Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Media Preparation
2.2. Nanoparticles
2.2.1. Synthesis of Fe3O4 and Ag/Fe Nanoparticles
2.2.2. Characterization
2.2.3. Preparation of Fe3O4 and Ag/Fe NPs Solution
2.3. Animals and Semen Samples Preparation
2.4. Assessment of Sperm Variables
2.4.1. Sperm Motility and Kinetics
2.4.2. Sperm Viability
2.4.3. Sperm Morphology
2.4.4. Sperm Membrane Functionality
2.4.5. Sperm DNA Integrity
2.5. Microbiological
2.6. Experimental Design
2.6.1. Pretrial: Determination of the Co-Incubation Time of Semen with NPs
2.6.2. Main Trial: Investigation of the Effect of NPs on Ram Semen Quality
2.7. Statistical Analysis
3. Results
3.1. Nanoparticles’ Validation
3.2. Results of the Pretrial
3.3. Results of the Main Trial
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monga, M.; Roberts, J.A. Sperm agglutination by bacteria: Receptor-specific interactions. J. Androl. 1994, 15, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Azawi, O.I.; Ismaeel, M.A. Effects of seasons on some semen parameters and bacterial contamination of Awassi ram semen. Reprod. Domest. Anim. 2012, 47, 403–406. [Google Scholar] [CrossRef] [PubMed]
- Kuster, C.E.; Althouse, G.C. The impact of bacteriospermia on boar sperm storage and reproductive performance. Theriogenology 2016, 85, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Yániz, J.L.; Marco-Aguado, M.A.; Mateos, J.A.; Santolaria, P. Bacterial contamination of ram semen, antibiotic sensitivities, and effects on sperm quality during storage at 15 °C. Anim. Reprod. Sci. 2010, 122, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Schulze, M.; Dathe, M.; Waberski, D.; Müller, K. Liquid storage of boar semen: Current and future perspectives on the use of cationic antimicrobial peptides to replace antibiotics in semen extenders. Theriogenology 2016, 85, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Speck, S.; Courtiol, A.; Junkes, C.; Dathe, M.; Müller, K.; Schulze, M. Cationic synthetic peptides: Assessment of their antimicrobial potency in liquid preserved boar semen. PLoS ONE 2014, 9, e105949. [Google Scholar] [CrossRef] [Green Version]
- Banday, M.N.; Lone, F.A.; Rasool, F.; Rather, H.A.; Rather, M.A. Does natural honey act as an alternative to antibiotics in the semen extender for cryopreservation of crossbred ram semen? Iran. J. Vet. Res. 2017, 18, 258. [Google Scholar]
- Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; et al. Iron oxide nanoparticles as an alternative to antibiotics additive on extended boar semen. Nanomaterials 2020, 10, 1568. [Google Scholar] [CrossRef]
- Guzman, M.; Dille, J.; Godet, S. Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria. Nanomed. NBM 2012, 8, 37–45. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Shahverdi, A.R.; Fakhimi, A.; Shahverdi, H.R.; Minaian, S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed. NBM 2007, 3, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Diekman, M.A.; Green, M.L. Mycotoxins and reproduction in domestic livestock. J. Anim. Sci. 1992, 70, 1615–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandjean, P. Individual susceptibility to toxicity. Toxicol. Lett. 1992, 64, 43–51. [Google Scholar] [CrossRef]
- Soliman, S.A.; Linder, R.; Farmer, J.; Curley, A. Species susceptibility to delayed toxic neuropathy in relation to invivo inhibition of neurotoxicesterase by neurotoxic organophosphorus esters. J. Toxicol. Environ. Health 1982, 9, 189–197. [Google Scholar] [CrossRef]
