Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin (Tursiops truncatus) Intestine
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Collection
2.3. Histology
2.4. Double Immunofluorescence
2.5. Specificity of the Primary Antibodies
2.6. Specificity of the Secondary Antibodies
2.7. Analysis of Sections
3. Results
3.1. Hematoxylin and Eosin Staining
3.2. Nitrergic Neurons
3.3. SP-IR Neurons
3.4. Co-Localizations of nNOS and SP
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reidenberg, J.S. Anatomical adaptations of aquatic mammals. Anat. Rec. 2007, 290, 507–513. [Google Scholar] [CrossRef]
- Cozzi, B.; Huggenberger, S.; Oelschläger, H. Anatomy of Dolphins. Insights into Body Structure and Function; Academic Press: San Diego, CA, USA, 2017; ISBN 978-0-12-407229-9. [Google Scholar]
- Reidenberg, J.S.; Laitman, J.T. Position of the larynx in odontoceti (toothed whales). Anat. Rec. 1987, 218, 98–106. [Google Scholar] [CrossRef]
- Harrison, R.J.; Johnson, F.R.; Young, B.A. The oesophagus and stomach of dolphins (Tursiops, Delphinus, Stenella). J. Zool. Lond. 1970, 160, 377–390. [Google Scholar] [CrossRef]
- Gaskin, D.E. Form and function in the digestive tract and associated organs in Cetacea, with a consideration of metabolic rates and specific energy budgets. Oceanogr. Mar. Biol. Ann. Rev. 1978, 16, 313–345. [Google Scholar]
- Mead, J.G. Gastrointestinal tract. In Encyclopedia of Marine Mammals, 2nd ed.; Perrin, W., Wursing, B., Thewissen, J., Eds.; Academic Press: New York, NY, USA, 2008; pp. 472–477. [Google Scholar]
- Huggenberger, S.; Oelschläger, H.; Cozzi, B. Atlas of the Anatomy of Dolphins and Whales; Academic Press: London, UK, 2019; ISBN 978-0-12-802446-1. [Google Scholar]
- Russo, F.; Gatta, C.; De Girolamo, P.; Cozzi, B.; Giurisato, M.; Lucini, C.; Varricchio, E. Expression and immunohistochemical detection of leptin-like peptide in the gastrointestinal tract of the South American sea lion (Otaria flavescens) and the bottlenose dolphin (Tursiops truncatus). Anat. Rec. 2012, 295, 1482–1493. [Google Scholar] [CrossRef]
- Pfeiffer, C.J. Neural and muscular control functions of the gut in odontocetes: Morphologic evidence in beaked whales and beluga whales. J. Physiol. Paris 1993, 87, 349–354. [Google Scholar] [PubMed]
- Domeneghini, C.; Massoletti, P.; Arrighi, S. Localization of regulatory peptides in the gastrointestinal tract of the striped dolphin, Stenella coeruleoalba (Mammalia: Cetacea). An immunohistochemical study. Eur. J. Histochem. 1997, 41, 285–300. [Google Scholar]
- Naka, T.; Katsumata, E.; Sasaki, K.; Minamino, N.; Yoshioka, M.; Takei, Y. Natriuretic peptides in cetacean: Identification, molecular characterization and changes in plasma concentration after landing. Zool. Sci. 2007, 24, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Gatta, C.; Russo, F.; Russolillo, M.G.; Varricchio, E.; Paolucci, M.; Castaldo, L.; Lucini, C.; de Girolamo, P.; Cozzi, B.; Maruccio, L. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus). PLoS ONE 2014, 9, e105009. [Google Scholar] [CrossRef] [Green Version]
- Spencer, N.J.; Hu, H. Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 338–351. [Google Scholar] [CrossRef] [PubMed]
- Grundy, D.; Schemann, M. Enteric nervous system. Curr. Opin. Gastroenterol. 2005, 21, 176–182. [Google Scholar] [CrossRef]
