Decreased Size of Mammary Tumors Caused by Preoperative Treatment with Aglepristone in Female Domestic Dogs (Canis familiaris) Do Not Influence the Density of the Benign Neoplastic Tissue Measured Using Shear Wave Elastography Technique
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Location of Animals and Their Selection
2.3. Progesterone Level Evaluation
2.4. Aglepristone Administration
2.5. Histopathological Evaluation and Shear Wave Elastography of the Tumors
2.6. Tumor Size Evaluation
2.7. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shoji, K.; Yoneda, M.; Fujiyuki, T.; Amagai, Y.; Tanaka, A.; Matsuda, A.; Ogihara, K.; Naya, Y.; Ikeda, F.; Matsuda, H.; et al. Development of new therapy for canine mammary cancer with recombinant measles virus. Mol. Ther. Oncolytics 2016, 3, 15022. [Google Scholar] [CrossRef] [Green Version]
- Karayannopoulou, M.; Lafioniatis, S. Recent advances on canine mammary cancer chemotherapy: A review of studies from 2000 to date. Revue. Méd. Vét. 2016, 167, 192–200. [Google Scholar]
- Moulton, J.E. Tumours in Domestic Animals, 3rd ed.; University of California Press: Berkeley, CA, USA, 1990; pp. 518–522. [Google Scholar]
- Withrow, S.; Vail, D.; Page, R. Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Saunders Elsevier: St. Louis, MO, USA, 2012; pp. 538–556. [Google Scholar]
- Guil-Luna, S.; Sánchez-Céspedes, R.; Millán, Y.; De Andrés, F.J.; Rollón, E.; Domingo, V.; Guscetti, F.; Martín de Las Mulas, J. Aglepristone decreases proliferation in progesterone receptor-positive canine mammary carcinomas. J. Vet. Intern. Med. 2011, 25, 518–523. [Google Scholar] [CrossRef]
- Papazoglou, L.G.; Basdani, E.; Rabidi, S.; Patsikas, M.N.; Karayiannopoulou, M. Current Surgical Options for Mammary Tumor Removal in Dogs. J. Veter. Sci. Med. 2014, 2, 2–7. [Google Scholar] [CrossRef]
- Kivrak, M.B.; Aydin, I. Treatment and prognosis of mammary tumors in bitches. Inter. J. Vet. Sci. 2017, 6, 178–186. [Google Scholar]
- Mainenti, M.; Rasottob, R.; Carniera, P.; Zappullia, V. Oestrogen and progesterone receptor expression in subtypes of canine mammary tumours in intact and ovariectomised dogs. Vet. J. 2014, 202, 62–68. [Google Scholar] [CrossRef]
- Guil-Luna, S.; Millán, Y.; De Andres, J.; Rollón, E.; Domingo, V.; García-Macías, J.; Sánchez-Céspedes, R.; Martín de Las Mulas, J. Prognostic in impact of neoadjuvant aglepristone treatment clinicopathological parameters of progesterone receptor-positive canine mammary carcinomas. Vet. Comp. Oncol. 2017, 15, 391–399. [Google Scholar] [CrossRef]
- Gogny, A.; Fiéni, F. Aglepristone: A review on its clinical use in animals. Theriogenology 2016, 85, 555–566. [Google Scholar] [CrossRef] [Green Version]
- Dzięcioł, M.; Scholbach, T.; Stańczyk, E.; Ostrowska, J.; Kinda, W.; Woźniak, M.; Atamaniuk, W.; Skrzypczak, P.; Niżański, W.; Wieczorek, A.; et al. Dynamic tissue perfusion measurement in the reproductive organs of the female and male dogs. Bull. Vet. Inst. Pulawy 2014, 58, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Gasser, B.; Rodriguez1, M.G.K.; Uscategui, R.A.R.; Silva, P.A.; Maronezi, M.C.; Pavan, L.; Feliciano, M.A.R.; Vicente, W.R.R. Ultrasonographic characteristics of benign mammary lesions in bitches. Vet. Med. 2018, 63, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Park, A.H.; Seo, B.K. Up-to-date Doppler techniques for breast tumor vascularity: Superb microvascular imaging and contrast-enhanced ultrasound. Ultrasonography 2018, 37, 98–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.W.; Choi, H.Y.; Baek, S.Y.; Lim, S.M. Role of color and power doppler imaging in differentiating between malignant and benign solid breast masses. J. Clin. Ultrasound 2002, 30, 459–464. [Google Scholar] [CrossRef]