- Slooff, W.; Canton, J.H. Comparison of the susceptibility of 11 freshwater species to 8 chemical compounds. II.(Semi) chronic toxicity tests. Aquat. Toxicol. 1983, 4, 271–281. [Google Scholar] [CrossRef]
- Bahamonde, J.; Brenseke, B.; Chan, M.Y.; Kent, R.D.; Vikesland, P.J.; Prater, M.R. Gold nanoparticle toxicity in mice and rats: Species differences. Toxicol. Pathol. 2018, 46, 431–443. [Google Scholar] [CrossRef]
- Falchi, L.; Khalil, W.; Hassan, M.A.; Marei, W.F. Perspectives of nanotechnology in male fertility and sperm function. Int. J. Vet. Sci. Med. 2018, 6, 265–269. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, T.; Matijević, E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels. J. Colloid Interface Sci. 1980, 74, 227–243. [Google Scholar] [CrossRef]
- Martinez-Boubeta, C.; Simeonidis, K.; Serantes, D.; Conde-Leborán, I.; Kazakis, I.; Stefanou, G.; Peña, L.; Galceran, R.; Balcells, L.; Monty, C.; et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core–shell nanoparticles by tuning dipole–dipole interactions. Adv. Funct. Mater. 2012, 22, 3737–3744. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Laboratory Manual for the Examination of Human Sperm and Semen-Cervical Mucus Interaction, 5th ed.; WHO Press: Geneva, Switzerland, 2010. [Google Scholar]
- Jeyendran, R.S.; Van der Ven, H.H.; Perez-Pelaez, M.; Crabo, B.G.; Zaneveld, L.J.D. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. J. Reprod. Fertil. 1984, 70, 219–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsakmakidis, I.A.; Lymberopoulos, A.G.; Khalifa, T.A.; Boscos, C.M.; Saratsi, A.; Alexopoulos, C. Evaluation of zearalenone and α-zearalenol toxicity on boar sperm DNA integrity. J. Appl. Toxicol. 2008, 28, 681–688. [Google Scholar] [CrossRef]
- Basioura, A.; Michos, I.; Ntemka, A.; Karagiannis, I.; Boscos, C.M. Effect of iron oxide and silver nanoparticles on boar semen CASA motility and kinetics. J. Hell. Vet. Med. Soc. 2020, 71, 2331–2338. [Google Scholar] [CrossRef]
- Gibbons, A.E.; Fernandez, J.; Bruno-Galarraga, M.M.; Spinelli, M.V.; Cueto, M.I. Technical recommendations for artificial insemination in sheep. Anim. Reprod. 2019, 16, 803–809. [Google Scholar] [CrossRef] [Green Version]
- Burdușel, A.C.; Gherasim, O.; Grumezescu, A.M.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [Green Version]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018, 13, 44. [Google Scholar] [CrossRef] [Green Version]
- Budama-Kilinc, Y.; Cakir-Koc, R.; Zorlu, T.; Ozdemir, B.; Karavelioglu, Z.; Egil, A.C.; Kecel-Gunduz, S. Assessment of nano-toxicity and safety profiles of silver nanoparticles. In Silver Nanoparticles—Fabrication, Characterization and Applications; Khan, M., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Robayo, I.; Montenegro, V.; Valdes, C.; Cox, J.F. CASA assessment of kinematic parameters of ram spermatozoa and their relationship to migration efficiency in ruminant cervical mucus. Reprod. Domest. Anim. 2008, 43, 393–399. [Google Scholar] [CrossRef]
- Joris, F.; Valdepérez, D.; Pelaz, B.; Soenen, S.J.; Manshian, B.B.; Parak, W.J.; De Smedt, S.C.; Raemdonck, K. The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. J. Nanobiotechnol. 2016, 14, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Falchi, L.; Bogliolo, L.; Galleri, G.; Ariu, F.; Zedda, M.T.; Pinna, A.; Malfattic, L.; Innocenzic, P.; Ledda, S. Cerium dioxide nanoparticles did not alter the functional and morphologic characteristics of ram sperm during short-term exposure. Theriogenology 2016, 85, 1274–1281. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka-Ostrowska, J.; Dziendzikowska, K.; Lankoff, A.; Dobrzyńska, M.; Instanes, C.; Brunborg, G.; Gajowik, A.; Radzikowska, J.; Wojewódzka, M.; Kruszewski, M. Silver nanoparticles effects on epididymal sperm in rats. Toxicol. Lett. 2012, 214, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Poulos, A.; Bennett, D.; White, I.G. The phospholipid bound fatty acids and aldehydes of mammalian spermatozoa. Comp. Biochon. Physiol. 1973, 46, 541–549. [Google Scholar] [CrossRef]
