Inter-Specific and Intra-Specific Competition of Two Sympatrically Breeding Seabirds, Chinstrap and Gentoo Penguins, at Two Neighboring Colonies
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Populations and Field Survey
2.2. GPS and Depth Data Analyses
2.3. Blood Sampling and Stable Isotope Analysis
2.4. Statistics
2.5. Ethical Approval
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pianka, E.R. Niche overlap and diffuse competition. Proc. Natl. Acad. Sci. USA 1974, 71, 2141–2145. [Google Scholar] [CrossRef] [Green Version]
- Fasola, M.; Bogliani, G.; Saino, N.; Canova, L. Foraging, feeding and time-activity niches of eight species of breeding seabirds in the coastal wetlands of the Adriatic Sea. Boll. Zoöl. 1989, 56, 61–72. [Google Scholar] [CrossRef]
- Holt, R.D. Bringing the HUTCHINSONIAN niche into the 21st century: Ecological and evolutionary perspectives. Proc. Natl. Acad. Sci. USA 2009, 106, 19659–19665. [Google Scholar] [CrossRef] [Green Version]
- Trivelpiece, W.Z.; Trivelpiece, S.G.; Volkman, N.J. Ecological Segregation of adelie, gentoo, and chinstrap penguins at King George Island, Antarctica. Ecology 1987, 68, 351–361. [Google Scholar] [CrossRef]
- Cherel, Y.; Le Corre, M.; Jaquemet, S.; Ménard, F.; Richard, P.; Weimerskirch, H. Resource partitioning within a tropical seabird community: New information from stable isotopes. Mar. Ecol. Prog. Ser. 2008, 366, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Young, H.S.; McCauley, D.J.; Dirzo, R.; Dunbar, R.B.; Shaffer, S.A. Niche partitioning among and within sympatric tropical seabirds revealed by stable isotope analysis. Mar. Ecol. Prog. Ser. 2010, 416, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Peck-Richardson, A.; Lyons, D.; Roby, D.; Cushing, D.; Lerczak, J. Three-dimensional foraging habitat use and niche partitioning in two sympatric seabird species, Phalacrocorax auritus and P. penicillatus. Mar. Ecol. Prog. Ser. 2018, 586, 251–264. [Google Scholar] [CrossRef]
- Phalan, B.; Phillips, R.A.; Silk, J.R.D.; Afanasyev, V.; Fukuda, A.; Fox, J.; Catry, P.; Higuchi, H.; Croxall, J.P. Foraging behaviour of four albatross species by night and day. Mar. Ecol. Prog. Ser. 2007, 340, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Blanchet, M.; Biuw, M.; Hofmeyr, G.; De Bruyn, P.; Lydersen, C.; Kovacs, K. At-sea behaviour of three krill predators breeding at Bouvetøya—Antarctic fur seals, macaroni penguins and chinstrap penguins. Mar. Ecol. Prog. Ser. 2013, 477, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Navarro, J.; Votier, S.C.; Aguzzi, J.; Chiesa, J.J.; Forero, M.G.; Phillips, R.A. Ecological segregation in space, time and trophic niche of sympatric planktivorous petrels. PLoS ONE 2013, 8, e62897. [Google Scholar] [CrossRef] [Green Version]
- Lynnes, A.S.; Reid, K.; Croxall, J.P.; Trathan, P.N. Conflict or co-existence? Foraging distribution and competition for prey between Adélie and chinstrap penguins. Mar. Biol. 2002, 141, 1165–1174. [Google Scholar] [CrossRef]