- Sigrist, R.M.S.; Liau, J.; El Kaffas, A.; Chammas, M.C.; Willmann, J.K. Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics 2017, 7, 1303–1329. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, A.; Grajo, J.R.; Dhyani, M.; Anthony, B.W.; Samir, A.E. Principles of ultrasound elastography. Abdom. Radiol. 2018, 43, 773–785. [Google Scholar] [CrossRef]
- Feliciano, M.A.R.; Uscategui, R.A.R.; Maronezi, M.C.; Simões, A.P.R.; Silva, P.; Gasser, B.; Pavan, L.; Carvalho, C.F.; Canola, J.C.; Vicente, W.R.R. Ultrasonography methods for predicting malignancy in canine mammary tumors. PLoS ONE 2017, 12, e0178143. [Google Scholar] [CrossRef] [PubMed]
- Glinska-Suchocka, K.; Jankowski, M.; Kubiak, K.; Spuzak, J.; Dzimira, S.; Nicpon, J. Application of shear wave elastography in the diagnosis of mammary gland neoplasm in dogs. Pol. J. Vet. Sci. 2013, 16, 477–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruchala, M.; Szczepanek-Parulska, E.; Zybek, A.; Moczko, J.; Czarnywojtek, A.; Kaminski, G.; Sowinski, J. The role of sonoelastography in acute, subacute and chronic thyroiditis: A novel application of the method. Eur. J. Endocrinol. 2012, 166, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Tan, Y.; Tan, S.; Zhao, Y.; Cui, L. Diagnostic Value of Transrectal Shear Wave Elastography for Prostate Cancer Detection in Peripheral Zone: Comparison with Magnetic Resonance Imaging. J. Endourol. 2020, 34, 558–566. [Google Scholar] [CrossRef]
- Kim, T.Y.; Jeong, W.K.; Sohn, J.H.; Kim, J.; Kim, M.Y.; Kim, Y. Evaluation of portal hypertension by real-time shear wave elastography in cirrhotic patients. Liver Int. 2015, 35, 2416–2424. [Google Scholar] [CrossRef]
- Ferraioli, G.; Wong, V.W.-S.; Castera, L.; Berzigotti, A.; Sporea, I.; Dietrich, C.F.; Choi, B.I.; Wilson, S.R.; Kudo, M.; Barr, R.G. Liver Ultrasound Elastography: An Update to the World Federation for Ultrasound in Medicine and Biology Guidelines and Recommendations. Ultrasound Med. Biol. 2018, 44, 2419–2440. [Google Scholar] [CrossRef] [Green Version]
- Brugger, N.; Otzdorff, C.; Walter, B.; Hoffmann, B.; Braun, J. Quantitative determination of progesterone (P4) in canine blood serum using an enzyme-linked fluorescence assay. Reprod. Domest. Anim. 2011, 46, 870–873. [Google Scholar] [CrossRef] [PubMed]
- Ménard, M.; Fontaine, M.; Morin, M. Fine needle aspiration biopsy of malignant tumors in dogs and cats: A report of 102 cases. Can. Vet. J. 1986, 27, 504–510. [Google Scholar]
- Cassali, G.D.; Gobbi, H.; Malm, C.; Schmitt, F.C. Evaluation of accuracy of fine needle aspiration cytology for diagnosis of canine mammary tumours: Comparative features with human tumours. Cytopathology 2007, 18, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Sorenmo, K.U.; Worley, D.R.; Goldschmidt, M.H. Tumors of the Mammary Gland. In Withrow and MacEwen’s Small Animal Clinical Oncology, 5th ed.; Saunders Elsevier: St. Louis, MO, USA, 2013; pp. 538–556. [Google Scholar]
- Queiroga, F.L.; Raposo, T.; Carvalho, M.I.; Prada, J.; Pires, I. Canine mammary tumours as a model to study human breast cancer: Most recent findings. In Vivo 2011, 25, 455–465. [Google Scholar] [PubMed]
- Matos, A.J.F.; Baptista, C.S.; Gärtner, M.F.; Rutteman, G.R. Prognostic studies of canine and feline mammary tumours: The need for standardized procedures. Vet. J. 2012, 193, 24–31. [Google Scholar] [CrossRef]
- Rasotto, R.; Goldschmidt, M.H.; Castagnaro, M.; Carnier, P.; Caliari, D.; Zappulli, V. The Dog as a Natural Animal Model for Study of the Mammary Myoepithelial Basal Cell Lineage and its Role in Mammary Carcinogenesis. J. Comp. Pathol. 2014, 151, 166–180. [Google Scholar] [CrossRef]
- Allen, S.W.; Mahaffey, E.A. Canine mammary neoplasia: Prognostic indicators and response to surgical therapy. J. Am. Anim. Hosp. Assoc. 1989, 25, 540–546. [Google Scholar]
