Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Sample Collection
2.3. Serum Analyses
2.4. Statistical Analysis
3. Results
3.1. Body Weight
3.2. Serum Parameters
3.3. Reproduction Performance
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, X.Z.; Guo, X.; Yan, P.; Liang, C.N.; Bao, P.J.; Chu, M. Seasonal and nutrients intake regulation of lipoprotein lipase (LPL) activity in grazing yak (Bos grunniens) in the Alpine Regions around Qinghai Lake. Livest. Sci. 2012, 143, 29–34. [Google Scholar] [CrossRef]
- Guo, X.; Long, R.; Kreuzer, M.; Ding, L.; Shang, Z.; Zhang, Y.; Yang, Y.; Cui, G. Importance of functional ingredients in yak milk-derived food on health of Tibetan nomads living under high-altitude stress: A review. Crit. Rev. Food Sci. 2014, 54, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Prakash, B.S.; Sarkar, M.; Mondal, M. An update on reproduction in yak and mithun. Reprod. Domest. Anim. 2008, 43 (Suppl. 2), 217–223. [Google Scholar] [CrossRef]
- Yu, S.J.; Huang, Y.M.; Chen, B.X. Reproductive patterns of the yak. II. Progesterone and oestradiol-17 beta levels in plasma and milk just before the breeding season; also during normal and short oestrous cycles. Br. Vet. J. 1993, 149, 585–593. [Google Scholar] [CrossRef]
- Mann, G.E. Reproduction in the yak. Br. Vet. J. 1993, 149, 513–514. [Google Scholar] [CrossRef]
- Lan, D.; Xiong, X.; Huang, C.; Mipam, T.D.; Li, J. Toward Understanding the Genetic Basis of Yak Ovary Reproduction: A Characterization and Comparative Analyses of Estrus Ovary Transcriptiome in Yak and Cattle. PLoS ONE 2016, 11, e0152675. [Google Scholar] [CrossRef]
- Fu, M.; Xiong, X.R.; Lan, D.L.; Li, J. Molecular characterization and tissue distribution of estrogen receptor genes in domestic yak. Asian Aust. J. Anim. Sci. 2014, 27, 1684–1690. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Zi, X.D.; Niu, H.R.; Xiong, X.R.; Zhong, J.C.; Li, J.; Wang, L.; Wang, Y. Effect of addition of FSH, LH and proteasomeinhibitor MG132 to in vitro maturation medium on the developmental competence of yak (Bos grun-niens) oocytes. Reprod. Biol. Endocrin. 2014, 12, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zi, X.D. Reproduction in female yaks (Bos grunniens) and opportunities for improvement. Theriogenology 2003, 59, 1303–1312. [Google Scholar] [CrossRef]
- Long, R.J.; Ding, L.M.; Shang, Z.H.; Gao, X.H. The yak grazing system on the Qinghai-tibetan plateau and its status. Rangel. J. 2008, 30, 241–246. [Google Scholar] [CrossRef]
- Zhou, J.; Yue, S.; Peng, Q.; Wang, L.; Wang, Z.; Xue, B. Metabonomic Responses of Grazing Yak to Different Concentrate Supplementations in Cold Season. Animals 2020, 10, 1595. [Google Scholar] [CrossRef]
- Long, R.J.; Dong, S.K.; Wei, X.H.; Pu, X.P. The effect of supplementary feeds on the body weight of yaks in cold season. Livest. Prod. Sci. 2005, 93, 197–204. [Google Scholar] [CrossRef]
- Ding, L.M.; Chen, J.Q.; Long, R.J.; Malcolm, J.G. Blood hormonal and metabolite levels in grazing yak steers undergoing compensatory growth. Anim. Feed Sci. Tech. 2015, 209, 30–39. [Google Scholar] [CrossRef]
- Xue, B.; Zhao, X.Q.; Zhang, Y.S. Seasonal changes in weight and body composition of yak grazing on alpine-meadow grassland in the Qinghai-Tibetan plateau of China. J. Anim. Sci. 2005, 83, 1908–1913. [Google Scholar] [CrossRef] [Green Version]
- Xie, R.; Zheng, Q.; Luo, G. Finishing Effect of Maiwa Yak by Supply Feed in Warm Season. J. Grass Feed. Livest. 2004, 4, 017. [Google Scholar]
- Diskin, M.G.; Kenny, D.A. Managing the reproductive performance of beef cows. Theriogenology 2016, 86, 379–387. [Google Scholar] [CrossRef]
- Long, R.J.; Zhang, D.G.; Wang, X.; Hu, Z.Z.; Dong, S.K. Effect of strategic feed supplementation on productive and reproductive performance in yak cows. Prev. Vet. Med. 1999, 38, 195–206. [Google Scholar] [CrossRef]
