Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats’ Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Collection of Samples
2.3. Chemical Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moate, P.J.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Auldist, M.J.; Ribaux, B.E.; Jacobs, J.L.; Wales, W.J. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J. Dairy Sci. 2013, 96, 3177–3188. [Google Scholar] [CrossRef] [Green Version]
- Tsiplakou, E.; Abdullah, M.A.M.; Alexandros, M.; Chatzikonstantinou, M.; Skliros, D.; Sotirakoglou, K.; Flemetakis, E.; Labrou, N.E.; Zervas, G. The effect of dietary Chlorella pyrenoidosa inclusion on goats milk chemical composition, fatty acids profile and enzymes activities related to oxidation. Livest. Sci. 2017, 197, 106–111. [Google Scholar] [CrossRef]
- Białek, A.; Białek, M.; Lepionka, T.; Kaszperuk, K.; Banaszkiewicz, T.; Tokarz, A. The effect of pomegranate seed oil and grapeseed oil on cis-9, trans-11 CLA (rumenic acid), n-3 and n-6 fatty acids deposition in selected tissues of chickens. J. Anim. Physiol. Anim. Nutr. 2018, 102, 962–976. [Google Scholar] [CrossRef]
- Toral, P.G.; Hervás, G.; Carreño, D.; Leskinen, H.; Belenguer, A.; Shingfield, J.K.; Frutos, P. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. J. Dairy Sci. 2017, 100, 6187–6198. [Google Scholar] [CrossRef]
- Li, D.; Bode, O.; Drummond, H.; Sinclair, A.J. Omega-3 (n-3) fatty acids. In Lipids for Functional Foods and Nutraceuticals; Gunstone, F.D., Ed.; Oily Press: Bridgwater, UK, 2003; pp. 225–262. [Google Scholar] [CrossRef]
- Horrocks, L.A.; Yeo, Y.K. Health benefits of docosahexaenoic acid (DHA). Pharmacol. Res. 1999, 40, 211–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Panel on Dietetic Products, Nutrition, and Allergies (NDA). Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Pajor, F.; Egerszegi, I.; Steiber, O.; Bodnár, Á.; Póti, P. Effect of marine algae supplementation on the fatty acid profile of milk of dairy goats kept indoor and on pasture. J. Anim. Feed Sci. 2019, 28, 169–176. [Google Scholar] [CrossRef]
- Mavrommatis, A.; Tsiplakou, E. The impact of the dietary supplementation level with Schizochytrium sp. on milk chemical composition and fatty acid profile, of both blood plasma and milk of goats. Small Ruminant Res. 2020, 193, 106252. [Google Scholar] [CrossRef]
- Or-Rashid, M.M.; Kramer, J.K.G.; Wood, M.A.; McBride, B.W. Supplemental algal meal alters the ruminal trans-18:1 fatty acid and conjugated linoleic acid composition in cattle. J. Anim. Sci. 2008, 86, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Bichi, E.; Hervás, G.; Toral, P.G.; Loor, J.J.; Frutos, P. Milk fat depression induced by dietary marine algae in dairy ewes: Persistency of milk fatty acid composition and animal performance responses. J. Dairy Sci. 2013, 96, 524–532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Białek, M.; Czauderna, M.; Białek, A. Partial replacement of rapeseed oil with fish oil, and dietary antioxidants supplementation affects concentrations of biohydrogenation products and conjugated fatty acids in rumen and selected lamb tissues. Anim. Feed Sci. Technol. 2018, 241, 63–74. [Google Scholar] [CrossRef]
- Kotue, T.C.; Djote, W.N.B.; Marlyne, M.; Pieme, A.C.; Kansci, G.; Fokou, E. Antisickling and Antioxidant Properties of Omega-3 Fatty Acids EPA/DHA. Nutri. Food. Sci. Int. J. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Conquer, J.A.; Tierney, M.C.; Zecevic, J.; Bettger, W.J.; Fisher, R.H. Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000, 35, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B. How to characterize an antioxidant—An update. Biochem. Soc. Symp. 1995, 61, 73–101. [Google Scholar] [CrossRef] [PubMed]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 2010, 4, 118–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbano, D.M.; Ma, Y.; Santos, M.V. Influence of raw milk quality on fluid milk shelf life. J. Dairy Sci. 2006, 89, 15–19. [Google Scholar] [CrossRef]
- Harmon, R.J. Physiology of mastitis and factors affecting somatic cell counts. J. Dairy Sci. 1994, 77, 2103–2112. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. EU 2010, 276, 33–79.
- NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Hungarian Feed Codex. Laboratory methods and operations. Magyar Közlöny 2004, 42, 3388–3436. (In Hungarian) [Google Scholar]
- National Mastitis Council (NMC). Laboratory Handbook on Bovine Mastitis; NMC Inc.: Madison, WI, USA, 1999. [Google Scholar]
- Kleyn, D.H. Determination of fat in raw and processed milks by Gerber method: Collaborative study. J. AOAC Int. 2001, 84, 1499–1508. [Google Scholar] [CrossRef] [Green Version]
- ISO 12966-2. Animal and Vegetable Fats and Oils–Gas Chromatography of Fatty Acid Methyl Esters–Part 2: Preparation of Methyl Esters of Fatty Acids; International Organization for Standardization: Geneva, Switzerland, 2011. [Google Scholar]
- Ulbright, T.L.; Southgate, D.A. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Ruminant Res. 2006, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Kuchtík, J.; Králíčková, S.; Zapletal, D.; Węglarzy, K.; Šustová, K.; Skrzyżala, I. Changes in physico-chemical characteristics, somatic cell count and fatty acid profile of Brown Short-haired goat milk during lactation. Anim. Sci. Pap. Rep. 2015, 33, 71–83. [Google Scholar]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The effect of dietary supplementation with Aurantiochytrium limacinum on lactating dairy cows in terms of animal health, productivity and milk composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeckaert, C.; Vlaeminck, B.; Dijkstra, J.; Issa-Zacharia, A.; Van Nespen, T.; Van Straalen, W.; Fievez, V. Effect of dietary starch or micro algae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J. Dairy Sci. 2008, 91, 4714–4727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulos, G.; Goulas, C.; Apostolaki, E.; Abril, R. Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewes. J. Dairy Sci. 2002, 69, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Cannon, V.L.; Loerch, S.C. Effects of forage source and supplementation with soybean and marine algal oil on milk fatty acid composition of ewes. Anim. Feed Sci. Technol. 2006, 131, 333–357. [Google Scholar] [CrossRef]
- Leitner, G.; Lavon, Y.; Matzrafi, Z.; Benun, O.; Bezman, D.; Merin, U. Somatic cell counts, chemical composition and coagulation properties of goat and sheep bulk tank milk. Int. Dairy J. 2016, 58, 9–13. [Google Scholar] [CrossRef]
- Paape, M.J.; Capuco, A.V. Cellular defense mechanisms in the udder and lactation of goats. J. Anim. Sci. 1997, 75, 556–565. [Google Scholar] [CrossRef]
- Sramek, Á.; Bodnár, Á.; Póti, P.; Pajor, F. The effect of udder health on mineral concentrations and fatty acid composition of alpine goat milk. Anim. Sci. Pap. Rep. 2018, 36, 383–392. [Google Scholar]
- Bagnicka, E.; Winnick, A.; Jóźwika, A.; Rzewuska, M.; Strzałkowska, N.; Kościuczuk, E.; Prusak, B.; Kaba, J.; Horbańczuk, J.; Krzyżewski, J. Relationship between somatic cell count and bacterial pathogens in goat milk. Small Rumin. Res. 2011, 100, 72–77. [Google Scholar] [CrossRef]
- Kalogridou-Vassiliadou, D. Mastitis-related pathogens in goat milk. Small Rumin. Res. 1991, 4, 203–212. [Google Scholar] [CrossRef]
- Delano, M.L.; Mischler, S.A.; Underwood, W.J. Biology and Diseases of Ruminants: Sheep, Goats and Cattle. In Laboratory Animal Medicine; Fox, J.G., Anderson, L.C., Loew, F.M., Quimby, F.W., Eds.; Academic Press: New York, NY, USA, 2002; Volume 555. [Google Scholar]
- Pajor, F.; Weidel, W.; Polgár, J.P.; Bárdos, L.; Póti, P.; Bodnár, Á. Effect of pathogen udder bacteria species on the somatic cell count of goat milk. Magy. Allatorv. Lapja 2016, 138, 541–547. [Google Scholar]
- Souza, F.N.; Blagitz, M.G.; Penna, C.F.A.M.; Della Libera, A.M.M.P.; Heinemann, M.B.; Cerqueira, M.M.O.P. Somatic cell count in small ruminants: Friend or foe? Small Rumin. Res. 2012, 107, 65–75. [Google Scholar] [CrossRef]