- Kokubun, N.; Takahashi, A.; Mori, Y.; Watanabe, S.; Shin, H.-C. Comparison of diving behavior and foraging habitat use between chinstrap and gentoo penguins breeding in the South Shetland Islands, Antarctica. Mar. Biol. 2009, 157, 811–825. [Google Scholar] [CrossRef]
- Dimitrijević, D.; Paiva, V.H.; Ramos, J.A.; Seco, J.; Ceia, F.R.; Chipev, N.; Valente, T.; Barbosa, A.; Xavier, J.C. Isotopic niches of sympatric Gentoo and Chinstrap penguins: Evidence of competition for Antarctic krill? Polar Biol. 2018, 41, 1655–1669. [Google Scholar] [CrossRef]
- Aguiar, M.R.; Lauenroth, W.K.; Peters, D.P. Intensity of intra- and interspecific competition in coexisting shortgrass species. J. Ecol. 2001, 89, 40–47. [Google Scholar] [CrossRef]
- Grémillet, D.; Dell’Omo, G.; Ryan, P.; Peters, G.; Ropert-Coudert, Y.; Weeks, S. Offshore diplomacy or how seabirds mitigate intra-specific competition: A case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar. Ecol. Prog. Ser. 2004, 268, 265–279. [Google Scholar] [CrossRef] [Green Version]
- Begon, M.; Townsend, C.R. Ecology: From Individuals to Ecosystems, 4th ed.; Blackwell Scientific: Oxford, UK, 2006. [Google Scholar]
- Masello, J.F.; Mundry, R.; Poisbleau, M.; Demongin, L.; Voigt, C.C.; Wikelski, M.; Quillfeldt, P. Diving seabirds share foraging space and time within and among species. Ecosphere 2010, 1, 1–28. [Google Scholar] [CrossRef]
- Polito, M.; Trivelpiece, W.; Patterson, W.; Karnovsky, N.; Reiss, C.; Emslie, S. Contrasting specialist and generalist patterns facilitate foraging niche partitioning in sympatric populations of Pygoscelis penguins. Mar. Ecol. Prog. Ser. 2015, 519, 221–237. [Google Scholar] [CrossRef]
- Ito, K.; Watanabe, Y.Y.; Kokubun, N.; Takahashi, A. Inter-colony foraging area segregation quantified in small colonies of Adélie Penguins. Ibis 2021, 163, 90–98. [Google Scholar] [CrossRef]
- Schreiber, E.A.; Burger, J. Biology of Marine Birds; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Rosciano, N.G.; Polito, M.; Rey, A. Do penguins share? Assessing foraging niche segregation within and between two sympatric, central-place foragers. Mar. Ecol. Prog. Ser. 2016, 548, 249–262. [Google Scholar] [CrossRef]
- Costa, D.P. Reproductive and foraging energetics of high latitude penguins, albatrosses and pinnipeds: Implications for life history patterns. Am. Zool. 1991, 31, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Paredes, R.; Harding, A.M.A.; Irons, D.B.; Roby, D.; Suryan, R.M.; Orben, R.A.; Renner, H.; Young, R.; Kitaysky, A. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 2012, 471, 253–269. [Google Scholar] [CrossRef] [Green Version]
- Bolton, M.; Conolly, G.; Carroll, M.; Wakefield, E.D.; Caldow, R. A review of the occurrence of inter-colony segregation of seabird foraging areas and the implications for marine environmental impact assessment. Ibis 2019, 161, 241–259. [Google Scholar] [CrossRef] [Green Version]
- Hart, T.; Mann, R.P.; Coulson, T.; Pettorelli, N.; Trathan, P. Behavioural switching in a central place forager: Patterns of diving behaviour in the macaroni penguin (Eudyptes chrysolophus). Mar. Biol. 2010, 157, 1543–1553. [Google Scholar] [CrossRef]
