Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Endorsement
2.2. Source of Yeast
2.3. Animal Husbandry and Dietary Regimens
- Phase 1: TRT 1-6% BP; TRT 2-3% BP + 3% yeast; TRT 3-6% yeast.
- Phase 2: TRT 1-3% BP; TRT 2-1.5% BP + 1.5% yeast; TRT 3-3% yeast.
- Phase 3: TRT 1-CON (Basal diet); TRT 2- CON; TRT 3-CON.
2.4. Sample Measurement and Laboratory Procedures
2.4.1. Growth Performance
2.4.2. Nutrients Digestibility
2.4.3. Microbial Shedding
2.4.4. Noxious Gas Emission
2.4.5. Fecal Score
2.4.6. Blood Profile
2.5. Statistical Process
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lallès, J.P.; Bosi, P.; Smidt, H.; Stokes, C.R. Weaning—A challenge to gut physiologists. Livest Sci. 2007, 108, 82–93. [Google Scholar] [CrossRef]
- Kong, X.F.; Zhou, X.L.; Lian, G.Q.; Blachier, F.; Liu, G.; Tan, B.E.; Nyachoti, C.M.; Yin, Y.L. Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livest Sci. 2014, 160, 97–101. [Google Scholar] [CrossRef]
- Woods, A. A historical synopsis of farm animal disease and public policy in twentieth century. Br. Philos. Trans. R. Soc. B 2011, 366, 1943–1954. [Google Scholar] [CrossRef] [Green Version]
- Upadhaya, S.D.; Lee, K.Y.; Kim, I.H. Effect of protected organic acid blends on growth performance, nutrient digestibility and faecal micro flora in growing pigs. J. Appl. Anim. Res. 2016, 44, 232–242. [Google Scholar] [CrossRef] [Green Version]
- Laube, H.; Friese, A.; Von Salviati, C.; Guerra, B.; Käsbohrer, A.; Kreienbrock, L.; Roesler, U. Longitudinal monitoring of extended-spectrum-beta-lactamase/AmpC-producing Escherichia coli at German broiler chicken fattening farms. Appl. Environ. Microbiol. 2013, 79, 4815–4820. [Google Scholar] [CrossRef] [Green Version]
- Polo, J.; Opriessnig, T.; O’Neill, K.C.; Rodríguez, C.; Russell, L.E.; Campbell, J.M.; Crenshaw, J.; Segales, J.; Pujols, J. Neutralizing antibodies against porcine circovirus type 2 in liquid pooled plasma contribute to the biosafety of commercially manufactured spray-dried porcine plasma. J. Anim. Sci. 2013, 91, 2192–2198. [Google Scholar] [CrossRef] [Green Version]
- De Rodas, B.Z.; Sohn, K.S.; Maxwell, C.V.; Spicer, L.J. Plasma protein for pigs weaned at 19 to 24 days of age: Effect on performance and plasma insulin-like growth factor I, growth hormone, insulin, and glucose concentrations. J. Anim. Sci. 1995, 73, 3657–3665. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.A.; Nelssen, J.L.; Goodband, R.D.; Weeden, T.L. Evaluation of animal protein supplements in diets of early-weaned pigs. J. Anim. Sci. 1993, 71, 1853. [Google Scholar] [CrossRef] [PubMed]
- Kats, L.J.; Nelssen, J.L.; Tokach, M.D.; Good band, R.D.; Hansen, J.A.; Laurin, J.L. The effect of spray-dried porcine plasma on growth performance in the early-weaned pig. J. Anim. Sci. 1994, 72, 2075. [Google Scholar] [CrossRef] [PubMed]
- Jiang, R.; Chang, X.; Stoll, B.; Ellis, K.J.; Shypailo, R.J.; Weaver, E.; Campbell, J.; Burrin, D.G. Dietary plasma protein is used more efficiently than extruded soy protein for lean tissue growth in early-weaned pigs. J. Nutr. 2000, 130, 2016–2019. [Google Scholar] [CrossRef]
