Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- (a)
- Simulation of ruminal conditions
- (b)
- Simulation of abomasal conditions
- (c)
- Simulation of duodenal conditions
2.1. Chemical Analysis
2.2. Statistical Analysis
3. Results
3.1. Effect of Clay Minerals on the Concentrations of Dissolved Trace Elements under Ruminal, Abomasal, and Duodenal Conditions
3.2. Solubility of Supplemental Zinc under Ruminal, Abomasal, and Duodenal Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spiekers, H. Ziele in der Wiederkäuerfütterung. In Praxishandbuch Futter- und Substratkonservierung; Gerighausen, H.-G., Ed.; DLG-Verlag: Frankfurt am Main, Germany, 2011; pp. 13–17. ISBN 978-3-7690-0791-6. [Google Scholar]
- Nussbaum, H. Dreck Macht Nicht Fett—Verschmutzung bei Grassilage. Available online: https://lazbw.landwirtschaft-bw.de/pb/site/pbs-bw-new/get/documents/MLR.LEL/PB5Documents/lazbw_2017/lazbw_gl/Gr%C3%BCnlandwirtschaft_und_Futterbau/Futterkonservierung/Hinweise%20zum%20Siliermanagement/Dokumente_Siliermanagement/2007_GL_nussbaum_verschmutzung_grassilage.pdf?attachment=true (accessed on 5 February 2020).
- Resch, R. Challenges in silage production with regard to soil contamination. In 42. Viehwirtschaftliche Fachtagung 2015. 42. Viehwirtschaftliche Fachtagung 2015; LFZ Raumberg-Gumpenstein, Ed.; LFZ Raumberg-Gumpenstein: Irdning, Austria, 2015; pp. 1–11. [Google Scholar]
- Stögmüller, G. Feedstuff-dirtying of grass-silage of Austrian farms. In 19. Alpenländische Expertenforum; LFZ Raumberg-Gumpenstein, Ed.; LFZ Raumberg-Gumpenstein: Irdning, Austria, 2014; pp. 27–34. ISBN 9783902849069. [Google Scholar]
- Jurjanz, S.; Feidt, C.; Pérez-Prieto, L.A.; Ribeiro Filho, H.M.N.; Rychen, G.; Delagarde, R. Soil intake of lactating dairy cows in intensive strip grazing systems. Animal 2012, 6, 1350–1359. [Google Scholar] [CrossRef] [Green Version]
- Fries, G.F.; Marrow, G.S.; Snow, P.A. Soil ingestion by dairy cattle. J. Dairy Sci. 1982, 65, 611–618. [Google Scholar] [CrossRef]
- Thornton, I.; Abrahams, P. Soil ingestion—A major pathway of heavy metals into livestock grazing contaminated land. Sci. Total Environ. 1983, 28, 287–294. [Google Scholar] [CrossRef]
- Scheffer, F.; Schachtschabel, P.; Blume, H.-P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Thiele-Bruhn, S.; et al. Lehrbuch der Bodenkunde, 16th ed.; Spektrum Akademischer Verlag: Heidelberg, Germany, 2010; ISBN 9783827414441. [Google Scholar]
- Sparks, D.L. Environmental Soil Chemistry; Elsevier: Amsterdam, The Netherlands, 2003; ISBN 0080494803. [Google Scholar]
- Sposito, G. The Chemistry of Soils; Oxford University Press: New York, NY, USA, 2008; ISBN 0195313690. [Google Scholar]
- Brigatti, M.F.; Galan, E.; Theng, B.K. Structure and mineralogy of clay minerals. Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; pp. 21–81. ISBN 1572-4352. [Google Scholar]
- Antoniadis, V.; Tsadilas, C.D.; Ashworth, D.J. Monometal and competitive adsorption of heavy metals by sewage sludge-amended soil. Chemosphere 2007, 68, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, S.M.; Tsadilas, C.D.; Rinklebe, J. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv. Colloid Interface Sci. 2013, 201, 43–56. [Google Scholar] [CrossRef]