- Furness, J.B. The Enteric Nervous System; Blackwell: Oxford, UK, 2006. [Google Scholar]
- Sanders, K.M.; Ward, S.M. Nitric oxide as a mediator of nonadrenergic noncholinergic neurotransmission. Am. J. Physiol. 1992, 262, G379–G392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, M.E.; Bauer, A.J.; Sarr, M.G.; Szurszewski, J.H. Nitric oxide mediates inhibitory nerve input in human and canine jejunum. Gastroenterology 1993, 104, 398–409. [Google Scholar] [CrossRef]
- Costa, M.; Furness, J.B.; Pompolo, S.; Brookes, S.J.; Bornstein, J.C.; Bredt, D.S.; Snyder, S.H. Projections and chemical coding of neurons with immunoreactivity for nitric oxide synthase in the guinea-pig small intestine. Neurosci. Lett. 1992, 148, 121–125. [Google Scholar] [CrossRef]
- Ekblad, E.; Mulder, H.; Uddman, R.; Sundler, F. NOS-containing neurons in the rat gut and coeliac ganglia. Neuropharmacology 1994, 33, 1323–1331. [Google Scholar] [CrossRef]
- Timmermans, J.P.; Barbiers, M.; Scheuermann, D.W.; Bogers, J.J.; Adriaensen, D.; Fekete, E.; Mayer, B.; Van Marck, E.A.; De Groodt-Lasseel, M.H. Nitric oxide synthase immunoreactivity in the enteric nervous system of the developing human digestive tract. Cell Tissue Res. 1994, 275, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, J.P.; Barbiers, M.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; Mayer, B.; De Groodt-Lasseel, M.H. Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann. Anat. 1994, 176, 515–525. [Google Scholar] [CrossRef]
- Holzer, P.; Holzer-Petsche, U. Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol. Ther. 1997, 73, 173–217. [Google Scholar] [CrossRef]
- Holzer, P.; Holzer-Petsche, U. Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation. Pharmacol. Ther. 1997, 73, 219–263. [Google Scholar] [CrossRef]
- Maggi, C.A.; Catalioto, R.M.; Criscuoli, M.; Cucchi, P.; Giuliani, S.; Lecci, A.; Lippi, A.; Meini, S.; Patacchini, R.; Renzetti, A.R.; et al. Tachykinin receptors and intestinal motility. Can. J. Physiol. Pharmacol. 1997, 75, 696–703. [Google Scholar] [CrossRef]
- Shimizu, Y.; Matsuyama, H.; Shiina, T.; Takewaki, T.; Furness, J.B. Tachykinins and their functions in the gastrointestinal tract. Cell. Mol. Life Sci. 2008, 65, 295–311. [Google Scholar] [CrossRef] [PubMed]
- Steinhoff, M.S.; von Mentzer, B.; Geppetti, P.; Pothoulakis, C.; Bunnett, N.W. Tachykinins and their receptors: Contributions to physiological control and the mechanisms of disease. Physiol. Rev. 2014, 94, 265–301. [Google Scholar] [CrossRef] [Green Version]
- Brookes, S.J. Classes of enteric nerve cells in the guinea-pig small intestine. Anat. Rec. 2001, 262, 58–70. [Google Scholar] [CrossRef]
- Sivarao, D.V.; Mashimo, H.; Goyal, R.K. Pyloric sphincter dysfunction in nNOS-/- and W/Wv mutant mice: Animal models of gastroparesis and duodenogastric reflux. Gastroenterology 2008, 135, 1258–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, S.K.; Sutcliffe, J.R.; Ong, S.Y.; Lee, M.; Koh, T.L.; Wong, S.Q.; Farmer, P.J.; Peck, C.J.; Stanton, M.P.; Keck, J.; et al. Substance P and vasoactive intestinal peptide are reduced in right transverse colon in pediatric slow-transit constipation. Neurogastroenterol. Motil. 2010, 22, 883–892.e234. [Google Scholar] [CrossRef] [PubMed]