- Bosi, P.; Casini, L.; Finamore, A.; Cremokolini, C.; Merialdi, G.; Trevisi, P.; Nobili, F.; Mengheri, E. Spray-dried plasma improves growth performance and reduces inflammatory status of weaned pigs challenged with enterotoxigenic Escherichia coli K88. J. Anim. Sci. 2004, 2, 1764–1772. [Google Scholar] [CrossRef]
- Costa, L.L. Plasma animal e extrato intracelular de levedura em dietas para leitões desmamados aos 21 dias de idade: Desempenho e respostas fisiológicas; Lavras MG: Lavras, Brazil, 2006; p. 86. [Google Scholar]
- Kiros, T.G.; Luise, D.; Derakhshani, H.; Petri, R.; Trevisi, P.; D’Inca, R.; Auclair, E.; Van Kessel, A.G. Effect of live yeast Saccharomyces cerevisiae supplementation on the performance and cecum microbial profile of suckling piglets. PLoS ONE 2019, 14, e0219557. [Google Scholar] [CrossRef] [Green Version]
- Heugten, V.E.; Funderburke, D.; Dorton, K. Growth performance, nutrient digestibility, and fecal microflora in weanling pigs fed live yeast. J. Anim. Sci. 2003, 81, 1004–1012. [Google Scholar] [CrossRef]
- Trckova, M.; Faldyna, M.; Alexa, P.; Zajacova, S.Z.; Gopfert, E.; Kumprechtova, D. The effects of live yeast Saccharomyces cerevisiae on postweaning diarrhea, immune response, and growth performance in weaned piglets. J. Anim. Sci. 2014, 92, 767–774. [Google Scholar] [CrossRef]
- Desnoyers, M.; Reverdin, G.S.; Bertin, G.; Ponter, D.C.; Sauvant, D. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 2009, 92, 1620–1632. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Piao, X.S.; Kim, S.W.; Wang, L.; Liu, P.; Yoon, I. Effects of yeast culture supplementation on growth performance, intestinal health, and immune response of nursery pigs. J. Anim. Sci. 2009, 87, 2614–2624. [Google Scholar] [CrossRef]
- Pereira, C.M.C.; Donzele, J.L.; Silva, F.C.O. Yeast extract with blood plasma in diets for piglets from 21 to 35 days of age. R. Bras. Zootec. 2012, 41, 1676–1682. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academic Press: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Method of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Hu, C.H.; Gu, L.Y.; Luan, Z.S.; Song, J.; Zhu, K. Effects of montmorillonite-zinc oxide hybrid on performance, diarrhea, intestinal permeability and morphology of weaning pigs. Anim. Feed Sci. Tech. 2012, 177, 108–115. [Google Scholar] [CrossRef]
- Jain, N.C. Schalm’s Veterinary Hematology, 4th ed.; Lea and Febige: Philadelphia, PA, USA, 1986. [Google Scholar]
- Pan, L.; Zhao, P.F.; Yang, Z.Y.; Long, S.F.; Wang, H.L.; Tian, Q.Y.; Xu, Y.T.; Xu, X.; Zhang, Z.H.; Piao, X.S. Effects of coated compound proteases on apparent total tract digestibility of nutrients and apparent ileal digestibility of amino acids of pigs. Asian Austral. J. Anim. Sci. 2016, 29, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.S.; Veum, T.L.; Turk, J.R. Effects of yeast extractversus animal plasma in weanling pig diets on growth performance and intestinal morphology. J. Swine Health Prod. 2005, 13, 204–209. [Google Scholar]