- Alloway, B.J. Soil processes and the behaviour of metals. In Heavy Metals in Soils, 2nd ed.; Alloway, B.J., Ed.; Blackie Academic & Professional: London, UK, 1995; pp. 12–25. ISBN 0751401986. [Google Scholar]
- Basta, N.T.; Tabatabai, M.A. Effect of cropping systems on adsorption of metals by soils: III. competitive adsorption1. Soil Sci. 1992, 153, 331–337. [Google Scholar] [CrossRef]
- Saha, U.K.; Taniguchi, S.; Sakurai, K. Simultaneous adsorption of cadmium, zinc, and lead on hydroxyaluminum-and hydroxyaluminosilicate-montmorillonite complexes. Soil Sci. Soc. Am. J. 2002, 66, 117–128. [Google Scholar] [CrossRef]
- Sastre, J.; Rauret, G.; Vidal, M. Effect of the cationic composition of sorption solution on the quantification of sorption–desorption parameters of heavy metals in soils. Environ. Pollut. 2006, 140, 322–339. [Google Scholar] [CrossRef] [PubMed]
- Yong, R.N.; Phadungchewit, Y. pH influence on selectivity and retention of heavy metals in some clay soils. Can. Geotech. J. 1993, 30, 821–833. [Google Scholar] [CrossRef]
- Chantawong, V.; Harvey, N.W.; Bashkin, V.N. Comparison of heavy metal adsorptions by Thai kaolin and ballclay. Water Air Soil Pollut. 2003, 148, 111–125. [Google Scholar] [CrossRef]
- Altin, O.; Ozbelge, O.H.; Dogu, T. Effect of pH, flow rate and concentration on the sorption of Pb and Cd on montmorillonite: I. Experimental. J. Chem. Technol. Biotechnol. 1999, 74, 1131–1138. [Google Scholar] [CrossRef]
- Veli, S.; Alyüz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 2007, 149, 226–233. [Google Scholar] [CrossRef]
- Sen, T.K.; Gomez, D. Adsorption of zinc (Zn2+) from aqueous solution on natural bentonite. Desalination 2011, 267, 286–294. [Google Scholar] [CrossRef]
- McBride, M.B. Environmental Chemistry of Soils; Oxford Univ Press: New York, NY, USA, 1994; Volume 9, pp. 177–186. [Google Scholar]
- von Engelhardt, W.; Breves, G.; Diener, M.; Gäbel, G. Physiologie der Haustiere; Georg Thieme Verlag: Stuttgart, Germany, 2015; ISBN 383041269X. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Schroeder, D. Bodenkunde in Stichworten, 5th ed.; Ferdinand Hirt: Stuttgart, Germany, 1992; ISBN 3554801909. [Google Scholar]
- DLG. Feed Value Database. Available online: http://datenbank.futtermittel.net (accessed on 27 February 2020).
- GfE. Empfehlungen zur Energie- und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; DLG-Verl.: Frankfurt am Main, Germany, 2001; ISBN 3769005910. [Google Scholar]
- Sheta, A.S.; Falatah, A.M.; Al-Sewailem, M.S.; Khaled, E.M.; Sallam, A.S.H. Sorption characteristics of zinc and iron by natural zeolite and bentonite. Microporous Mesoporous Mater. 2003, 61, 127–136. [Google Scholar] [CrossRef]
- Standish, J.F.; Ammerman, C.B.; Simpson, C.F.; Neal, F.C.; Palmer, A.Z. Influence of graded levels of dietary iron, as ferrous sulfate, on performance and tissue mineral composition of steers. J. Anim. Sci. 1969, 29, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Bremner, I.; Humphries, W.R.; Phillippo, M.; Walker, M.J.; Morrice, P.C. Iron-induced copper deficiency in calves: Dose-response relationships and interactions with molybdenum and sulphur. Anim. Sci. 1987, 45, 403–414. [Google Scholar] [CrossRef]