- De Clercq, K.; Vriens, J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. Biochim. Biophys. Acta. Mol. Cell Res. 2018, 1865, 1815–1829. [Google Scholar] [CrossRef] [PubMed]
- Call, J.W.; Butcher, J.E.; Blake, J.T.; Smart, R.A.; Shupe, J.L. Phosphorus influence on growth and reproduction of beef cattle. J. Anim. Sci. 1978, 47, 216–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinedo, P.; Velez, J.; Solano, G.; Rodriguez, N.; Naves, J.; Schuenemann, G.M.; Risco, C. Effect of oral calcium administration on the cure and reproductive performance of Holstein cows diagnosed with puerperal metritis. J. Dairy Sci. 2017, 100, 2917–2927. [Google Scholar] [CrossRef] [Green Version]
- Dunn, T.G.; Moss, G.E. Effects of nutrient deficiencies and excesses on reproductive efficiency of livestock. J. Anim. Sci. 1992, 70, 1580–1593. [Google Scholar] [CrossRef]
- Jubb, T.F.; Crough, K.F. Phosphorus supplementation of cattle. Aust. Vet. J. 1988, 65, 264–267. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2002. [Google Scholar]
- McDowell, L.R. Minerals in Animal and Human Nutrition, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 101–128. [Google Scholar]
- Liu, S.J. Determination of Feed Intake of Grazing Yaks in Different Phenological Periods. In Yak Production in Central Asian Highlands: Proceedings of the Second International Congress on Yak, 1–6 September 1997, Xining, China; Qinghai People’s Publishing House: Qinghai, China, 1997; pp. 113–116. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academy Press: Washington, DC, USA, 2016; pp. 125–161.
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001; pp. 367–391.
- Yoshihara, Y.; Mizuno, H.; Yasue, H.; Purevdorj, N.; Ito, T.Y. Nomadic grazing improves the mineral balance of livestock through the intake of diverse plant species. Anim. Feed Sci. Tech. 2013, 184, 80–85. [Google Scholar] [CrossRef]
- Fan, Q.; Wanapat, M.; Hou, F. Mineral Nutritional Status of Yaks (Bos Grunniens) Grazing on the Qinghai-Tibetan Plateau. Animals 2019, 9, 468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shupe, J.L.; Butcher, J.E.; Call, J.W. Clinical signs and bone changes associated with phosphorus deficiency in beef cattle. Am. J. Vet. Res. 1988, 49, 1629–1936. [Google Scholar]
- Underwood, E.J.; Suttle, N.F. The mineral nutrition of livestock, 3rd ed. Br. J. Nutr. 2000, 84, 393. [Google Scholar]
- Crenshaw, T.D. Calcium, Phosphorus, Vitamin D, and Vitamin K in Swine Nutrition. Swine Nutrition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001; pp. 187–212. [Google Scholar]
- Short, R.E.; Adams, D.C. Nutritional and Hormonal Interrelationships in Beef Cattle Reproduction. Can. J. Anim. 1988, 68, 29–39. [Google Scholar] [CrossRef]
- Short, R.E.; Bellows, R.A.; Staigmiller, R.B.; Berardinelli, J.G.; Custer, E.E. Physiological mechanisms controlling anestrus and infertility in postpartum beef cattle. J. Anim. Sci. 1990, 68, 799–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, L.M.; Long, R.J.; Yang, Y.H.; Xu, S.H. Behaviour responses by yaks, in different physiological states (lactating, dry or replacement heifer), when grazing natural pasture in spring (dry and germinating) season of Qinghai-Tibetan plateau. Appl. Anim. Behav. Sci. 2007, 108, 239–250. [Google Scholar] [CrossRef]
- Rutter, L.M.; Randel, R.D. Postpartum nutrient intake and body condition: Effect on pituitary function and onset of estrus in beef cattle. J. Anim. Sci. 1984, 58, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Heaney, R.P. Estrogen-calcium interactions in the postmenopause: A quantitative description. Bone Miner. 1990, 11, 67–84. [Google Scholar] [CrossRef]
