi 1341 | F: GTG GGA GAC TGA GAT AGG TCA R: GGC AAC TTG AAT GGA CTA AGA | (CA)17 | 59.0 | 9 | 150–166 | 0.95 | 0.82 | 0.79 |
Mvi 1342 | F: TGG GAG TGA GCG GTG AT R: CTG GCC TTC AGT CAG TCT TG | (AC)14 | 68.5 | 13 | 131–163 | 0.47 | 0.84 | 0.82 |
Mvi 1354 | F: CCA ACT GGA GCA AGT AAA T R: CAT CTT TGG GAA AGT ATG TTT | (CA)22 | 61.8 | 10 | 176–198 | 0.74 | 0.83 | 0.80 |
Mvi 1381 | F: CCATCGGAGTTTCTCATCGT R: CCAGGTGCCCCTTACATT | (AC)19 | 61.8 | 7 | 185–197 | 0.53 | 0.76 | 0.73 |
Mvi 1843 | F: AAATGGGAAGGTAAGGTAGAA R: CCTAAGGGACACAGACTTGC | (CA)7TA (AC)- | 65.1 | 3 | 135–139 | 0.14 | 0.23 | 0.22 |
Mean | ― | ― | ― | 9 | ― | 0.57 | 0.72 | 0.69 |
Population. | Genetic Diversity Indices | Expansion Detection | Bottleneck Detection | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Microsatellite | Cyt-b | |||||||||||||
N | NA | AR | HE | Ho | FIS | h | Hd | π | Tajima′s D | Fu′s Fs | Mismatch (Texp) | PWilcoxon test | Mode Shift | |
Feral 1 | 10 | 4.92 | 4.08 | 0.62 | 0.55 | 0.19 | 4.00 | 0.71 | 0.01 | −0.22 | −5.99 * | No signal | 0.924 | Normal L-shaped |
Feral 2 | 10 | 5.00 | 4.21 | 0.61 | 0.54 | 0.11 | 1.00 | 0.00 | 0.00 | 0.00 | 0.34 | No signal | 0.926 | Shifted |
Feral 3 | 6 | 4.50 | 4.50 | 0.66 | 0.63 | 0.06 | 4.00 | 0.80 | 0.01 | 0.27 | −1.28 | No signal | 0.993 | Normal L-shaped |
Feral 4 | 6 | 4.08 | 4.08 | 0.62 | 0.50 | 0.21 | 6.00 | 1.00 | 0.02 | −0.20 | −0.43 | No signal | 0.995 | Shifted |
Farmed 5 | 16 | 6.33 | 4.64 | 0.66 | 0.59 | 0.10 | 3.00 | 0.24 | 0.00 | −0.99 | −23.63 * | N/A | 0.788 | Normal L-shaped |
Farmed 6 | 14 | 6.58 | 4.94 | 0.71 | 0.60 | 0.17 | 8.00 | 0.82 | 0.01 | −1.46 | −8.52 * | N/A | 0.849 | Normal L-shaped |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Hua, Y.; Wei, S. High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China. Animals 2021, 11, 472. https://doi.org/10.3390/ani11020472
Zhang L, Hua Y, Wei S. High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China. Animals. 2021; 11(2):472. https://doi.org/10.3390/ani11020472
Chicago/Turabian StyleZhang, Lina, Yan Hua, and Shichao Wei. 2021. "High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China" Animals 11, no. 2: 472. https://doi.org/10.3390/ani11020472
APA StyleZhang, L., Hua, Y., & Wei, S. (2021). High Genetic Diversity of an Invasive Alien Species: Comparison between Fur-Farmed and Feral American Mink (Neovison vison) in China. Animals, 11(2), 472. https://doi.org/10.3390/ani11020472