- Davis, C.D.; Wolf, T.L.; Greger, J.L. Varying levels of manganese and iron affect absorption and gut endogenous losses of manganese by rats. J. Nutr. 1992, 122, 1300–1308. [Google Scholar] [CrossRef]
- Spears, J.W.; Schlegel, P.; Seal, M.C.; Lloyd, K.E. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions. Livest. Prod. Sci. 2004, 90, 211–217. [Google Scholar] [CrossRef]
- Genther, O.N.; Hansen, S.L. The effect of trace mineral source and concentration on ruminal digestion and mineral solubility. J. Dairy Sci. 2015, 98, 566–573. [Google Scholar] [CrossRef]
- Kennedy, D.W.; Craig, W.M.; Southern, L.L. Ruminal distribution of zinc in steers fed a polysaccharide-zinc complex or zinc oxide. J. Anim. Sci. 1993, 71, 1281–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebot-Brigaud, A.; Dange, C.; Fauconnier, N.; Gérard, C. 31P NMR, potentiometric and spectrophotometric studies of phytic acid ionization and complexation properties toward Co2+, Ni2+, Cu2+, Zn2+ and Cd2+. J. Inorg. Biochem. 1999, 75, 71–78. [Google Scholar] [CrossRef]
- Gupta, S.S.; Bhattacharyya, K.G. Adsorption of Ni (II) on clays. J. Colloid Interface Sci. 2006, 295, 21–32. [Google Scholar] [CrossRef] [PubMed]
Main Components | 90% bentonite (smectite, quartz) 10% kaolinite, illite | |
Chemical Composition | 60.9% SiO2, 17.5% Al2O3, 11.9% Fe2O3, 3.32% MgO, 2.84% TiO2, 2.35% CaO, 0.99% K2O, 0.20% Na2O | |
Cation Exchange Capacity | 77.6 meq/100 g | |
Particle Size (vol. Weighted Mean) | 33.2 µm |
Ca | Mg | Na | Fe | Mn | Zn | Cu |
---|---|---|---|---|---|---|
(g/kg DM) | (mg/kg DM) | |||||
12.5 | 16.1 | 0.497 | 51.7 | 829 | 64.1 | 24.9 |
Parameter | Treatment | Ruminal Conditions | Abomasal Conditions | Duodenal Conditions | |||
---|---|---|---|---|---|---|---|
pH | 7.02 ± 0.11 | 2.00 ± 0.00 | 3.58 ± 0.24 | ||||
Mean | SEM | Mean | SEM | Mean | SEM | ||
Zn (µg/mL) | Control | 0.095 a | 0.004 | 0.196 a | 0.019 | 0.200 a | 0.025 |
Clay | 0.055 b | 0.011 | 0.099 b | 0.018 | 0.095 b | 0.003 | |
Cu (µg/mL) | Control | 0.13 a | 0.002 | 0.16 a | 0.004 | 0.10 a | 0.005 |
Clay | 0.10 b | 0.003 | 0.13 b | 0.003 | 0.08 b | 0.002 | |
Mn (µg/mL) | Control | 3.00 a | 0.022 | 5.53 a | 0.04 | 3.18 a | 0.098 |
Clay | 1.80 b | 0.082 | 4.80 b | 0.148 | 1.77 b | 0.065 | |
Fe (µg/mL) | Control | 1.64 a | 0.128 | 1.80 b | 0.150 | 1.76 b | 0.079 |
Clay | 1.81 a | 0.169 | 2.86 a | 0.130 | 2.67 a | 0.159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlattl, M.; Buffler, M.; Windisch, W. Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals 2021, 11, 877. https://doi.org/10.3390/ani11030877
Schlattl M, Buffler M, Windisch W. Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals. 2021; 11(3):877. https://doi.org/10.3390/ani11030877
Chicago/Turabian StyleSchlattl, Maria, Marzell Buffler, and Wilhelm Windisch. 2021. "Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro" Animals 11, no. 3: 877. https://doi.org/10.3390/ani11030877
APA StyleSchlattl, M., Buffler, M., & Windisch, W. (2021). Clay Minerals Affect the Solubility of Zn and Other Bivalent Cations in the Digestive Tract of Ruminants In Vitro. Animals, 11(3), 877. https://doi.org/10.3390/ani11030877