- Cellini, J.; Pommier, R.; Porter, R.; LePard, K.J. Enhanced nerve-stimulated muscarinic and neurokinin contractions of ileum from streptozotocin guinea-pigs. Auton. Autacoid. Pharmacol. 2012, 32, 23–39. [Google Scholar] [CrossRef]
- Masaoka, T.; Vanuytsel, T.; Vanormelingen, C.; Kindt, S.; Salim Rasoel, S.; Boesmans, W.; De Hertogh, G.; Farre, R.; Vanden Berghe, P.; Tack, J. A spontaneous animal model of intestinal dysmotility evoked by inflammatory nitrergic dysfunction. PLoS ONE 2014, 9, e95879. [Google Scholar] [CrossRef]
- Kuiken, T.; García-Hartmann, M. Cetacean Dissection techniques and tissue sampling. In Proceedings of the First ECS Workshop on Cetacean Pathology, Leiden, The Netherlands, 13–14 September 1991. [Google Scholar]
- Tooyama, I.; Kimura, H. A protein encoded by an alternative splice variant of choline acetyltransferase mRNA is localized preferentially in peripheral nerve cells and fibers. J. Chem. Neuroanat. 2000, 17, 217–226. [Google Scholar] [CrossRef]
- Holmgren, S.; Jensen, J. Evolution of vertebrate neuropeptides. Brain Res. Bull. 2001, 55, 723–735. [Google Scholar] [CrossRef]
- Bombardi, C.; Cozzi, B.; Nenzi, A.; Mazzariol, S.; Grandis, A. Distribution of nitrergic neurons in the dorsal root ganglia of the bottlenose dolphin (Tursiops truncatus). Anat. Rec. 2011, 294, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, T.; Sacchini, S.; Paz, Y.; Rosales, R.S.; Câmara, N.; Andrada, M.; Arbelo, M.; Fernández, A. Comparison of Methods for the Histological Evaluation of Odontocete Spiral Ganglion Cells. Animals 2020, 10, 683. [Google Scholar] [CrossRef] [Green Version]
- Schabadasch, A. Intramurale Nervengeflechte des Darmrohrs. Z. Zellforsch. Mikr. Anat. 1930, 10, 320–385. [Google Scholar] [CrossRef]
- Gunn, M. Histological and histochemical observations on the myenteric and submucous plexuses of mammals. J. Anat. 1968, 102, 223–239. [Google Scholar]
- Stach, W. The external submucous plexus (Schabadasch) in the small intestine of the swine. I. Form, structure and connections of ganglia and nerve cells. Z. Mikrosk. Anat. Forsch. 1977, 91, 737–755. [Google Scholar]
- Christensen, J.; Rick, G.A. Intrinsic nerves in the mammalian colon: Confirmation of a plexus at the circular muscle-submucosal interface. J. Auton. Nerv. Syst. 1987, 21, 223–231. [Google Scholar] [CrossRef]
- Scheuermann, D.W.; Stach, W.; Timmermans, J.P. Topography, architecture and structure of the plexus submucosus externus (Schabadasch) of the porcine small intestine in scanning electron microscopy. Acta Anat. 1987, 129, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Scheuermann, D.W.; Stach, W.; Timmermans, J.P. Topography, architecture and structure of the plexus submucosus internus (Meissner) of the porcine small intestine in scanning electron microscopy. Acta Anat. 1987, 129, 96–104. [Google Scholar] [CrossRef]
- Timmermans, J.P.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; De Groodt-Lasseel, M.H. Functional morphology of the enteric nervous system with special reference to large mammals. Eur. J. Morphol. 1992, 30, 113–122. [Google Scholar]
