Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Okara Processing and Experimental Diets
2.2. Digestibility Trial
2.3. Growth Trial
2.4. Instrumental Texture and Color Analysis of Nile Tilapia Muscle
2.5. Histological Characterization
2.6. Chemical and Physical Analysis
2.7. Amino Acid Analysis
2.8. Calculations
2.9. Statistical Analysis
3. Results
3.1. Digestibility Trial
3.2. Growth Trial
3.3. Flesh Quality Traits
4. Discussion
4.1. Digestibility Trial
4.2. Growth Trial
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nishinari, K.; Fang, Y.; Guo, S.; Phillips, G.O. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 2014, 39, 301–318. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 23 November 2020).
- Dajanta, K.; Apichartsrangkoon, A.; Chukeatirote, E.; Frazier, R.A. Free-amino acid profiles of thua nao, a Thai fermented soybean. Food Chem. 2011, 125, 342–347. [Google Scholar] [CrossRef]
- Francis, G.; Makkar, H.P.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Yuan, Y.; Lin, Y.; Yang, H.; Gong, Y.; Gong, S.; Yu, D. Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac. Nutr. 2012, 19, 74–83. [Google Scholar] [CrossRef]
- Hassaan, M.S.; Soltan, M.A.; Abdel-Moez, A.M. Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim. Feed. Sci. Technol. 2015, 201, 89–98. [Google Scholar] [CrossRef]
- Yamamoto, T.; Iwashita, Y.; Matsunari, H.; Sugita, T.; Furuita, H.; Akimoto, A.; Okamatsu, K.; Suzuki, N. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 2010, 309, 173–180. [Google Scholar] [CrossRef]
- Henders, S.; Persson, U.M.; Kastner, T. Trading forests: Land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 2015, 10, 125012. [Google Scholar] [CrossRef]
- Patterson, D.; Gatlin, D.M. Evaluation of whole and lipid-extracted algae meals in the diets of juvenile red drum (Sciaenops ocellatus). Aquaculture 2013, 416, 92–98. [Google Scholar] [CrossRef]
- El-Sayed, A.-F.M. Alternative dietary protein sources for farmed tilapia, Oreochromis spp. Aquaculture 1999, 179, 149–168. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Belén, F.; Sánchez, J.; Hernández, E.; Auleda, J.; Raventós, M. One option for the management of wastewater from tofu production: Freeze concentration in a falling-film system. J. Food Eng. 2012, 110, 364–373. [Google Scholar] [CrossRef]
- Harthan, L.B.; Cherney, D.J. Okara as a protein supplement affects feed intake and milk composition of ewes and growth performance of lambs. Anim. Nutr. 2017, 3, 171–174. [Google Scholar] [CrossRef]
- Jankowiak, L.; Trifunovic, O.; Boom, R.M.; Van Der Goot, A.J. The potential of crude okara for isoflavone production. J. Food Eng. 2014, 124, 166–172. [Google Scholar] [CrossRef]
- O’Toole, D.K. Characteristics and Use of Okara, the Soybean Residue from Soy Milk ProductionA Review. J. Agric. Food Chem. 1999, 47, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Van Der Riet, W.; Wight, A.; Cilliers, J.; Datel, J. Food chemical investigation of tofu and its byproduct okara. Food Chem. 1989, 34, 193–202. [Google Scholar] [CrossRef]