- Ford, R.G.; Ainley, D.G.; Lescroël, A.; Lyver, P.; Toniolo, V.; Ballard, G. Testing assumptions of central place foraging theory: A study of Adélie penguins Pygoscelis adeliaein the Ross Sea. J. Avian Biol. 2014, 46, 193–205. [Google Scholar] [CrossRef]
- Oliver, M.J.; Kohut, J.T.; Bernard, K.; Fraser, W.; Winsor, P.; Statscewich, H.; Fredj, E.; Cimino, M.; Patterson-Fraser, D.; Carvalho, F. Central place foragers select ocean surface convergent features despite differing foraging strategies. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Xavier, J.C.; Trathan, P.N.; Ceia, F.R.; Tarling, G.A.; Adlard, S.; Fox, D.; Edwards, E.W.J.; Vieira, R.P.; Medeiros, R.; De Broyer, C.; et al. Sexual and individual foraging segregation in Gentoo penguins Pygoscelis papua from the Southern Ocean during an abnormal winter. PLoS ONE 2017, 12, e0174850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panasiuk, A.; Wawrzynek-Borejko, J.; Musiał, A.; Korczak-Abshire, M. Pygoscelis penguin diets on King George Island, South Shetland Islands, with a special focus on the krill Euphausia superba. Antarct. Sci. 2020, 32, 21–28. [Google Scholar] [CrossRef]
- Miller, A.K.; Kappes, M.A.; Trivelpiece, S.G.; Trivelpiece, W.Z. Foraging-niche separation of breeding Gentoo and Chinstrap penguins, South Shetland Islands, Antarctica. Condor 2010, 112, 683–695. [Google Scholar] [CrossRef]
- Miller, A.K.; Trivelpiece, W.Z. Chinstrap penguins alter foraging and diving behavior in response to the size of their principle prey, Antarctic krill. Mar. Biol. 2008, 154, 201–208. [Google Scholar] [CrossRef]
- Wilson, R.P. Resource partitioning and niche hyper-volume overlap in free-living Pygoscelid penguins. Funct. Ecol. 2009, 24, 646–657. [Google Scholar] [CrossRef]
- Newsome, S.D.; Martinez Del Rio, C.; Bearhop, S.; Phillips, D.L. A niche for isotopic ecology. Front. Ecol. Environ. 2007, 5, 429–436. [Google Scholar] [CrossRef]
- Polito, M.; Lynch, H.; Naveen, R.; Emslie, S. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 2011, 421, 265–277. [Google Scholar] [CrossRef]
- Whitehead, T.O.; Connan, M.; Ropert-Coudert, Y.; Ryan, P.G. Subtle but significant segregation in the feeding ecology of sympatric penguins during the critical pre-moult period. Mar. Ecol. Prog. Ser. 2017, 565, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Secretariat of the Antarctic Treaty. Management Plan for Antarctic Specially Protected Area (ASPA) No. 171 Narebski Point, Barton Peninsula, King George Island. Available online: https://www.ats.aq/devAS/Meetings/Measure/689 (accessed on 15 December 2020).
- Ministry of Environment (MOE). Development of Environmental Monitoring Techniques of Antarctic Specially Protected Area (VI); Ministry of Environment: Sejong, Korea, 2020. (In Korean)
- Clarke, J.; Emmerson, L.; Otahal, P. Environmental conditions and life history constraints determine foraging range in breeding Adélie penguins. Mar. Ecol. Prog. Ser. 2006, 310, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Wall, J. ArcMET—Movement Ecology Tools for ArcGIS. 2014. Available online: http://www.movementecology.net/arcmet_software.html (accessed on 15 December 2020).