- Timmermans, J.P.; Adriaensen, D.; Cornelissen, W.; Scheuermann, D.W. Structural organization and neuropeptide distribution in the mammalian enteric nervous system, with special attention to those components involved in mucosal reflexes. Comp. Biochem. Physiol. A Physiol. 1997, 118, 331–340. [Google Scholar] [CrossRef]
- Timmermans, J.P.; Hens, J.; Adriaensen, D. Outer submucous plexus: An intrinsic nerve network involved in both secretory and motility processes in the intestine of large mammals and humans. Anat. Rec. 2001, 262, 71–78. [Google Scholar] [CrossRef]
- Pearson, G.T. Structural organization and neuropeptide distributions in the equine enteric nervous system: An immunohistochemical study using whole-mount preparations from the small intestine. Cell Tissue Res. 1994, 276, 523–534. [Google Scholar] [CrossRef]
- Pompolo, S. An immunohistochemical study of neuropeptides and neuron-specific proteins present in the small intestine of the black-capped capuchin (Cebus appela). Neurogastroenterol. Mot. 1994, 6, 223–232. [Google Scholar] [CrossRef]
- Balemba, O.B.; Grondahl, M.L.; Mbassa, G.K.; Semuguruka, W.D.; Hay-Smith, A.; Skadhauge, E.; Dantzer, V. The organisation of the enteric nervous system in the submucous and mucous layers of the small intestine of the pig studied by VIP and neurofilament protein immunohistochemistry. J. Anat. 1998, 192, 257–267. [Google Scholar] [CrossRef]
- Balemba, O.B.; Mbassa, G.K.; Semuguruka, W.D.; Assey, R.J.; Kahwa, C.K.; Hay-Schmidt, A.; Dantzer, V. The topography, architecture and structure of the enteric nervous system in the jejunum and ileum of cattle. J. Anat. 1999, 195, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brehmer, A.; Schrodl, F.; Neuhuber, W.; Tooyama, I.; Kimura, H. Co-expression pattern of neuronal nitric oxide synthase and two variants of choline acetyltransferase in myenteric neurons of porcine ileum. J. Chem. Neuroanat. 2004, 27, 33–41. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Grandis, A.; Bombardi, C.; Lucchi, M.L.; Dal Lago, D.T.; Bortolami, R.; Furness, J.B. Extrinsic and intrinsic sources of calcitonin gene-related peptide immunoreactivity in the lamb ileum: A morphometric and neurochemical investigation. Cell. Tissue Res. 2006, 323, 183–196. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Bombardi, C.; Mongardi-Fantaguzzi, C.; Venturelli, E.; Russo, D.; Spadari, A.; Montoneri, C.; Romagnoli, N.; Grandis, A. Intrinsic innervation of the horse ileum. Res. Vet. Sci. 2009, 87, 177–185. [Google Scholar] [CrossRef]
- Mazzuoli, G.; Mazzoni, M.; Albanese, V.; Clavenzani, P.; Lalatta-Costerbosa, G.; Lucchi, M.L.; Furness, J.B.; Chiocchetti, R. Morphology and neurochemistry of descending and ascending myenteric plexus neurons of sheep ileum. Anat. Rec. 2007, 290, 1480–1491. [Google Scholar] [CrossRef]
- Freytag, C.; Seeger, J.; Siegemund, T.; Grosche, J.; Grosche, A.; Freeman, D.E.; Schusser, G.F.; Hartig, W. Immunohistochemical characterization and quantitative analysis of neurons in the myenteric plexus of the equine intestine. Brain Res. 2008, 1244, 53–64. [Google Scholar] [CrossRef]
- Zacharko-Siembida, A.; Valverde Piedra, J.L.; Szymanczyk, S.; Arciszewski, M.B. Immunolocalization of NOS, VIP, galanin and SP in the small intestine of suckling pigs treated with red kidney bean (Phaseolus vulgaris) lectin. Acta Histochem. 2013, 115, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Giancola, F.; Fracassi, F.; Gallucci, A.; Sadeghinezhad, J.; Polidoro, G.; Zini, E.; Asti, M.; Chiocchetti, R. Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and diabetic dogs. Auton. Neurosci. 2016, 197, 25–33. [Google Scholar] [CrossRef]