- Lawrence, K.R.; Goodband, R.D.; Tokach, M.D.S. Comparison of wheat gluten and spray-dried animal plasma in diets for nursery pigs. J. Anim. Sci. 2004, 82, 3635–3645. [Google Scholar] [CrossRef] [PubMed]
- Sommer, R. Yeast extracts: Production, properties and components. Food Aust. 1998, 50, 181–183. [Google Scholar]
- Chae, H.J.; Joo, H.; In, M.J. Utilization of brewer’s yeast cells for the production of food-grade yeast extract. Part 1: Effects of different enzymatic treatments on solid and protein recovery and flavor characteristics. Bioresour. Technol. 2001, 76, 253–258. [Google Scholar] [CrossRef]
- Foster, R.J. Beauty and the yeast. Food Product Des. 2011, 21, 1–3. [Google Scholar]
- Li, H.; Zhao, P.; Lei, Y.; Li, T.; Kim, I.H. Response to an Escherichia coli K88 oral challenge and productivity of weanling pigs receiving a dietary nucleotides supplement. J. Anim. Sci. Biotechnol. 2015, 6, 49. [Google Scholar] [CrossRef]
- Waititu, S.M.; Heo, J.M.; Patterson, R.; Nyachoti, C.M. Dietary yeast-based nucleotides as an alternative to in-feed antibiotics in promoting growth performance and nutrient utilization in weaned pigs. Can. J. Anim. Sci. 2016, 96, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Rigueira, L.C.; Thomaz, M.C.; Rigueira, D.C.M.; Pascoal, L.A.F.; Amorim, A.l.B.; Budiño, F.E.L. Effect of plasma and/or yeast extract on performance and intestinal morphology of piglets from 7 to 63 days of age. R. Bras. Zootec. 2013, 42, 496–503. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.H. Effects of Yeast Culture on Performance and Its Mechanism in Broiler Chicks. Ph.D. Thesis, Northwest Agriculture and Forestry University, Xianyang, China, 2008. [Google Scholar]
- Shi, H.; Kim, I.H. Dietary yeast extract complex supplementation increases growth performance and nutrient digestibility of weaning pigs. Livest Sci. 2019, 230, 103850. [Google Scholar] [CrossRef]
- Waititu, S.M.; Yin, F.; Patterson, R.; Yitbarek, A.; Rodriguez-Lecompte, J.C.; Nyachoti, C.M. Dietary supplementation with a nucleotide-rich yeast extract modulates gut immune response and microflora in weaned pigs in response to a sanitary challenge. Animals 2017, 11, 2156–2164. [Google Scholar] [CrossRef]
- Li, J.; Kim, I.H. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs. Anim. Sci. 2014, 85, 698–705. [Google Scholar] [CrossRef]
- Clench, M.H.; Mathias, J.R. The avian cecum: A review. Wilson. Bull. 1995, 107, 93–121. [Google Scholar]
- Halas, V.; Nochta, I. Mannan oligosaccharides in nursery pig nutrition and their potential mode of action. Animals 2012, 2, 261–274. [Google Scholar] [CrossRef] [Green Version]
- Price, K.L.; Totty, H.R.; Lee, H.B.; Utt, M.D.; Fitzner, G.E.; Yoon, I.; Ponder, M.A.; Escobar, J. Use of Saccharomyces cerevisiae fermentation product on growth performance and microbiota of weaned pigs during Salmonella infection. J. Anim. Sci. 2010, 88, 3896–3908. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, M.; Che, T.M.; Almeida, J.A.S.; Lee, J.J.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J. Anim. Sci. 2013, 91, 5294–5306. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, T.; Collins, C.B.; Reilly, P.; Pierce, K.M.; Ryan, M.; O’Doherty, J.V. Effect of purified β-glucans derived from Laminaria digitata, Laminaria hyperborean and Saccharomyces cerevisiae on piglet performance, selected bacterial populations, volatile fatty acids and pro-inflammatory cytokines in the gastrointestinal tract of pigs. Br. J. Nutr. 2012, 108, 1226–1234. [Google Scholar]