- Khare, S.; Jha, K.; Gandhi, A. Citric acid production from Okara (soy-residue) by solid-state fermentation. Bioresour. Technol. 1995, 54, 323–325. [Google Scholar] [CrossRef]
- Vong, W.C.; Liu, S.-Q. Biovalorisation of okara (soybean residue) for food and nutrition. Trends Food Sci. Technol. 2016, 52, 139–147. [Google Scholar] [CrossRef]
- Voss, G.B.; Rodríguez-Alcalá, L.M.; Valente, L.M.P.; Pintado, M.M. Impact of different thermal treatments and storage conditions on the stability of soybean byproduct (okara). J. Food Meas. Charact. 2018, 12, 1981–1996. [Google Scholar] [CrossRef]
- Floreto, E.A.; Bayer, R.C.; Brown, P.B. The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture 2000, 189, 211–235. [Google Scholar] [CrossRef]
- Stanojevic, S.P.; Barac, M.B.; Pesic, M.B.; Jankovic, V.S.; Vucelic-Radovic, B.V. Bioactive Proteins and Energy Value of Okara as a Byproduct in Hydrothermal Processing of Soy Milk. J. Agric. Food Chem. 2013, 61, 9210–9219. [Google Scholar] [CrossRef]
- Hossain, M.; Becker, K. Nutritive value and antinutritional factors in different varieties of Sesbania seeds and their morphological fractions. Food Chem. 2001, 73, 421–431. [Google Scholar] [CrossRef]
- Refstie, S.; Sahlström, S.; Bråthen, E.; Baeverfjord, G.; Krogedal, P. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 2005, 246, 331–345. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, H.; He, R.; Xu, W.; Mai, K.; He, G. Effects of soybean meal fermentation by Lactobacillus plantarum P8 on growth, immune responses, and intestinal morphology in juvenile turbot (Scophthalmus maximus L.). Aquaculture 2016, 464, 87–94. [Google Scholar] [CrossRef]
- Sbroggio, M.F.; Montilha, M.S.; De Figueiredo, V.R.G.; Georgetti, S.R.; Kurozawa, L.E. Influence of the degree of hydrolysis and type of enzyme on antioxidant activity of okara protein hydrolysates. Food Sci. Technol. 2016, 36, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Liang, M.; Yao, H.; Wang, J.; Chang, Q. Effect of dietary fish protein hydrolysate on growth, feed utilization and IGF-I levels of Japanese flounder (Paralichthys olivaceus). Aquac. Nutr. 2011, 18, 297–303. [Google Scholar] [CrossRef]
- Coscueta, E.R.; Amorim, M.M.; Voss, G.B.; Nerli, B.B.; Picó, G.A.; Pintado, M.E. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 2016, 198, 36–44. [Google Scholar] [CrossRef]
- Gibbs, B.F.; Zougman, A.; Masse, R.; Mulligan, C. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 2004, 37, 123–131. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides 2014, 54, 171–179. [Google Scholar] [CrossRef]