- Findlay, D.M.; Sexton, P.M. Calcitonin. Growth Factors 2004, 22, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Murray, R.D.; Horsfield, J.E.; McCormick, W.D.; Williams, H.J.; Ward, D. Historical and current perspectives on the treatment, control and pathogenesis of milk fever in dairy cattle. Vet. Rec. 2008, 163, 561–565. [Google Scholar] [CrossRef]
- González-Vega, J.C.; Liu, Y.; Mccann, J.C. Requirement for digestible calcium by eleven- to twenty-five-kilogram pigs as determined by growth performance, bone ash concentration, calcium and phosphorus balances, and expression of genes involved in transport of calcium in intestinal and kidney cells. J. Anim. Sci. 2016, 94, 3321–3334. [Google Scholar]
- Carroll, J. The initiation and regulation of Ca2+ signalling at fertilization in mammals. Semin. Cell Dev. Biol. 2001, 12, 37–43. [Google Scholar] [CrossRef]
- Ivaska, K.K.; Hentunen, T.A.; Vaaraniemi, J.; Ylipahkala, H.; Pettersson, K.; Vaananen, H.K. Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J. Biol. Chem. 2004, 279, 18361–18369. [Google Scholar] [CrossRef] [Green Version]
- Lian, J.; Stewart, C.; Puchacz, E.; Mackowiak, S.; Shalhoub, V.; Collart, D.; Zambetti, G.; Stein, G. Structure of the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc. Natl. Acad. Sci. USA 1989, 86, 143–1147. [Google Scholar] [CrossRef] [Green Version]
- Grimm, M.; Müller, A.; Hein, G.; Fünfstück, R.; Jahreis, G. High phosphorus intake only slightly affects serum minerals, urinary pyridinium crosslinks and renal function in young women. Eur. J. Clin. Nutr. 2001, 55, 153–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ritter, N.M.; Farach-Carson, M.C.; Butler, W.T. Evidence for the formation of a complex between osteopontin and osteocalcin. J. Bone Miner. Res. 1992, 7, 877–885. [Google Scholar] [CrossRef]
- Delmas, P.D.; Malaval, L.; Arlot, M. Serum bone-Gla-protein compared to bone histomorphometry in endocrine diseases. Bone 1985, 6, 339–341. [Google Scholar] [CrossRef]
- Zhang, X.Y.; He, J.W.; Fu, W.Z.; Liu, Y.J.; Zhang, Z.L. Associations of Serum Osteocalcin and Polymorphisms of the Osteocalcin Gene with Bone Mineral Density in Postmenopausal and Elderly Chinese Women. J. Nutr. Nutr. 2016, 9, 231–242. [Google Scholar] [CrossRef]
- Peterson, A.B.; Orth, M.W.; Goff, J.P.; Beede, D.K. Periparturient responses of multiparous Holstein cows fed different dietary phosphorus concentrations prepartum. J. Dairy Sci. 2005, 88, 3582–3594. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, K.U.; Kruger, M.C.; Hansen-Møller, J.; Poulsen, H.D. Bone biochemical markers for assessment of bone responses to differentiated phosphorus supply in growing-finishing pigs. J. Anim. Sci. 2018, 96, 4693–4703. [Google Scholar] [CrossRef] [PubMed]
- Eleniste, P.P.; Huang, S.; Wayakanon, K.; Largura, H.W.; Bruzzaniti, A. Osteoblast differentiation and migration are regulated by dynamin GTPase activity. Int. J. Biochem. Cell Biol. 2014, 46, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Devkota, B.; Itagaki, K.; Kim, D.; Sasaki, K.; Osawa, T.; Furuhama, K.; Yamagishi, N. Relationship between sex hormone fluctuations and biomarkers of bone resorption in bovine plasma during the oestrous cycle. Vet. J. 2012, 194, 256–258. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, S.; Fishman, S.; Talpaz, H. Model of plasma calcium regulation: System oscillations induced by growth. Am. J. Physiol. 1987, 252, 1173–1181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, M.; Sun, H. Effects of dietary calcium to available phosphorus ratios on bone metabolism and osteoclast activity of the OPG /RANK/RANKL signalling pathway in piglets. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Boyd, R.D.; Hall, D.; Wu, J.F. Plasma alkaline phosphatase as a criterion for determining biological availability of phosphorus for swine. J. Anim. Sci. 1983, 57, 396–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, M.E.; Mahan, D.C. Biological characteristics for assessing low phosphorus intake in finishing swine. J. Anim. Sci. 1986, 62, 163–172. [Google Scholar] [CrossRef]