- Sakamoto, K.Q.; Sato, K.; Ishizuka, M.; Watanuki, Y.; Takahashi, A.; Daunt, F.; Wanless, S. Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS ONE 2009, 4, e5379. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Dunn, M.J.; Trathan, P.N.; Sato, K.; Naito, Y.; Croxall, J.P. Foraging strategies of chinstrap penguins at Signy Island, Antarctica: Importance of benthic feeding on Antarctic krill. Mar. Ecol. Prog. Ser. 2003, 250, 279–289. [Google Scholar] [CrossRef]
- Fieberg, J.; Kochanny, C.O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 2005, 69, 1346–1359. [Google Scholar] [CrossRef]
- Clapp, J.G.; Beck, J.L. Evaluating distributional shifts in home range estimates. Ecol. Evol. 2015, 5, 3869–3878. [Google Scholar] [CrossRef] [PubMed]
- Negrete, P.; Sallaberry, M.; Barceló, G.; Maldonado, K.; Perona, F.; McGill, R.A.R.; Quillfeldt, P.; Sabat, P. Temporal variation in isotopic composition of Pygoscelis penguins at Ardley Island, Antarctic: Are foraging habits impacted by environmental change? Polar Biol. 2016, 40, 903–916. [Google Scholar] [CrossRef]
- Dehnhard, N.; Voigt, C.C.; Poisbleau, M.; Demongin, L.; Quillfeldt, P. Stable isotopes in southern rockhopper penguins: Foraging areas and sexual differences in the non-breeding period. Polar Biol. 2011, 34, 1763–1773. [Google Scholar] [CrossRef]
- Jackson, A.L.; Inger, R.; Parnell, A.C.; Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER—stable isotope data. J. Anim. Ecol. 2011, 80, 595–602. [Google Scholar] [CrossRef]
- Syväranta, J.; Lensu, A.; Marjomäki, T.J.; Oksanen, S.; Jones, R.I. An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS ONE 2013, 8, e56094. [Google Scholar] [CrossRef] [Green Version]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. Package ‘lme4’; Linear Mixed-Effects Model Using ‘Eigen’ and S4. 2020. Available online: https://cran.r-project.org/web/packages/lme4/index.html (accessed on 15 December 2020).
- Bolar, K. Interactive Document for Working with Basic Statistical Analysis Version 0.1.0. 2019. Available online: https://cran.r-project.org/web/packages/STAT/index.html (accessed on 15 December 2020).
- Mori, Y.; Boyd, I. Segregation of foraging between two sympatric penguin species: Does rate maximisation make the difference? Mar. Ecol. Prog. Ser. 2004, 275, 241–249. [Google Scholar] [CrossRef] [Green Version]
- Lescroël, A.; Bost, C. Foraging under contrasting oceanographic conditions: The Gentoo penguin at Kerguelen Archipelago. Mar. Ecol. Prog. Ser. 2005, 302, 245–261. [Google Scholar] [CrossRef]
- Jovani, R.; Lascelles, B.; Garamszegi, L.Z.; Mavor, R.; Thaxter, C.B.; Oro, D. Colony size and foraging range in seabirds. Oikos 2015, 125, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Camprasse, E.C.M.; Cherel, Y.; Bustamante, P.; Arnould, J.P.Y.; Bost, C.-A. Intra- and inter-individual variation in the foraging ecology of a generalist subantarctic seabird, the gentoo penguin. Mar. Ecol. Prog. Ser. 2017, 578, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Ridoux, V.; Lescroël, A.; Bost, C.A. Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol. 2004, 27, 206–216. [Google Scholar] [CrossRef]
- Miller, A.K.; Karnovsky, N.J.; Trivelpiece, W.Z. Flexible foraging strategies of Gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands, Antarctica. Mar. Biol. 2009, 156, 2527–2537. [Google Scholar] [CrossRef]