- Wassarman, P.M. Zona pellucida glycoproteins. Ann. Rev. Biochem. 1988, 57, 415–442. [Google Scholar] [CrossRef] [PubMed]
- Hammerstedt, R.H.; Keith, A.D.; Hay, S.; Deluca, N.; Amann, R.P. Changes in ram sperm membranes during epididymal transit. Arch. Biochem. Biophys. 1979, 196, 7–12. [Google Scholar] [CrossRef]
- Holt, W.V. Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology 2000, 53, 47–58. [Google Scholar] [CrossRef]
- Santolaria, P.; Vicente–Fiel, S.; Palacín, I.; Fantova, E.; Blasco, M.E.; Silvestre, M.A.; Yániz, J.L. Predictive capacity of sperm quality parameters and sperm subpopulations on field fertility after artificial insemination in sheep. Anim. Reprod. Sci. 2015, 163, 82–88. [Google Scholar] [CrossRef]
- Vicente–Fiel, S.; Palacín, I.; Santolaria, J.P.; Fantova, E.; Quintín-Casorrán, F.J.; Sevilla-Mur, E.; Yániz, J.L. In vitro assessment of sperm quality from rams of high and low field fertility. Anim. Reprod. Sci. 2014, 146, 15–20. [Google Scholar] [CrossRef]
- Cojkić, A.; Dimitrijević, V.; Savić, M.; Jeremić, I.; Vuković, D.; Čobanović, N.; Obradović, S.; Petrujkić, B.T. The correlation between selected computer assisted sperm analysis parameters and bull fertility. Vet. Arh. 2017, 87, 129–137. [Google Scholar]
- Nagy, Á.; Polichronopoulos, T.; Gáspárdy, A.; Solti, L.; Cseh, S. Correlation between bull fertility and sperm cell velocity parameters generated by computer-assisted semen analysis. Acta Vet. Hung. 2015, 63, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henkel, R. Clinical utility of sperm DNA fragmentation testing: A commentary. Transl. Androl. Urol. 2017, 6 (Suppl. 4), S632. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh, V.; Golestani Eimani, B.; Amjady, F. Genomic Effect of Silver Nanoparticles in Staphylococcus aureus Bacteria. J. Water Environ. Nanotechnol. 2018, 3, 51–57. [Google Scholar] [CrossRef]
- Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomed. 2019, 14, 1469–1487. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Nikaido, H.; Williams, K.E. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 1997, 179, 6127–6132. [Google Scholar] [CrossRef] [Green Version]
- Durán, N.; Durán, M.; de Jesus, M.B.; Seabra, A.B.; Fávaro, W.J.; Nakazato, G. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 2016, 12, 789–799. [Google Scholar] [CrossRef] [PubMed]
- Niño-Martínez, N.; Salas Orozco, M.F.; Martínez-Castañón, G.A.; Torres Méndez, F.; Ruiz, F. Molecular mechanisms of bacterial resistance to metal and metal oxide nanoparticles. Int. J. Mol. Sci. 2019, 20, 2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S.; Webster, T.J. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int. J. Nanomed. 2010, 5, 277–283. [Google Scholar] [CrossRef] [Green Version]
- Khatami, M.; Aflatoonian, M.R.; Azizi, H.; Mosazade, F.; Hoshmand, A.; Nobre, M.A.L.; Poodineh, F.M.; Khatami, M.; Khraazi, S.; Mirzaeei, H. Evaluation of antibacterial activity of iron oxide nanoparticles against Escherichia coli. Int. J. Basic Sci. Med. 2017, 2, 166–169. [Google Scholar] [CrossRef]