- Qu, Z.D.; Thacker, M.; Castelucci, P.; Bagyanszki, M.; Epstein, M.L.; Furness, J.B. Immunohistochemical analysis of neuron types in the mouse small intestine. Cell Tissue Res. 2008, 334, 147–161. [Google Scholar] [CrossRef]
- Lawson, V.A.; Furness, J.B.; Klemm, H.M.; Pontell, L.; Chan, E.; Hill, A.F.; Chiocchetti, R. The brain to gut pathway: A possible route of prion transmission. Gut 2010, 59, 1643–1651. [Google Scholar] [CrossRef]
- Nichols, K.; Staines, W.; Krantis, A. Nitric oxide synthase distribution in the rat intestine: A histochemical analysis. Gastroenterology 1993, 105, 1651–1661. [Google Scholar] [CrossRef]
- Lin, Z.; Liu, Y.; Zheng, Q.; Hu, Q. Increased proportion of nitric oxide synthase immunoreactive neurons in rat ileal myenteric ganglia after severe acute pancreatitis. BMC Gastroenterol. 2011, 11, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, P.T.; Furness, J.B.; Southwell, B.R. Choline acetyltransferase immunoreactivity of putative intrinsic primary afferent neurons in the rat ileum. Cell Tissue Res. 1999, 297, 241–248. [Google Scholar] [CrossRef]
- Brasileiro, A.D.; Garcia, L.P.; de Carvalho da Silva, S.; Rocha, L.B.; Pedrosa, A.L.; Vieira, A.S.; da Silva, V.J.D.; Rodrigues, A.R.A. Effects of diabetes mellitus on myenteric neuronal density and sodium channel expression in the rat ileum. Brain Res. 2019, 1708, 1–9. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Hitrec, T.; Giancola, F.; Sadeghinezhad, J.; Squarcio, F.; Galiazzo, G.; Piscitiello, E.; De Silva, M.; Cerri, M.; Amici, R.; et al. Phosphorylated Tau protein in the myenteric plexus of the ileum and colon of normothermic rats and during synthetic torpor. Cell Tissue Res. 2021, 29. [Google Scholar] [CrossRef]
- da Silva, M.V.; Marosti, A.R.; Mendes, C.E.; Palombit, K.; Castelucci, P. Differential effects of experimental ulcerative colitis on P2X7 receptor expression in enteric neurons. Histochem. Cell Biol. 2015, 143, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Brehmer, A.; Schrodl, F.; Neuhuber, W. Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem. Cell. Biol. 2006, 125, 557–565. [Google Scholar] [CrossRef]
- Mazzoni, M.; Caremoli, F.; Cabanillas, L.; de Los Santos, J.; Million, M.; Larauche, M.; Clavenzani, P.; De Giorgio, R.; Sternini, C. Quantitative analysis of enteric neurons containing choline acetyltransferase and nitric oxide synthase immunoreactivities in the submucosal and myenteric plexuses of the porcine colon. Cell Tissue Res. 2020, 23. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, J.P.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; De Groodt-Lasseel, M.H.; Polak, J.M. Neuromedin U-immunoreactivity in the nervous system of the small intestine of the pig and its coexistence with substance P and CGRP. Cell Tissue Res. 1989, 258, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Timmermans, J.P.; Scheuermann, D.W.; Stach, W.; Adriaensen, D.; De Groodt-Lasseel, M.H. Distinct distribution of CGRP-, enkephalin-, galanin-, neuromedin U-, neuropeptide Y-, somatostatin-, substance P-, VIP- and serotonin-containing neurons in the two submucosal ganglionic neural networks of the porcine small intestine. Cell Tissue Res. 1990, 260, 367–379. [Google Scholar] [CrossRef]