- Voss, G.B.; Osorio, H.; Valente, L.M.; Pintado, M.E. Impact of thermal treatment and hydrolysis by Alcalase and Cynara cardunculus enzymes on the functional and nutritional value of Okara. Process. Biochem. 2019, 83, 137–147. [Google Scholar] [CrossRef]
- FAO. Cultured Aquatic Species Information Programme Oreochromis niloticus (Linnaeus, 1758). Available online: http://www.fao.org/fishery/culturedspecies/Oreochromis_niloticus/en (accessed on 23 November 2020).
- National Research Council. NRC Nutrient requirements of Fish and Shrimp; National Academies Press: Washington DC, USA, 2011. [Google Scholar]
- Goda, A.M. Effect of Dietary Soybean Meal and Phytase Levels on Growth, Feed Utilization and Phosphorus Discharge for Nile tilapia Oreochromis niloticus (L.). J. Fish. Aquat. Sci. 2007, 2, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Shiau, S.-Y.; Chuang, J.-L.; Sun, C.-L. Inclusion of soybean meal in tilapia (Oreochromis niloticus × O. aureus) diets at two protein levels. Aquaculture 1987, 65, 251–261. [Google Scholar] [CrossRef]
- Nguyen, T.; Ngo, H.; Guo, W.; Zhang, J.; Liang, S.; Tung, K. Feasibility of iron loaded ‘okara’ for biosorption of phosphorous in aqueous solutions. Bioresour. Technol. 2013, 150, 42–49. [Google Scholar] [CrossRef]
- El-Saidy, D. Effect of using okara meal, a by-product from soymilk production as a dietary protein source for Nile tilapia (Oreochromis niloticus L.) mono-sex males. Aquac. Nutr. 2010, 17, 380–386. [Google Scholar] [CrossRef]
- Santiago, C.B.; Lovell, R.T. Amino Acid Requirements for Growth of Nile Tilapia. J. Nutr. 1988, 118, 1540–1546. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.; Rema, P.; Ferraro, V.; Pintado, M.; Sousa-Pinto, I.; Cunha, L.M.; Oliveira, M.; Araújo, M. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 2015, 446, 132–139. [Google Scholar] [CrossRef]
- Valente, L.; Cornet, J.; Donnay-Moreno, C.; Gouygou, J.; Bergé, J.; Bacelar, M.; Escórcio, C.; Rocha, E.; Malhão, F.; Cardinal, M. Quality differences of gilthead sea bream from distinct production systems in Southern Europe: Intensive, integrated, semi-intensive or extensive systems. Food Control. 2011, 22, 708–717. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; AOAC International: Arlington, VA, USA, 1995; Volume 2. [Google Scholar]
- Goering, H.K.; Soest, P.J. Van Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); USDA Agric. Handbook No. 379; USDA-ARS: Washington, DC, USA, 1970; pp. 387–598. [Google Scholar]
- Bolin, D.W.; King, R.P.; Klosterman, E.W. A Simplified Method for the Determination of Chromic Oxide (Cr2O3) when Used as an Index Substance. Science 1952, 116, 634–635. [Google Scholar] [CrossRef] [PubMed]
- Proestos, C.; Loukatos, P.; Komaitis, M. Determination of biogenic amines in wines by HPLC with precolumn dansylation and fluorimetric detection. Food Chem. 2008, 106, 1218–1224. [Google Scholar] [CrossRef]