- Armijo, L.M.; Wawrzyniec, S.J.; Kopciuch, M.; Brandt, Y.I.; Rivera, A.C.; Withers, N.J.; Cook, N.C.; Huber, D.L.; Monson, T.C.; Smyth, H.D.C.; et al. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. J. Nanobiotechnol. 2020, 18, 35. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Duran, F.; Acosta-Torres, L.S.; Serrano-Díaz, P.N.; Toscano-Torres, I.A.; Olivo-Zepeda, I.B.; García-Caxin, E.; Nuñez-Anita, R.E. Toxicity and antimicrobial effect of silver nanoparticles in swine sperms. Syst. Biol. Reprod. Med. 2020, 66, 281–289. [Google Scholar] [CrossRef]
- Salomoni, R.; Léo, P.; Montemor, A.F.; Rinaldi, B.G.; Rodrigues, M. Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa. Nanotechnol. Sci. Appl. 2017, 10, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Qin, Z.; Zeng, W.; Yang, T.; Cao, Y.; Mei, C.; Kuang, Y. Toxicity assessment of nanoparticles in various systems and organs. Nanotechnol. Rev. 2017, 6, 279–289. [Google Scholar] [CrossRef]
- Zielińska-Górska, M.; Górski, K. Nanobiotechnology in reproduction—Pros and cons: A review. J. Anim. Feed Sci. 2015, 24, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Lafuente, D.; Garcia, T.; Blanco, J.; Sánchez, D.J.; Sirvent, J.J.; Domingo, J.L.; Gómez, M. Effects of oral exposure to silver nanoparticles on the sperm of rats. Reprod. Toxicol. 2016, 60, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yoisungnern, T.; Choi, Y.J.; Woong Han, J.; Kang, M.H.; Das, J.; Gurunathan, S.; Kwon, D.N.; Cho, A.G.; Park, C.; Kyung Chang, W.; et al. Internalization of silver nanoparticles into mouse spermatozoa results in poor fertilization and compromised embryo development. Sci. Rep. 2015, 5, 1117. [Google Scholar] [CrossRef] [PubMed]
- Durfey, C.L.; Swistek, S.E.; Liao, S.F.; Crenshaw, M.A.; Clemente, H.J.; Thirumalai, R.V.K.G.; Steadman, C.S.; Ryan, P.L.; Willard, S.T.; Feugang, L.M. Nanotechnology-based approach for safer enrichment of semen with best spermatozoa. J. Anim. Sci. Biotechnol. 2019, 10, 14. [Google Scholar] [CrossRef]
- Ghosh, Bipasha Mridha and Divya Ramamoorthy. Effects of silver nanoparticles on Escherichia Coli and its implications. Int. J. Chem. Sci. 2010, 5, 31–40. [Google Scholar]
- Morones, J.R.; Elechiguerra, J.L.; Camacho, A.; Holt, K.; Kouri, J.B.; Ramírez, J.T.; Yacaman, M.J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353. [Google Scholar] [CrossRef] [Green Version]
- Hashem, N.M.; Gonzalez-Bulnes, A. State-of-the-art and prospective of nanotechnologies for smart reproductive management of farm animals. Animals 2020, 10, 840. [Google Scholar] [CrossRef]
- Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K.; Mallick, B.; Jha, S. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Sci. Rep. 2015, 5, 14813. [Google Scholar] [CrossRef] [Green Version]
- Bansal, A.K.; Bilaspuri, G.S. Impacts of oxidative stress and antioxidants on semen functions. Vet. Med. Int. 2011, 686137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muiño-Blanco, T.; Pérez-Pé, R.; Cebrián-Pérez, J.A. Seminal plasma proteins and sperm resistance to stress. Reprod. Domest. Anim. 2008, 43, 18–31. [Google Scholar] [CrossRef] [PubMed]
Variable | 6 h | 24 h | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Group C | Group Fe | Group Ag | Group C | Group Fe | Group Ag | Group | Time | G*T | |
Non progr. (%) | 27.38 ± 1.57 | 30.20 ± 1.57 | 32.39 ± 1.75 | 24.75 ± 1.38 | 30.02 ± 1.41 | 30.65 ± 1.58 | 0.0017 | 0.23 | 0.70 |
Medium (%) | 9.04 ± 0.80 | 9.87 ± 0.80 | 10.50 ± 0.89 | 8.47 ± 0.70 | 10.03 ± 0.71 | 9.24 ± 0.80 | 0.22 | 0.39 | 0.67 |