- Simon, D.; Schoenrock, D.; Baumgartner, W.; Nolte, I. Postoperative Adjuvant Treatment of Invasive Malignant Mammary Gland Tumors in Dogs with Doxorubicin and Docetaxel. J. Vet. Intern. Med. 2006, 20, 1184–1190. [Google Scholar] [CrossRef] [Green Version]
- Souza, C.H.D.M.; Toledo-Piza, E.; Amorin, R.; Barboza, A.; Tobias, K.M. Inflammatory mammary carcinoma in 12 dogs: Clinical features, cyclooxygenase-2 expression, and response to piroxicam treatment. Can. Vet. J. 2009, 50, 506–510. [Google Scholar]
- Knapp, D.W.; Richardson, R.C.; Chan, T.C.; Bottoms, G.D.; Widmer, W.R.; DeNicola, D.B.; Teclaw, R.; Bonney, P.L.; Kuczek, T. Piroxicam Therapy in 34 Dogs With Transitional Cell Carcinoma of the Urinary Bladder. J. Vet. Intern. Med. 1994, 8, 273–278. [Google Scholar] [CrossRef]
- Mohammed, S.I.; Bennett, P.F.; Craig, B.A.; Glickman, N.W.; Mutsaers, A.J.; Snyder, P.W.; Widmer, W.R.; DeGortari, A.E.; Bonney, P.L.; Knapp, D.W. Effects of the Cyclooxygenase Inhibitor, Piroxicam, on Tumor Response, Apoptosis, and Angiogenesis in a Canine Model of Human Invasive Urinary Bladder Cancer. Cancer Res. 2002, 62, 356–358. [Google Scholar]
- Görlinger, S.; Kooistra, H.S.; van den Broek, A.; Okkens, A.C. Treatment of fibroadenomatous hyperplasia in cats with aglepristine. J. Vet. Intern. Med. 2002, 16, 710–713. [Google Scholar] [CrossRef] [PubMed]
- Jurka, P.; Max, A. Treatment of fibroadenomatosis in 14 cats with aglepristone changes in blood parameters and follow-up. Vet. Rec. 2009, 165, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Vitasek, R.; Dendisová, H. Treatment of Feline Mammary Fibroepithelial Hyperplasia Following a Single Injection of Proligestone. Acta Vet. Brno 2006, 75, 295–297. [Google Scholar] [CrossRef]
- Wehrend, A.; Hospes, R.; Gruber, A.D. Treatment of feline mammary fibroadenomatous hyperplasia with a progesterone antagonist. Vet. Rec. 2001, 148, 346–347. [Google Scholar] [PubMed]
- Breitkopf, M.; Hoffmann, B.; Bostedt, H. Treatment of pyometra (cystic endometrial hyperplasia) in bitches with an antiprogestin. J. Reprod. Fertil. Suppl. 1997, 51, 327–331. [Google Scholar] [PubMed]
- Hoyt, K.; Castaneda, B.; Zhang, M.; Nigwekar, P.; di Sant’agnese, P.A.; Joseph, J.V.; Strang, J.; Rubens, D.J.; Parker, K.J. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008, 4, 213–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.W.; Shi, H.-N.; Cheng, J.; Xie, F.; Luo, Y.-K.; Tang, J. Real-time shear wave elastography (SWE) assessment of short and long-term treatment outcome in Budd-Chiari syndrome: A pilot study. PLoS ONE 2018, 13, e0197550. [Google Scholar] [CrossRef] [Green Version]
- Rago, T.; Santini, F.; Scutari, M.; Pinchera, A.; Vitti, P. Elastography: New Developments in Ultrasound for Predicting Malignancy in Thyroid Nodules. J. Clin. Endocrinol. Metab. 2007, 92, 2917–2922. [Google Scholar] [CrossRef] [Green Version]
- Winn, N.; Baldwin, J.; Cassar-Pullicino, V.; Cool, P.; Ockendon, M.; Tins, B.; Jaremko, J.L. Characterization of soft tissue tumours with ultrasound, shear wave elastography and MRI. Skeletal Radiol. 2020, 49, 869–881. [Google Scholar] [CrossRef]
- Yi, X.; Wei, X.; Wang, Y.; Chen, J.; Li, D.; Hu, B. Role of real-time elastography in assessing the stage of thrombus. Int. Angiol. 2017, 36, 59–63. [Google Scholar] [PubMed]
- Yoo, M.H.; Kim, H.J.; Choi, I.H.; Park, S.; Kim, S.J.; Park, H.K.; Byun, D.W.; Suh, K. Shear wave elasticity by tracing total nodule showed high reproducibility and concordance with fibrosis in thyroid cancer. BMC Cancer 2020, 20, 118. [Google Scholar] [CrossRef] [Green Version]
- Mantziaras, G.; Gaia Cecilia Luvoni, G.C. Advanced ultrasound techniques in small animal reproduction imaging. Reprod. Domest. Anim. 2020, 55 (Suppl. 2), 17–25. [Google Scholar] [CrossRef] [PubMed]