- Maynard, L.A.; Loosli, J.K.; Hintz, H.F.; Warner, R.G. Animal Nutrition; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of food waste, fish waste and food processing waste for China’s aquaculture industry: Needs and challenge. Sci. Total Environ. 2018, 635–643. [Google Scholar] [CrossRef]
- Fontaínhas-Fernandes, A.; Gomes, E.; Reis-Henriques, M.; Coimbra, J. Replacement of Fish Meal by Plant Proteins in the Diet of Nile Tilapia: Digestibility and Growth Performance. Aquac. Int. 1999, 7, 57–67. [Google Scholar] [CrossRef]
- Vidal, L.; Xavier, T.; De Moura, L.; Graciano, T.; Martins, E.; Furuya, W. Apparent digestibility of soybean coproducts in extruded diets for Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2015, 23, 228–235. [Google Scholar] [CrossRef]
- Dong, X.-H.; Guo, Y.-X.; Ye, J.-D.; Song, W.-D.; Huang, X.-H.; Wang, H. Apparent digestibility of selected feed ingredients in diets for juvenile hybrid tilapia, Oreochromis niloticus×Oreochromis aureus. Aquac. Res. 2010, 41, 1356–1364. [Google Scholar] [CrossRef]
- Wu, D.; Zhou, L.; Gao, M.; Wang, M.; Wang, B.; He, J.; Luo, Q.; Ye, Y.; Cai, C.; Wu, P.; et al. Effects of stickwater hydrolysates on growth performance for yellow catfish (Pelteobagrus fulvidraco). Aquaculture 2018, 488, 161–173. [Google Scholar] [CrossRef]
- Köprücü, K.; Özdemir, Y. Apparent digestibility of selected feed ingredients for Nile tilapia (Oreochromis niloticus). Aquaculture 2005, 250, 308–316. [Google Scholar] [CrossRef]
- Guimarães, I.; Pezzato, L.; Barros, M. Amino acid availability and protein digestibility of several protein sources for Nile tilapia, Oreochromis niloticus. Aquac. Nutr. 2008, 14, 396–404. [Google Scholar] [CrossRef]
- Ngo, D.T.; Pirozzi, I.; Glencross, B. Digestibility of canola meals in barramundi (Asian seabass; Lates calcarifer). Aquaculture 2015, 435, 442–449. [Google Scholar] [CrossRef]
- Tibaldi, E.; Hakim, Y.; Uni, Z.; Tulli, F.; De Francesco, M.; Luzzana, U.; Harpaz, S. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture 2006, 261, 182–193. [Google Scholar] [CrossRef]
- Elangovan, A.; Shim, K.F. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 2000, 189, 133–144. [Google Scholar] [CrossRef]
- Peres, H.; Lim, C.; Klesius, P.H. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus). Aquaculture 2003, 225, 67–82. [Google Scholar] [CrossRef]
- Mamauag, R.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Gao, J.; Nguyen, B.; Ragaza, J. Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and body composition of Japanese flounder, Paralichthys olivaceus. Aquaculture 2011, 321, 252–258. [Google Scholar] [CrossRef]
- Kim, J.; Kaushik, S. Contribution of digestible energy from carbohydrates and estimation of protein/energy requirements for growth of rainbow trout (Oncorhynchus mykiss). Aquaculture 1992, 106, 161–169. [Google Scholar] [CrossRef]
- Arndt, R.E.; Hardy, R.W.; Sugiura, S.H.; Dong, F.M. Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon, Oncorhynchus kisutch. Aquaculture 1999, 180, 129–145. [Google Scholar] [CrossRef]