- Cherel, Y.; Hobson, K.A. Geographical variation in carbon stable isotope signatures of marine predators: A tool to investigate their foraging areas in the Southern Ocean. Mar. Ecol. Prog. Ser. 2007, 329, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Polito, M.J.; Trivelpiece, W.Z.; Reiss, C.S.; Trivelpiece, S.G.; Hinke, J.T.; Patterson, W.P.; Emslie, S.D. Intraspecific variation in a dominant prey species can bias marine predator dietary estimates derived from stable isotope analysis. Limnol. Oceanogr. Methods 2019, 17, 292–303. [Google Scholar] [CrossRef]
- Bearhop, S.; Adams, C.E.; Waldron, S.; Fullerand, R.A.; MacLeod, H. Determining trophic niche width: A novel approach using stable isotope analysis. J. Anim. Ecol. 2004, 73, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
Chinstrap | Gentoo | Inter-Specific Comparison | Intra-Specific Comparison | |||||
---|---|---|---|---|---|---|---|---|
at AI | at NP | within Chinstrap | within Gentoo | |||||
AI (n = 13) | NP (n = 19) | AI (n = 12) | NP (n = 20) | Chinstrap/Gentoo (% Overlapped) | Chinstrap/Gentoo (% Overlapped) | AI/NP (% Overlapped) | AI/NP (% Overlapped) | |
95% KDE | 97.7 | 266.5 | 67.7 | 202.5 | 47.4/68.1 | 43.4/57.1 | 37.9/13.9 | 40.3/13.5 |
50% KDE | 9.2 | 20.3 | 4 | 5.25 | 3.3/7.5 | 11.3/44.2 | 27.2/12.3 | 0/0 |
UDOI | 0.645 | 0.196 | 0.142 | 0.080 |
Chinstrap (Mean ± SD) | Gentoo (Mean ± SD) | Inter-Specific Comparison | Intra-Specific Comparison | |||||
---|---|---|---|---|---|---|---|---|
At AI | At NP | For Chinstrap | For Gentoo | |||||
AI (n = 13) | NP (n = 19) | AI (n = 12) | NP (n = 20) | p-Value | p-Value | p-Value | p-Value | |
Dive parameter | ||||||||
Mean dive duration (s) | 67.3 ± 15.6 | 75.9 ± 15.6 | 85.8 ± 16.6 | 107.6 ± 18.5 | 0.01 * | <0.001 * | 0.25 | 0.01 * |
Dive depth (m) | 27.7 ± 12.6 | 33.1 ± 12.3 | 32.1 ± 12.4 | 45.7 ± 15.1 | 0.21 | 0.04 * | 0.40 | 0.01 * |
Trip parameter | ||||||||
Trip duration (h) | 6.6 ± 2.8 | 8.8 ± 3.2 | 7.8 ± 3.1 | 8.7 ± 3.5 | 0.33 | 0.98 | 0.08 | 0.49 |
Maximum distance (km) | 8.7 ± 5.4 | 16.6 ± 7.7 | 10.7 ± 9.4 | 16.6 ± 10.8 | 0.45 | 0.99 | 0.004 * | 0.17 |
Movement distance (km) | 28.5 ± 16 | 44.1 ± 18.1 | 33.0 ± 21.2 | 47.1 ± 23.6 | 0.56 | 0.72 | 0.03 * | 0.14 |
Dive location | ||||||||
In bay (on-shelf area and Maxwell Bay) | 99.2 ± 2.77 | 52.73 ± 33.29 | 89.32 ± 19.06 | 63.92 ± 38.02 | 0.10 | 0.45 | 0.01 * | 0.06 |
Out of bay (off-shelf area) | 0.8 ± 2.77 | 47.27 ± 33.29 | 10.68 ± 19.06 | 36.08 ± 38.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.Y.; Park, S.; Kim, K.W.; Kim, J.-H.; Gal, J.-K.; Chung, H. Inter-Specific and Intra-Specific Competition of Two Sympatrically Breeding Seabirds, Chinstrap and Gentoo Penguins, at Two Neighboring Colonies. Animals 2021, 11, 482. https://doi.org/10.3390/ani11020482
Lee WY, Park S, Kim KW, Kim J-H, Gal J-K, Chung H. Inter-Specific and Intra-Specific Competition of Two Sympatrically Breeding Seabirds, Chinstrap and Gentoo Penguins, at Two Neighboring Colonies. Animals. 2021; 11(2):482. https://doi.org/10.3390/ani11020482
Chicago/Turabian StyleLee, Won Young, Seongseop Park, Kil Won Kim, Jeong-Hoon Kim, Jong-Ku Gal, and Hosung Chung. 2021. "Inter-Specific and Intra-Specific Competition of Two Sympatrically Breeding Seabirds, Chinstrap and Gentoo Penguins, at Two Neighboring Colonies" Animals 11, no. 2: 482. https://doi.org/10.3390/ani11020482
APA StyleLee, W. Y., Park, S., Kim, K. W., Kim, J. -H., Gal, J. -K., & Chung, H. (2021). Inter-Specific and Intra-Specific Competition of Two Sympatrically Breeding Seabirds, Chinstrap and Gentoo Penguins, at Two Neighboring Colonies. Animals, 11(2), 482. https://doi.org/10.3390/ani11020482