- Nguyen, D.H.; Kim, I.H. Protected Organic Acids Improved Growth Performance, Nutrient Digestibility, and Decreased Gas Emission in Broilers. Animals 2020, 10, 416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.F.; Kim, I.H. Effects of multi-strain probiotics on growth performance, apparent ileal nutrient digestibility, blood characteristics, fecal microbial shedding, and excreta odor contents in broilers. Poult. Sci. 2014, 93, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.Y.; Wang, J.P.; Kim, I.H. Evaluation of dietary fructan supplementation on growth performance, nutrient digestibility, meat quality, fecal microbial flora, and fecal noxious gas emission in finishing pigs. J. Anim. Sci. 2013, 91, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Park, J.W.; Kim, I.H. Effect of supplementation with brewer’s yeast hydrolysate on growth performance, nutrients digestibility, blood profiles and meat quality in growing to finishing pigs. Asian Australas J. Anim. Sci. 2019, 3210, 1565–1572. [Google Scholar] [CrossRef]
- Kim, J.M.; Kim, S.Y.; Jung, E.Y.; Bae, S.H.; Suh, H.J. Yeast hydrolysate induces longitudinal bone growth and growth hormone release in rats. Phytother Res. 2009, 23, 731–736. [Google Scholar] [CrossRef]
- Tactacan, G.B.; Cho, S.Y.; Cho, J.H.; Kim, I.H. Performance Responses, Nutrient Digestibility, Blood Characteristics, and Measures of Gastrointestinal Health in Weanling Pigs Fed Protease Enzyme. Asian-Australasian. Anim. Sci. 2016, 29, 998–1003. [Google Scholar]
Item | Phase 1 (0–7 d) | Phase 2 (8–21) | Phase 3 (22–42 d) | ||||
---|---|---|---|---|---|---|---|
TRT1 | TRT2 | TRT3 | TRT1 | TRT2 | TRT3 | ||
Ingredients, % | |||||||
Corn | 39.22 | 36.31 | 33.29 | 52.48 | 50.98 | 49.51 | 59.29 |
Soybean meal | 16.42 | 18.92 | 21.45 | 16.60 | 17.87 | 19.12 | 22.46 |
Fermented soybean meal | 5.00 | 5.00 | 5.00 | 4.00 | 4.00 | 4.00 | 3.00 |
SDPP | 6.00 | 3.00 | - | 3.00 | 1.50 | - | - |
Yeast | - | 3.00 | 6.00 | - | 1.50 | 3.00 | - |
Tallow | 2.49 | 2.92 | 3.39 | 2.53 | 2.76 | 2.98 | 2.49 |
Lactose | 13.46 | 13.46 | 13.46 | 7.78 | 7.78 | 7.78 | 3.18 |
Sugar | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 | 3.00 |
Whey protein | 11.00 | 11.00 | 11.00 | 7.00 | 7.00 | 7.00 | 3.00 |
Monocalcium phosphate | 0.90 | 0.86 | 0.82 | 1.08 | 1.06 | 1.04 | 1.14 |
Limestone | 1.17 | 1.16 | 1.18 | 1.20 | 1.20 | 1.20 | 1.22 |
Salt | 0.20 | 0.20 | 0.20 | 0.10 | 0.10 | 0.10 | 0.10 |
Methionine (99%) | 0.22 | 0.21 | 0.21 | 0.15 | 0.15 | 0.15 | 0.08 |
Lysine | 0.49 | 0.53 | 0.57 | 0.65 | 0.67 | 0.69 | 0.61 |
Mineral mix 1 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Vitamin mix 2 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