- Lee, S.-M.; Azarm, H.M.; Chang, K.H. Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish (Sebastes schlegeli). Aquaculture 2016, 459, 110–116. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Araújo, M.; Batista, S.; Peixoto, M.J.; Sousa-Pinto, I.; Brotas, V.; Cunha, L.M.; Rema, P. Carotenoid deposition, flesh quality and immunological response of Nile tilapia fed increasing levels of IMTA-cultivated Ulva spp. Environ. Boil. Fishes 2015, 28, 691–701. [Google Scholar] [CrossRef]
- Valente, L.M.; Moutou, K.A.; Conceição, L.E.; Engrola, S.; Fernandes, J.M.; Johnston, I.A. What determines growth potential and juvenile quality of farmed fish species? Rev. Aquac. 2013, 5, S168–S193. [Google Scholar] [CrossRef] [Green Version]
Ingredient | Processing Method |
---|---|
Dried okara (FOK) | Fresh okara dried until constant weight (65 °C for 68 h) |
Autoclaved and dried okara (AOK) | Autoclaved okara (1 atm, 121 °C for 20 min) followed by drying until constant weight (65 °C for 68 h) |
Hydrolyzed Okara using Alcalase (ALOK) | Okara hydrolyzed with Alcalase and autoclaved, followed by drying until constant weight (65 °C for 68 h) |
Hydrolyzed Okara using proteases from Cynara cardunculus (CYOK) | Okara hydrolyzed with proteases from Cynara cardunculus and autoclaved followed by drying until constant weight (65 °C for 68 h) |
Hydrolyzed Okara using proteases from Cynara cardunculus and fermented with R11 a (CYR11OK) | Okara hydrolyzed with proteases from Cynara cardunculus, autoclaved, further added fructose and fermented with Lactobacillus rhamnosus R11, followed drying until constant weight (65 °C for 68 h) |
Hydrolyzed Okara using proteases from Cynara cardunculus and fermented with Bb12 b (CYB12OK) | Okara hydrolyzed with proteases from Cynara cardunculus, autoclaved, further added fructose and fermented with Bifidobacterium animalis ssp. lactis Bb12 followed by drying until constant weight (65 °C for 68 h) |
Composition | FOK | AOK | ALOK | CYOK | CYR11OK | CYB12OK |
---|---|---|---|---|---|---|
Dry matter | 97.2 | 97.4 | 92.0 | 94.0 | 88.7 | 88.7 |
Ash | 4.0 | 3.9 | 7.3 | 12.0 | 11.1 | 10.7 |
Crude protein | 31.6 | 31.0 | 26.9 | 25.2 | 20.1 | 19.4 |
Crude fat | 17.2 | 16.4 | 15.4 | 13.2 | 9.7 | 9.3 |
Gross energy (kJ g−1) | 22.6 | 22.5 | 21.5 | 20.0 | 19.7 | 20.0 |
Phosphorus | 0.4 | 0.4 | 1.1 | 0.3 | 0.3 | 0.3 |
TDF a | 27.0 | 21.8 | 27.3 | 26.2 | 28.6 | 20.3 |
IDF b | 14.7 | 13.6 | 15.2 | 15.0 | 9.6 | 10.6 |
Carbohydrates c | 47.2 | 48.7 | 50.4 | 49.6 | 59.1 | 60.6 |
Experimental Diets | |||||||
---|---|---|---|---|---|---|---|
REF | FOKd | AOKd | ALOKd | CYOKd | CYR11OKd | CYB12OKd | |
Basal mix | 100 | 70 | 70 | 70 | 70 | 70 | 70 |
FOK | 30 | ||||||
AOK | 30 | ||||||
CYB12OK | 30 | ||||||
CYR11OK | 30 | ||||||
CYOK | 30 | ||||||
ALOK | 30 | ||||||