VSL (μm/s) | 59.84 ± 2.69 | 57.79 ± 2.69 | 57.62 ± 2.99 | 66.61 ± 3.06 | 61.07 ± 3.14 | 62.67 ± 3.51 | 0.39 | 0.50 | 0.83 |
VAP (μm/s) | 77.76 ± 3.08 | 70.33 ± 3.08 | 69.45 ± 3.43 | 81.06 ± 3.29 | 70.74 ± 3.37 | 71.77 ± 3.77 | 0.0092 | 0.46 | 0.90 |
LIN (%) | 55.56 ± 1.45 # | 59.37 ± 1.45 | 60.57 ± 1.61 | 62.75 ± 1.39 * | 63.43 ± 1.42 | 63.82 ± 1.59 | 0.10 | 0.0001 | 0.37 |
STR (%) | 69.44 ± 1.01 # | 72.73 ± 1.01 | 73.57 ± 1.12 | 73.93 ± 0.94 * | 75.73 ± 0.96 | 75.26 ± 1.08 | 0.01 | 0.0004 | 0.40 |
WOB (%) | 76.14 ± 1.09 # | 77.22 ± 1.09 | 77.85 ± 1.21 | 80.79 ± 0.95 * | 79.13 ± 0.98 | 79.79 ± 1.09 | 0.84 | 0.0017 | 0.32 |
BCF (Hz) | 6.77 ± 0.13 | 6.71 ± 0.13 | 6.33 ± 0.14 | 6.67 ± 0.12 | 6.51 ± 0.12 | 6.16 ± 0.14 | 0 | 0.15 | 0.93 |
Variable (%) | 6 h | 24 h | p Value | ||||||
---|---|---|---|---|---|---|---|---|---|
Group C | Group Fe | Group Ag | Group C | Group Fe | Group Ag | Group | Time | G*T | |
Viability | 66.85 ± 2.39 | 68.90 ± 2.39 | 68.94 ± 2.66 | 63.28 ± 2.86 | 63.65 ± 2.93 | 63.18 ± 3.27 | 0.89 | 0.03 | 0.91 |
Head abnorm. | 0.95 ± 0.35 | 1.47 ± 0.35 | 1.35 ± 0.38 | 0.66 ± 0.27 | 0.8 ± 0.28 | 0.93 ± 0.32 | 0.47 | 0.06 | 0.68 |
Cytopl. dropl. | 0.33 ± 0.48 | 0.52 ± 0.48 | 1.00 ± 0.53 | 0.66 ± 0.48 | 1.7 ± 0.49 | 2.00 ± 0.55 | 0.08 | 0.006 | 0.27 |
HOST+ | 21.90 ± 2.59 | 29.85 ± 2.59 | 28.64 ± 2.88 | 30.28 ± 2.37 | 32.2 ± 2.43 | 32.5 ± 2.71 | 0.10 | 0.02 | 0.45 |
Variable | C | Fe | Ag | Difference (C-Fe) | p Value | Difference (C-Ag) | p Value | |
---|---|---|---|---|---|---|---|---|
24 h | Bacterial load | 1352 ± 896 | 618 ± 233 | 657 ± 353 | 734 ± 329 | 0.58 | 695 ± 2537 | 0.10 |
Staphylococcus spp. | 349 ± 170 | 320 ± 165 | 366 ± 178 | 29 ± 142 | 0.43 | −18 ± 69 | 0.65 | |
Enterococcus spp. | 305 ± 150 | 193 ± 99 | 221 ± 109 | 112 ± 366 | 0.65 | 84 ± 311 | 0.49 | |
Enterobacteriaceae | 261 ± 100 | 343 ± 112 | 325 ± 112 | −82 ± 207 | 0.19 | −64 ± 174 | 0.25 | |
48 h | Bacterial load | 4528 ± 2596 | 4098 ± 2082 | 4125 ± 2373 | 430 ± 3544 | 0.94 | 402 ± 1628 | 0.03 |
Staphylococcus spp. | 853 ± 358 | 634 ± 239 | 761 ± 314 | 219 ± 819 | 0.97 | 93 ± 711 | 0.59 | |
Enterococcus spp. | 1342 ± 903 | 1350 ± 1000 | 1400 ± 999 | −8 ± 656 | 0.46 | −58 ± 676 | 0.39 | |
Enterobacteriaceae | 1568 ± 634 | 2746 ± 1185 | 2578 ± 1080 | −1178 ± 3194 | 0.25 | −1010 ± 2569 | 0.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsakmakidis, I.A.; Samaras, T.; Anastasiadou, S.; Basioura, A.; Ntemka, A.; Michos, I.; Simeonidis, K.; Karagiannis, I.; Tsousis, G.; Angelakeris, M.; et al. Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals 2021, 11, 1011. https://doi.org/10.3390/ani11041011
Tsakmakidis IA, Samaras T, Anastasiadou S, Basioura A, Ntemka A, Michos I, Simeonidis K, Karagiannis I, Tsousis G, Angelakeris M, et al. Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals. 2021; 11(4):1011. https://doi.org/10.3390/ani11041011
Chicago/Turabian StyleTsakmakidis, Ioannis A., Theodoros Samaras, Sofia Anastasiadou, Athina Basioura, Aikaterini Ntemka, Ilias Michos, Konstantinos Simeonidis, Isidoros Karagiannis, Georgios Tsousis, Mavroeidis Angelakeris, and et al. 2021. "Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen" Animals 11, no. 4: 1011. https://doi.org/10.3390/ani11041011
APA StyleTsakmakidis, I. A., Samaras, T., Anastasiadou, S., Basioura, A., Ntemka, A., Michos, I., Simeonidis, K., Karagiannis, I., Tsousis, G., Angelakeris, M., & Boscos, C. M. (2021). Toxic and Microbiological Effects of Iron Oxide and Silver Nanoparticles as Additives on Extended Ram Semen. Animals, 11(4), 1011. https://doi.org/10.3390/ani11041011