Choline (25%) | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Calculated value | |||||||
Crude protein, % | 20.00 | 20.00 | 20.00 | 18.00 | 18.00 | 18.00 | 18.00 |
Ca, % | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
P, % | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 | 0.60 |
Lys, % | 1.60 | 1.60 | 1.60 | 1.50 | 1.50 | 1.50 | 1.40 |
Met, % | 0.48 | 0.48 | 0.48 | 0.40 | 0.40 | 0.40 | 0.35 |
Metabolic Energy, kcal/kg | 3450 | 3450 | 3450 | 3400 | 3400 | 3400 | 3350 |
FAT, % | 4.18 | 4.55 | 4.94 | 4.65 | 4.84 | 5.03 | 4.89 |
Lactose, % | 20.00 | 20.00 | 20.00 | 12.00 | 12.00 | 12.00 | 5.00 |
Items | TRT1 1 | TRT2 1 | TRT3 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Body weight, kg | |||||
Initial | 6.61 | 6.61 | 6.61 | 0.002 | 1.000 |
Phase 1 | 8.24 | 8.53 | 7.95 | 0.42 | 0.107. |
Phase 2 | 13.98 | 14.27 | 12.35 | 0.23 | 0.043 |
Phase 3 | 24.89 | 27.14 | 23.70 | 0.38 | 0.032 |
Phase 1 (0–7 days) | |||||
ADG, g | 197 | 206 | 193 | 0.433 | 0.047 |
ADFI, g | 214 | 219 | 199 | 10 | 0.913 |
FCR | 1.112 | 1.120 | 1.109 | 0.015 | 0.321 |
Phase 2 (8–21 days) | |||||
ADG, g | 321 | 358 | 314 | 0.14 | 0.025 |
ADFI, g | 433 | 415 | 436 | 15 | 0.741 |
FCR | 1.380 | 1.363 | 1.399 | 0.022 | 0.428 |
Phase 3 (22–42 days) | |||||
ADG, g | 566 | 579 | 541 | 0.16 | 0.018 |
ADFI, g | 791 | 790 | 785 | 17 | 0.583 |
FCR | 1.467 | 1.479 | 1.491 | 0.015 | 0.169 |
Overall | |||||
ADG, g | 437 | 444 | 407 | 0.9 | 0.012 |
ADFI, g | 579 | 577 | 564 | 10 | 0.844 |
FCR | 1.424 | 1.417 | 1.437 | 0.013 | 0.347 |
Items, % | TRT1 1 | TRT2 1 | TRT3 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Dry matter | 83.97 | 85.45 | 82.95 | 0.53 | 0.012 |
Nitrogen | 81.59 b | 82.93 a | 80.67 ab | 0.66 | 0.040 |
Energy | 80.72 | 82.73 | 81.01 | 0.64 | 0.077 |
Items, log10cfu/g | TRT1 1 | TRT2 1 | TRT 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Phase 1 (0–7 days) | |||||
Lactobacillus | 7.35 | 7.40 | 7.37 | 0.04 | 0.079 |
E. coli | 6.02 | 5.42 | 5.03 | 0.09 | 0.210 |
Phase 2 (8–21 days) | |||||
Lactobacillus | 7.50 | 7.58 | 7.44 | 0.29 | 0.061 |
E. coli | 6.76 | 5.68 | 5.14 | 0.31 | 0.275 |
Phase 3 (22–42 days) | |||||
Lactobacillus | 7.61 | 7.69 | 7.52 | 0.05 | 0.021 |
E. coli | 7.14 | 6.19 | 5.30 | 0.07 | 0.485 |
Items, ppm | TRT1 1 | TRT2 1 | TRT3 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Phase 1 (0–7 days) | |||||
NH3 | 10.0 | 9.3 | 8.9 | 0.2 | 0.572 |
H2S | 3.5 | 2.7 | 2.8.0 | 0.5 | 0.145 |
Acetaldehyde | 2.5 | 2.8 | 2.4 | 0.3 | 0.617 |
CO2 | 1375 | 1325 | 1400 | 248 | 0.837 |
Acetic acid | 2.3 | 2.0 | 1.7 | 0.4 | 0.334 |
Propionic acid | 1.7 | 1.5 | 1.2 | 0.4 | 0.101 |
Phase 2 (8–21 days) | |||||
NH3 | 10.8 | 9.8 | 11.4 | 0.1 | 0.074 |
H2S | 1.7 | 1.5 | 2.3 | 0.5 | 0.069 |
Acetaldehyde | 2.4 | 2.3 | 2.9 | 0.5 | 0.694 |
CO2 | 1200 | 1375 | 1275 | 272 | 0.995 |
Acetic acid | 1.5 | 2.0 | 1.9 | 0.6 | 0.743 |
Propionic acid | 2.4 | 1.5 | 2.2 | 0.4 | 0.342 |
Phase 3 (22–42 days) | |||||
NH3 | 11.9 | 10.6 | 12.4 | 0.2 | 0.038 |
H2S | 4.1 | 3.2 | 4.3 | 1.0 | 0.046 |