Proximate Composition | |||||||
Dry matter | 93.9 | 93.8 | 93.0 | 94.5 | 92.5 | 94.1 | 93.7 |
Ash | 9.0 | 7.2 | 7.2 | 8.5 | 9.3 | 9.2 | 9.0 |
Crude protein | 43.0 | 36.6 | 38.4 | 35.4 | 34.9 | 35.4 | 37.1 |
Crude fat | 8.1 | 11.7 | 11.2 | 11.0 | 10.3 | 9.3 | 9.2 |
Gross energy (kJ g−1) | 20.5 | 21.0 | 21.1 | 20.4 | 20.2 | 19.9 | 20.1 |
Phosphorus | 1.2 | 0.9 | 0.9 | 1.2 | 0.9 | 0.9 | 0.9 |
TDF | 22.7 | 25.6 | 22.4 | 15.9 | 22.7 | 23.9 | 23.8 |
IDF | 8.2 | 10.2 | 10.1 | 8.4 | 11.0 | 12.7 | 7.3 |
Ingredients (%) | REF | AOK10 | AOK20 | CYOK10 | CYOK20 |
---|---|---|---|---|---|
Fishmeal 60 a | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Corn gluten b | 17.0 | 17.0 | 17.0 | 17.0 | 17.0 |
Soybean meal 48 c | 17.5 | 12.5 | 7.5 | 14.0 | 10.5 |
Rapeseed meal d | 15.0 | 15.0 | 15.0 | 15.0 | 15.0 |
Wheat meal e | 5.0 | 4.5 | 3.0 | 4.0 | 1.0 |
Wheat bran f | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
Rice bran full fat g | 12.0 | 12.0 | 12.0 | 12.0 | 12.0 |
Corn meal h | 8.0 | 4.3 | 1.5 | 3.3 | 0.5 |
Soybean oil i | 2.7 | 2.0 | 1.2 | 2.0 | 1.2 |
Vitamin & Mineral Premix j | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Betaine HCl k | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Antioxidant l | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Sodium propionate m | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
MCP n | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
L-Lysine o | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
DL-Methionine p | 0.4 | 0.4 | 0.4 | 0.4 | 0.4 |
AOK q | - | 10.0 | 20.0 | - | - |
CYOK r | - | - | - | 10.0 | 20.0 |
Proximate composition (% DM or kJ g−1 DM) | |||||
Dry matter | 90.5 | 89.9 | 90.9 | 92.3 | 90.1 |
Ash | 7.2 | 7.1 | 7.1 | 7.8 | 8.4 |
Crude protein | 42.9 | 43.8 | 43.8 | 43.0 | 43.8 |
Crude fat | 7.2 | 8.3 | 8.8 | 8.0 | 8.3 |
Gross energy (kJ g−1 DM) | 21.3 | 21.7 | 21.9 | 21.5 | 21.5 |
TDF s | 17.3 | 16.9 | 16.8 | 15.6 | 17.1 |
IDF t | 9.6 | 9.1 | 10.4 | 9.6 | 10.8 |
Phosphorus | 2.6 | 2.7 | 2.0 | 2.4 | 2.5 |
Essencial Amino Acids (mg g−1 Sample) | |||||
Arginine | 20.8 | 20.2 | 22.3 | 21.7 | 23.1 |
Histidine | 7.9 | 6.0 | 7.3 | 9.8 | 8.4 |
Lysine | 31.8 | 30.9 | 34.2 | 31.7 | 29.7 |
Threonine | 15.7 | 14.7 | 16.0 | 16.5 | 17.4 |
Isoleucine | 17.8 | 17.3 | 19.1 | 18.5 | 18.9 |
Leucine | 37.1 | 36.0 | 40.1 | 38.5 | 38.1 |
Valine | 21.5 | 20.9 | 23.2 | 22.0 | 22.3 |
Methionine | 9.3 | 9.8 | 10.6 | 10.6 | 9.4 |
Phenylalanine | 17.7 | 17.2 | 19.2 | 18.6 | 17.1 |
Cystine | 5.7 | 5.0 | 5.8 | 5.5 | 5.4 |
Tyrosine | 13.7 | 13.5 | 15.0 | 14.5 | 14.8 |
Aspartic acid | 53.4 | 52.9 | 58.4 | 57.2 | 59.8 |
Glut acid + Glutamine | 99.4 | 96.1 | 105.7 | 104.3 | 109.3 |
Alanine | 24.5 | 23.8 | 26.1 | 25.6 | 25.4 |
Glycine | 7.4 | 6.3 | 6.4 | 6.8 | 7.8 |
Serine | 17.7 | 17.2 | 19.2 | 18.8 | 19.8 |
ADC Diets (%) | REFd | FOKd | AOKd | ALOKd | CYOKd | CYR11OKd | CYB12OKd |