- Czajkowska, M.; Całka, J. Neurochemistry of Enteric Neurons Following Prolonged Indomethacin Administration in the Porcine Duodenum. Front. Pharmacol. 2020, 11, 564457. [Google Scholar] [CrossRef]
- Crowe, R.; Kamm, M.A.; Burnstock, G.; Lennard-Jones, J.E. Peptide-containing neurons in different regions of the submucous plexus of human sigmoid colon. Gastroenterology 1992, 102, 461–467. [Google Scholar] [CrossRef]
- Thomsen, L.; Pearson, G.T.; Larsen, E.H.; Skadhauge, E. Electrophysiological properties of neurones in the internal and external submucous plexuses of newborn pig small intestine. J. Physiol. 1997, 498, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, L.; Pearson, G.T.; Skadhauge, E. Electrophysiological classification of submucosal plexus neurones in the jejunum of the newborn pig. Comp. Biochem. Physiol. A Physiol. 1997, 118, 363–366. [Google Scholar] [CrossRef]
- Scheuermann, D.W.; Stach, W.; Timmermans, J.P. Morphology and immunocytochemistry of the enteric nervous system in the porcine small intestine. Part II. Acta Gastroenterol. Belg. 1988, 51, A3. [Google Scholar]
- Hens, J.; Schrödl, F.; Brehmer, A.; Adriaensen, D.; Neuhuber, W.; Scheuermann, D.W.; Schemann, M.; Timmermans, J.-P. Mucosal projections of enteric neurons in the porcine small intestine. J. Comp. Neurol. 2000, 421, 429–436. [Google Scholar] [CrossRef]
- Vanderwinden, J.M.; De Laet, M.H.; Schiffmann, S.N.; Mailleux, P.; Lowenstein, C.J.; Snyder, S.H.; Vanderhaeghen, J.J. Nitric oxide synthase distribution in the enteric nervous system of Hirschsprung’s disease. Gastroenterology 1993, 105, 969–973. [Google Scholar] [CrossRef]
- Bealer, J.F.; Natuzzi, E.S.; Flake, A.W.; Adzick, N.S.; Harrison, M.R. Effect of nitric oxide on the colonic smooth muscle of patients with Hirschsprung’s disease. J. Pediatr. Surg. 1994, 29, 1025–1029. [Google Scholar] [CrossRef]
- Tomita, R.; Munakata, K.; Kurosu, Y.; Tanjoh, K. A role of nitric oxide in Hirschsprung’s disease. J. Pediatr. Surg. 1995, 30, 437–440. [Google Scholar] [CrossRef]
- Takahashi, T.; Nakamura, K.; Itoh, H.; Sima, A.A.; Owyang, C. Impaired expression of nitric oxide synthase in the gastric myenteric plexus of spontaneously diabetic rats. Gastroenterology 1997, 113, 1535–1544. [Google Scholar] [CrossRef]
- Ribeiro, U., Jr.; Safatle-Ribeiro, A.V.; Habr-Gama, A.; Gama-Rodrigues, J.J.; Sohn, J.; Reynolds, J.C. Effect of Chagas’ disease on nitric oxide-containing neurons in severely affected and unaffected intestine. Dis. Colon Rectum 1998, 41, 1411–1417. [Google Scholar] [CrossRef] [PubMed]
- Spangeus, A.; Suhr, O.; El-Salhy, M. Diabetic state affects the innervation of gut in an animal model of human type 1 diabetes. Histol. Histopathol. 2000, 15, 739–744. [Google Scholar]
- Takahashi, T. Pathophysiological significance of neuronal nitric oxide synthase in the gastrointestinal tract. J. Gastroenterol. 2003, 38, 421–430. [Google Scholar] [CrossRef]
- Rivera, L.R.; Poole, D.P.; Thacker, M.; Furness, J.B. The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol. Motil. 2011, 23, 980–988. [Google Scholar] [CrossRef]