- Pieczewska, B.; Dzięcioł, M.; Glińska-Suchocka, K.; Jankowski, M.; Kubiak, K.; Spużak, J.; Woszczyło, M.; Rodak, O.; Niżański, W. The mammary gland tumor Shear Wave Elastography in bitches. Reprod. Domest. Anim. 2018, 53, 182. [Google Scholar]
- Junker, D.; De Zordo, T.; Quentin, M.; Ladurner, M.; Bektic, J.; Horniger, W.; Jaschke, W.; Aigner, F. Real-time elastography of the prostate. BioMed Res. Int. 2014, 2014, 180804. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.; Wagner, M.; Castéra, L.; Hong, C.W.; Johnson, C.L.; Sirlin, C.B.; Taouli, B. Quantitative elastography methods in liver disease: Current evidence and future directions. Radiology 2018, 286, 738–763. [Google Scholar] [CrossRef]
- Chen, J.H.; Chan, S.; Zhang, Y.; Li, S.; Chang, R.F.; Su, M.-J. Evaluation of breast stiffness measured by ultrasound and breast density measured by MRI using a prone-supine deformation model. Biomark. Res. 2019, 7, 20. [Google Scholar] [CrossRef]
- Chan, J.; Gogela, N.; Zheng, H.; Lammert, S.; Ajayi, T.; Fricker, Z.; Kim, A.Y.; Robbins, G.K.; Chung, R.T. Direct-acting antiviral therapy for chronic HCV infection results in liver stiffness regression over 12 months post-treatment. Dig. Dis. Sci. 2018, 63, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Ooi, C.C.; Schneider, M.E.; Malliaras, P.; Chadwick, M.; Connell, D.A. Diagnostic performance of axial-strain sonoelastography in confirming clinically diagnosed Achilles tendinopathy: Comparison with B-mode ultrasound and color Doppler imaging. Ultrasound Med. Boil. 2015, 41, 15–25. [Google Scholar] [CrossRef]
Animals | Mammary Tumor Diagnosis via Fine Needle Aspirate before Treatment with Aglepristone | Mammary Tumor Diagnosis via Histopathology after Treatment with Aglepristone |
---|---|---|
1 | fibroadenoma | fibroadenoma |
2 | adenoma | adenoma |
3 | adenoma | adenoma |
4 | benign mixed tumor | benign mixed tumor |
5 | fibroadenoma | fibroadenoma |
6 | benign mixed tumor | benign mixed tumor |
7 | benign mixed tumor | benign mixed tumor |
8 | benign mixed tumor | benign mixed tumor |
9 | adenoma | adenoma |
10 | adenoma | adenoma |
11 | benign mixed tumor | benign mixed tumor |
12 | fibroadenoma | fibroadenoma |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pieczewska, B.; Glińska-Suchocka, K.; Niżański, W.; Dzięcioł, M. Decreased Size of Mammary Tumors Caused by Preoperative Treatment with Aglepristone in Female Domestic Dogs (Canis familiaris) Do Not Influence the Density of the Benign Neoplastic Tissue Measured Using Shear Wave Elastography Technique. Animals 2021, 11, 527. https://doi.org/10.3390/ani11020527
Pieczewska B, Glińska-Suchocka K, Niżański W, Dzięcioł M. Decreased Size of Mammary Tumors Caused by Preoperative Treatment with Aglepristone in Female Domestic Dogs (Canis familiaris) Do Not Influence the Density of the Benign Neoplastic Tissue Measured Using Shear Wave Elastography Technique. Animals. 2021; 11(2):527. https://doi.org/10.3390/ani11020527
Chicago/Turabian StylePieczewska, Barbara, Kamila Glińska-Suchocka, Wojciech Niżański, and Michał Dzięcioł. 2021. "Decreased Size of Mammary Tumors Caused by Preoperative Treatment with Aglepristone in Female Domestic Dogs (Canis familiaris) Do Not Influence the Density of the Benign Neoplastic Tissue Measured Using Shear Wave Elastography Technique" Animals 11, no. 2: 527. https://doi.org/10.3390/ani11020527
APA StylePieczewska, B., Glińska-Suchocka, K., Niżański, W., & Dzięcioł, M. (2021). Decreased Size of Mammary Tumors Caused by Preoperative Treatment with Aglepristone in Female Domestic Dogs (Canis familiaris) Do Not Influence the Density of the Benign Neoplastic Tissue Measured Using Shear Wave Elastography Technique. Animals, 11(2), 527. https://doi.org/10.3390/ani11020527