---|---|---|---|---|---|---|---|
Dry matter | 73.4 ± 0.4 ab | 63.2 ± 1.2 c | 70.7 ± 0.7 b | 72.9 ± 1.7 ab | 73.4 ± 1.0 ab | 75.1 ± 0.8 a | 74.9 ± 0.7 a |
Protein | 87.7 ± 1.1 bc | 86.3 ± 0.4 bd | 89.8 ± 0.6 a | 86.3 ± 0.4 bcd | 88.3 ± 0.4ac | 85.1 ± 0.8 d | 87.1 ± 1.0 bcd |
Energy | 79.8 ± 0.1 a | 74.4 ± 1.1 b | 78.4 ± 1.3 a | 79.3 ± 0.9 a | 80.4 ± 0.2 a | 80.3 ± 1.1 a | 80.8 ± 0.9 a |
Lipids | 91.8 ± 0.4 b | 93.1 ± 0.0 bc | 96.8 ± 0.7 a | 96.2 ± 0.2 a | 96.6 ± 0.2 a | 95.4 ± 0.9 ab | 96.4 ± 0.5 a |
Phosphorus | 71.9 ± 2.0 bc | 60.0 ± 1.3 d | 73.9 ± 5.3 bc | 82.0 ± 2.3 a | 69.9 ± 1.0 b | 77.9 ± 1.1 ac | 77.5 ± 1.0 ac |
ADC Ingredients (%) | FOK | AOK | ALOK | CYOK | CYR11OK | CYB12OK | |
Dry matter | 40.4 ± 4.0 c | 64.6 ± 2.2 b | 72.0 ± 5.8 ab | 73.6 ± 3.4 ab | 79.6 ± 2.9 a | 78.6 ± 2.4 a | |
Protein | 81.9 ± 1.7 bc | 96.6 ± 2.6 a | 81.5 ± 1.9 bc | 91.1 ± 1.8 ab | 72.1 ± 4.9 c | 84.1 ± 5.9 b | |
Energy | 63.1 ± 2.4 b | 75.5 ± 2.9 a | 78.4 ± 8.5 a | 81.9 ± 2.2 a | 81.7 ± 3.6 a | 83.5 ± 2.2 a |
Variable | REF | AOK10 | AOK20 | CYOK10 | CYOK20 |
---|---|---|---|---|---|
Growth | |||||
Initial body weight (g) | 17.4 ± 3.6 | 17.2 ± 3.6 | 17.4 ± 3.8 | 17.3 ± 3.7 | 17.2 ± 3.6 |
Final body weight (g) | 110.6 ± 35.7 | 103.5 ± 32.2 | 99.4 ± 33.6 | 105.6 ± 31.4 | 102.1 ± 26.7 |
Final body length (cm) | 17.5 ± 2.0 | 17.2 ± 2.0 | 16.9 ± 2.1 | 17.2 ± 2.1 | 17.2 ± 1.5 |
a K | 2.22 ± 0.07 | 2.04 ± 0.07 | 2.19 ± 0.19 | 2.12 ± 0.05 | 2.12 ± 0.21 |
b SGR | 2.57 ± 0.09 | 2.49 ± 0.03 | 2.42 ±0.08 | 2.53 ± 0.06 | 2.47 ± 0.07 |
Voluntary feed intake (g Dry Matter/100 g c ABW/day) | 2.14 ± 0.11 | 2.12 ± 0.05 | 2.13 ± 0.01 | 2.11 ± 0.09 | 2.20 ± 005 |
d FCR | 1.06 ± 0.07 | 1.07 ± 0.03 | 1.09 ± 0.03 | 1.05 ± 0.06 | 1.11 ± 0.0 |
e PER | 2.2 ± 0.1 | 2.1 ± 0.1 | 2.1 ± 0.1 | 2.2 ± 0.1 | 2.1 ± 0.1 |
f HSI | 1.3 ± 0.2 | 1.4 ± 0.1 | 1.5 ± 0.1 | 1.2 ± 0.3 | 1.2 ± 0.2 |
g VSI | 6.7 ± 0.4 | 6.0 ± 0.3 | 6.4 ± 0.1 | 6.7 ± 0.5 | 6.8 ± 0.2 |
Final Whole Body Composition (% WW) | |||||
Dry matter | 28.0 ± 0.2 | 28.0 ± 1.8 | 27.4 ± 0.4 | 26.9 ± 0.8 | 27.2 ± 0.7 |
Crude protein | 16.3 ± 0.6 | 16.0 ± 0.9 | 15.6 ± 0.5 | 15.8 ± 0.4 | 15.7 ± 0.7 |
Crude fat | 8.0 ± 0.7 | 8.3 ± 1.0 | 7.9 ± 0.5 | 7.3 ± 0.3 | 7.8 ± 0.4 |
Gross energy (kJ g−1) | 6.8 ± 0.1 | 6.8 ± 0.6 | 6.7 ± 0.2 | 6.4 ± 0.1 | 6.6 ± 0.2 |
Ash | 3.6 ± 0.3 | 3.7 ± 0.2 | 3.4 ± 0.2 | 3.6 ± 0.3 | 3.5 ± 0.2 |
Retention per Consumption (% WW) | |||||
Dry matter | 26.8 ± 1.7 | 26.9 ± 1.6 | 25.8 ± 0.6 | 26.1 ± 0.9 | 25.0 ± 0.3 |
Protein | 36.5 ± 3.3 | 35.0 ± 1.7 | 33.3 ± 0.5 | 35.8 ± 1.0 | 33.0 ± 1.4 |
Lipid | 107.6 ± 6.7 a | 97.1 ± 13.3 ab | 85.1 ± 7.5b | 88.0 ± 3.3 ab | 86.3 ± 3.4 b |
Energy | 29.8 ± 1.2 | 29.7 ± 2.7 | 28.1 ± 1.6 | 28.3 ± 1.0 | 28.0 ± 0.1 |
Gain | |||||
Dry matter | 5.8 ± 0.1 | 5.7 ± 0.4 | 5.5 ± 0.1 | 5.5 ± 0.1 | 5.5 ± 0.1 |
Protein (ABW Kg/day) | 3.4 ± 0.2 | 3.3 ± 0.2 | 3.1 ± 0.1 | 3.2 ± 0.1 | 3.2 ± 0.1 |