- Lowry, M.; Hall, D.; Brosnan, J. Hydroxyproline metabolism by the rat kidney: Distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metabolism 1985, 34, 955–961. [Google Scholar] [CrossRef]
- Kivirikko, K.I. Urinary excretion of hydroxyproline in health and disease. Int. Rev. Connect. Tissue Res. 1970, 5, 93–163. [Google Scholar] [PubMed]
- Seibel, M.J. Biochemical markers of bone turnover: Part I: Biochemistry and variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar] [PubMed]
- Hignett, S.L.; Hignett, P.G. Hignett. The influence of nutrition on reproductive efficiency in cattle. II. The effect of the phosphorus intake on ovarian activity and fertility of heifers. Vet. Rec. 1952, 64, 203–206. [Google Scholar]
- Scharp, D.W. Effect of adding superphosphate to the drinking water on the fertility of dairy cows. Aust. Vet. J. 1979, 55, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Cerosaletti, P.E.; Fox, D.G.; Chase, L.E. Phosphorus reduction through precision feeding of dairy cattle. J. Dairy Sci. 2004, 87, 2314–2323. [Google Scholar] [CrossRef]
- Tallam, S.K.; Ealy, A.D.; Bryan, K.A.; Wu, Z. Ovarian activity and reproductive performance of dairy cows fed different amounts of phosphorus. J. Dairy Sci. 2005, 88, 3609–3618. [Google Scholar] [CrossRef] [Green Version]
Items | CaCl | MCP | Pasture |
---|---|---|---|
Dry matter (%) | 99.52 | 98.20 | 92.87 |
Ca (%) | 35.98 | 16.37 | 0.92 |
P (%) | 0.00 | 22.14 | 0.27 |
Supplementation intake (g/day) | 14.00 | 30.00 | - |
Daily intake of Ca (g/day) | 5.04 | 4.91 | - |
Daily intake of P (g/day) | 0.00 | 6.64 | - |
Items | CONT | CaCl | MCP |
---|---|---|---|
Initial weight (kg) | 153.2 ± 5.7 | 155.4 ± 7.33 | 150.6 ± 6.7 |
Final weight (kg) | 162.6 ± 7.1 | 166.0 ± 7.65 | 164.6 ± 8.8 |
Body weight change (kg) | 9.4 ± 1.9 a | 10.6 ± 2.4 a | 14.1 ± 2.5 b |
Average daily gain (g/d) | 313.3 ± 65.6 a | 351.7 ± 80.7 a | 466.7 ± 82.03 b |
Items 1 | CONT | CaCl | MCP |
---|---|---|---|
Serum P (mmol/L) | 1.35 ± 0.10 a | 1.49 ± 0.08 a,b | 1.79 ± 0.07 b |
Serum Ca (mmol/L) | 2.32 ± 0.06 | 2.33 ± 0.08 | 2.32 ± 0.03 |
Hydroxyproline (μg/mL) | 1.73 ± 0.04 b | 1.72 ± 0.04 b | 1.65 ± 0.05 a |
ALP (U/L) | 52.21 ± 1.02 b | 49.86 ± 0.72 a | 49.74 ± 0.45 a |
Osteocalcin (ug/L) | 1.80 ± 0.07 a | 1.94 ± 0.08 b | 1.96 ± 0.07 b |
Calcitonin (ng/L) | 145.47 ± 1.16 b | 143.19 ± 2.03 b | 139.26 ± 1.38 a |
Items | CONT | CaCl | MCP |
---|---|---|---|
Number of yak heifers | 30 | 30 | 30 |
Conceived yaks (No. 1) | 19 | 19 | 25 |
Conception rate (%) | 63.33 a | 63.33 a | 83.33 b |
Aborted yaks (No.) | 1 | 2 | 1 |
Calving yaks (No.) | 18 | 17 | 24 |
Calving rate (%) | 60 a | 56.67 a | 80 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Zhang, J.; Xue, B.; Yue, S.; Yang, C.; Xue, B. Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers. Animals 2021, 11, 554. https://doi.org/10.3390/ani11020554
Zhou J, Zhang J, Xue B, Yue S, Yang C, Xue B. Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers. Animals. 2021; 11(2):554. https://doi.org/10.3390/ani11020554
Chicago/Turabian StyleZhou, Jia, Jianxun Zhang, Benchu Xue, Shuangming Yue, Chao Yang, and Bai Xue. 2021. "Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers" Animals 11, no. 2: 554. https://doi.org/10.3390/ani11020554
APA StyleZhou, J., Zhang, J., Xue, B., Yue, S., Yang, C., & Xue, B. (2021). Effects of Premating Calcium and Phosphorus Supplementation on Reproduction Efficiency of Grazing Yak Heifers. Animals, 11(2), 554. https://doi.org/10.3390/ani11020554