- Sang, Q.; Williamson, S.; Young, H.M. Projections of chemically identified myenteric neurons of the small and large intestine of the mouse. J. Anat. 1997, 190, 209–222. [Google Scholar] [CrossRef]
- Clerc, N.; Furness, J.B.; Li, Z.S.; Bornstein, J.C.; Kunze, W.A. Morphological and immunohistochemical identification of neurons and their targets in the guinea-pig duodenum. Neuroscience 1998, 86, 679–694. [Google Scholar] [CrossRef]
- Petto, C.; Gabel, G.; Pfannkuche, H. Architecture and Chemical Coding of the Inner and Outer Submucous Plexus in the Colon of Piglets. PLoS ONE 2015, 10, e0133350. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B.; Jones, C.; Nurgali, K.; Clerc, N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog. Neurobiol. 2004, 72, 143–164. [Google Scholar] [CrossRef] [PubMed]
- Holzer, P. Role of visceral afferent neurons in mucosal inflammation and defense. Curr. Opin. Pharmacol. 2007, 7, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolilo, D.J.; Costa, M.; Hibberd, T.J.; Brookes, S.J.H.; Wattchow, D.A.; Spencer, N.J. Distribution, projections, and association with calbindin baskets of motor neurons, interneurons, and sensory neurons in guinea-pig distal colon. J. Comp. Neurol. 2019, 527, 1140–1158. [Google Scholar] [CrossRef] [PubMed]
Primary Antibodies and NT | Host | Code | Dilution | Source |
---|---|---|---|---|
CHAT | Goat | Ab 144P | 1:25 | Millipore |
cCHAT | Rabbit | 1:100 | Generous gift of Dr. K. Lips a | |
pCHAT | Rabbit | 1:1000 | Generous gift of Prof Kimura b | |
HuC/HuD | Mouse | A21271 | 1:200 | Molecular Probes |
HuC | Goat | SC-5977 | 1:100 | Santa Cruz Biotechnologies |
nNOS | Rabbit | Ab5380 | 1:300 | Millipore |
PGP 9.5 | Guinea pig | Ab5898 | 1:100 | Millipore |
SP | Rat | 10-S15A | 1:300 | Fitzgerald |
NT | N21479 | 1:200 | Molecular Probes | |
Secondary Antibodies | Dilution | Source | ||
Goat anti-rabbit IgG FITC | 1:200 | Calbiochem | ||
Donkey anti-rat IgG Alexa 594 | 1:50 | Invitrogen | ||
Goat anti-guinea pig TRITC | 1:100 | Chemicon |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bombardi, C.; Rambaldi, A.M.; Galiazzo, G.; Giancola, F.; Graïc, J.-M.; Salamanca, G.; Cozzi, B.; Chiocchetti, R. Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin (Tursiops truncatus) Intestine. Animals 2021, 11, 1057. https://doi.org/10.3390/ani11041057
Bombardi C, Rambaldi AM, Galiazzo G, Giancola F, Graïc J-M, Salamanca G, Cozzi B, Chiocchetti R. Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin (Tursiops truncatus) Intestine. Animals. 2021; 11(4):1057. https://doi.org/10.3390/ani11041057
Chicago/Turabian StyleBombardi, Cristiano, Anna Maria Rambaldi, Giorgia Galiazzo, Fiorella Giancola, Jean-Marie Graïc, Giulia Salamanca, Bruno Cozzi, and Roberto Chiocchetti. 2021. "Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin (Tursiops truncatus) Intestine" Animals 11, no. 4: 1057. https://doi.org/10.3390/ani11041057
APA StyleBombardi, C., Rambaldi, A. M., Galiazzo, G., Giancola, F., Graïc, J. -M., Salamanca, G., Cozzi, B., & Chiocchetti, R. (2021). Nitrergic and Substance P Immunoreactive Neurons in the Enteric Nervous System of the Bottlenose Dolphin (Tursiops truncatus) Intestine. Animals, 11(4), 1057. https://doi.org/10.3390/ani11041057