Lipid (ABW Kg/day) | 1.68 ± 0.15 | 1.71 ± 0.25 | 1.58 ± 0.14 | 1.49 ± 0.05 | 1.58 ± 0.07 |
Energy (ABW Kg/day) | 1.38 ± 0.01 | 1.36 ± 0.14 | 1.31 ± 0.07 | 1.28 ± 0.01 | 1.32 ± 0.04 |
Energy (Total) | 6.4 ± 0.2 | 5.9 ± 0.6 | 5.5 ± 0.5 | 5.8 ± 0.2 | 5.7 ± 0.1 |
Variable | REF | AOK10 | AOK20 | CYOK10 | CYOK20 |
---|---|---|---|---|---|
Color Parameters | |||||
L* | 45.7 ± 0.4 | 45.84 ± 0.4 | 45.4 ± 0.7 | 45.6 ± 0.8 | 45.1 ± 0.6 |
a* | 2.7 ± 0.3 | 2.9 ± 0.3 | 2.9 ± 0.3 | 3.0 ± 0.5 | 2.8 ± 0.4 |
b* | −0.8 ± 0.3 | −0.3 ± 0.4 | −0.5 ± 0.3 | −0.6 ± 0.3 | −0.3 ± 0.4 |
C* | 2.9 ± 0.6 | 3.1 ± 1.0 | 3.0 ± 1.0 | 3.3 ± 1.0 | 2.9 ± 0.6 |
h* | 261.5 ± 139.6 | 272.4 ± 141.0 | 269.6 ± 142.4 | 286.3 ± 124.6 | 213.6 ± 169.8 |
Texture Parameters | |||||
Firmness | 58.3 ± 10.0 b | 63.7 ± 16.6 ab | 65.5 ± 11.0 a | 64.8 ± 13.6 ab | 61.9 ± 11.0 ab |
Cohesiveness | 0.42 ± 0.09 | 0.40 ± 0.05 | 0.41 ± 0.05 | 0.41 ± 0.04 | 0.40 ± 0.03 |
Elasticity | 0.90 ± 0.18 | 0.93 ± 0.07 | 0.93 ± 0.06 | 0.93 ± 0.05 | 0.93 ± 0.04 |
Resilience | 0.13 ± 0.09 | 0.14 ± 0.05 | 0.14 ± 0.05 | 0.14 ± 0.04 | 0.13 ± 0.03 |
Muscle Analysis | |||||
aw | 0.974 ± 0.002 | 0.978 ± 0.002 | 0.972 ± 0.003 | 0.975 ± 0.004 | 0.976 ± 0.002 |
pH | 6.14 ± 0.07 | 6.23 ± 0.04 | 6.25 ± 0.08 | 6.15 ± 0.06 | 6.10 ± 0.02 |
Variable | REF | AOK10 | AOK20 | CYOK10 | CYOK20 |
---|---|---|---|---|---|
Muscle CSA (mm2) | 512.8 ± 93.0 | 551.5 ± 64.8 | 486.5 ± 80.4 | 534.0 ± 89.2 | 536.3± 63.0 |
Total number of fibers × 103 (N) | 126.6 ± 29.1 | 141.0 ± 23.3 | 123.3 ± 27.6 | 123.3 ± 26.7 | 119.5 ± 17.3 |
Fiber density (N/mm2) | 244.9 ± 16.4 ab | 255.6 ± 27.6 a | 252.8 ± 32.1 a | 230.4 ± 27.1 ab | 223.1 ± 20.9 b |
Fiber diameter (µm) | 59.6 ± 1.9 b | 59.8 ± 3.7 b | 60.9 ± 5.4 ab | 64.5 ± 3.4 a | 63.9 ± 3.0 a |
% Fiber ≤ 30 μm | 1.7 ± 2.1 b | 3.0 ± 1.5 a | 4.0 ± 3.4 a | 1.7 ± 0.8 ab | 0.0 ± 0.0 c |
% Fiber > 100 μm | 2.5 ± 2.3 | 1.2 ± 1.1 | 1.3 ± 1.0 | 2.3 ± 1.7 | 2.1 ± 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voss, G.B.; Sousa, V.; Rema, P.; Pintado, M.E.; Valente, L.M.P. Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality. Animals 2021, 11, 590. https://doi.org/10.3390/ani11030590
Voss GB, Sousa V, Rema P, Pintado ME, Valente LMP. Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality. Animals. 2021; 11(3):590. https://doi.org/10.3390/ani11030590
Chicago/Turabian StyleVoss, Glenise B., Vera Sousa, Paulo Rema, Manuela. E. Pintado, and Luísa M. P. Valente. 2021. "Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality" Animals 11, no. 3: 590. https://doi.org/10.3390/ani11030590
APA StyleVoss, G. B., Sousa, V., Rema, P., Pintado, M. E., & Valente, L. M. P. (2021). Processed By-Products from Soy Beverage (Okara) as Sustainable Ingredients for Nile Tilapia (O. niloticus) Juveniles: Effects on Nutrient Utilization and Muscle Quality. Animals, 11(3), 590. https://doi.org/10.3390/ani11030590