Acetaldehyde | 2.5 | 2.4 | 2.6 | 0.6 | 0.732 |
CO2 | 1275 | 1375 | 1475 | 207 | 0.342 |
Acetic acid | 2.3 | 2.1 | 1.5 | 0.5 | 0.669 |
Propionic acid | 2.3 | 2.6 | 1.5 | 0.6 | 0.801 |
Items | TRT1 1 | TRT2 1 | TRT3 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Fecal score 3 | |||||
Initial | 3.55 | 3.53 | 3.51 | 0.03 | 0.548 |
Phase 1 (0–7 days) | 3.51 | 3.46 | 3.48 | 0.03 | 0.281 |
Phase 2 (8–21 days) | 3.36 | 3.32 | 3.34 | 0.04 | 0.133 |
Phase 3 (22–42 days) | 3.26 | 3.24 | 3.21 | 0.05 | 0.816 |
Items | TRT1 1 | TRT2 1 | TRT3 1 | SEM 2 | p-Value |
---|---|---|---|---|---|
Initial | |||||
WBC, 103/μL | 13.90 | 14.02 | 15.82 | 1.99 | 0.903 |
RBC, 106/μL | 6.31 | 6.22 | 6.27 | 0.31 | 0.750 |
Lymphocyte, % | 42.0 | 42.5 | 41.6 | 2.5 | 0.463 |
IgG, mg/dL | 137.0 | 136.3 | 142.8 | 24.5 | 0.501 |
IgM, mg/dL | 59.0 | 60.5 | 62.3 | 14.2 | 0.661 |
IgA, mg/dL | 36.3 | 32.5 | 39.8 | 3.9 | 0.440 |
BUN, mg/dL | 4.3 | 4.5 | 4.5 | 1.2 | 0.336 |
Creatinine, mg/dL | 0.67 | 0.69 | 0.70 | 0.05 | 0.132 |
Phase 1 (0–7 days) | |||||
WBC, 103/μL | 14.20 | 13.28 | 13.49 | 1.31 | 0.971 |
RBC, 106/μL | 6.63 | 6.68 | 6.40 | 0.23 | 0.526 |
Lymphocyte, % | 44.0 | 43.6 | 42.7 | 4.1 | 0.942 |
IgG, mg/dL | 170.3 | 172.8 | 182.3 | 7.2 | 0.008 |
IgM, mg/dL | 82.5 | 66.8 | 83.8 | 10.5 | 0.292 |
IgA, mg/dL | 65.8 | 73.5 | 59.3 | 4.2 | 0.247 |
BUN, mg/dL | 6.3 | 6.8 | 6.5 | 1.1 | 0.197 |
Creatinine, mg/dL | 0.78 | 0.79 | 0.85 | 0.06 | 0.634 |
Phase 2 (8–21 days) | |||||
WBC, 103/μL | 15.36 | 17.28 | 18.64 | 1.32 | 0.128 |
RBC, 106/μL | 6.91 | 6.64 | 6.20 | 0.27 | 0.305 |
Lymphocyte, % | 44.3 | 43.1 | 45.3 | 5.2 | 0.961 |
IgG, mg/dL | 272.5 | 293.8 | 297.5 | 36.7 | 0.747 |
IgM, mg/dL | 81.8 | 79.3 | 74.3 | 11.3 | 0.957 |
IgA, mg/dL | 145.0 | 127.8 | 137.3 | 9.4 | 0.758 |
BUN, mg/dL | 10.0 | 9.3 | 9.5 | 1.8 | 0.842 |
Creatinine, mg/dL | 1.09 | 0.93 | 1.05 | 0.08 | 0.642 |
Phase 3 (22–42 days) | |||||
WBC, 103/μL | 16.57 | 17.22 | 19.04 | 1.94 | 0.799 |
RBC, 106/μL | 6.61 | 6.46 | 6.72 | 0.35 | 0.902 |
Lymphocyte, % | 44.0 | 46.0 | 47.2 | 3.3 | 0.536 |
IgG, mg/dL | 285.0 | 304.3 | 309.8 | 25.4 | 0.437 |
IgM, mg/dL | 84.0 | 86.3 | 81.8 | 10.1 | 0.760 |
IgA, mg/dL | 328.0 | 310.0 | 316.8 | 9.7 | 0.258 |
BUN, mg/dL | 16.8 | 15.5 | 14.5 | 2.9 | 0.992 |
Creatinine, mg/dL | 1.07 | 1.06 | 0.94 | 0.07 | 0.430 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sampath, V.; Heon Baek, D.; Shanmugam, S.; Kim, I.H. Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs. Animals 2021, 11, 759. https://doi.org/10.3390/ani11030759
Sampath V, Heon Baek D, Shanmugam S, Kim IH. Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs. Animals. 2021; 11(3):759. https://doi.org/10.3390/ani11030759
Chicago/Turabian StyleSampath, Vetriselvi, Dong Heon Baek, Sureshkumar Shanmugam, and In Ho Kim. 2021. "Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs" Animals 11, no. 3: 759. https://doi.org/10.3390/ani11030759
APA StyleSampath, V., Heon Baek, D., Shanmugam, S., & Kim, I. H. (2021). Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs. Animals, 11(3), 759. https://doi.org/10.3390/ani11030759