- Contreras, A.; Sierra, D.; Sánchez, A.; Corrales, J.C.; Marco, J.C.; Paape, M.J.; Gonzalo, C. Mastitis in small ruminants. Small Rumin. Res. 2007, 68, 145–153. [Google Scholar] [CrossRef]
- Košmelj, K.; Blejec, A.; Kompan, D. Statistical analysis of an experiment with time component. Acta Agric. Slov. 2001, 78, 117–126. [Google Scholar]
- Gantner, V.; Kompan, D. Effect of α-linoleic acid supplementation in goat’s diet on milk yield, quality and somatic cell count. Ital. J. Anim. Sci. 2009, 8, 139–141. [Google Scholar] [CrossRef]
- Franklin, S.T.; Martin, K.R.; Baer, R.J.; Schingoethe, D.J.; Hippen, A.R. Dietary marine algae (Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 1999, 129, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Toral, P.G.; Hervás, G.; Gómez-Cortés, P.; Frutos, P.; Juárez, M.; de La Fuente, M.A. Milk fatty acid profile and dairy sheep performance in response to diet supplementation with sunflower oil plus incremental levels of marine algae. J. Dairy Sci. 2010, 93, 1655–1667. [Google Scholar] [CrossRef]
- Zan, M.; Stibilj, V.; Rogelj, I. Milk fatty acid composition of goats grazing on alpine pasture. Small Rumin Res. 2006, 64, 45–52. [Google Scholar] [CrossRef]
- Mumme, K.; Stonehouse, W. Effects of medium-chain triglycerides on weight loss and body composition: A meta-analysis of randomized controlled trials. J. Acad. Nutr. Diet. 2015, 115, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Cortés, P.; Juárez, M.; de La Fuente, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Harfoot, C.G. Lipid metabolism in the rumen. In Lipid Metabolism in Ruminant Animals; Christie, W.W., Ed.; Pergamon Press: New York, NY, USA, 1981; pp. 21–55. [Google Scholar]
- Shingfield, K.J.; Bernard, L.; Leroux, C.; Chilliard, Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 2010, 4, 1140–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryhanen, E.L.; Tallavaara, K.; Griinari, J.M.; Jaakkola, S.; Mantere-Alhonen, S.; Shingfield, K.J. Production of conjugated linoleic acid enriched milk and dairy products from cows receiving grass silage supplemented with a cereal-based concentrate containing rapeseed oil. Int. Dairy J. 2005, 15, 207–217. [Google Scholar] [CrossRef]
- Kuhnt, K.; Kraft, J.; Moeckel, P.; Jahreis, G. Trans-11–18: 1 is effectively δ9-desaturated compared with Trans-12–18: 1 in humans. Br. J. Nutr. 2006, 95, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Kelley, N.; Hubbard, N.; Erickson, K. Conjugated linoleic acid isomers and cancer. J. Nutr. 2007, 137, 2599–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lock, A.L.; Kraft, J.; Rice, B.H.; Bauman, D.E. Biosynthesis and biological activity of rumenic acid: A natural CLA isomer. In Trans Fatty Acids in Human Nutrition; Destaillats, F., Sébédio, J.L., Dionisi, F., Chardigny, J.M., Eds.; Oily Press: Bridgwater, UK, 2009; pp. 195–230. [Google Scholar] [CrossRef]
- Kompan, D.; Komprej, A. The effect of fatty acids in goat milk on health. In Milk production–An Up-to-Date Overview of Animal Nutrition, Management and Health; Chaiyabutr, N., Ed.; IntechOpen: London, UK, 2012; pp. 1–26. ISBN 978-953-51-0765-1. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L. Omega-3 fatty acids in metabolism, health and nutrition and for modified animal product foods. Prof. Anim. Sci. 2009, 25, 207–249. [Google Scholar] [CrossRef]
Items | Diet | |
---|---|---|
Control 1 | Marine Algae 2 | |
Daily intake, g | ||
alfalfa hay | 1500 | 1500 |
concentrate | 600 | 600 |
marine algae 3 | − 4 | 10 |
Ingredients, DM% 5 | ||
alfalfa hay | 71.88 | 71.53 |
concentrate | 28.12 | 27.98 |
marine algae 3 | − | 0.49 |
DM intake, kg/day | 1.88 | 1.89 |
Chemical composition | ||
dry matter, g/kg forage | 894.29 | 894.45 |
crude protein, g/kg DM | 198.57 | 198.32 |
crude fat, g/kg DM | 22.82 | 25.08 |
crude fiber, g/kg DM | 217.25 | 216.29 |
crude ash, g/kg DM | 77.77 | 77.57 |
NEl 6, MJ/kg DM | 6.17 | 6.18 |
Main FA, g/100g of fatty acids | ||
C12:0 | 0.21 | 0.24 |
C14:0 | 0.58 | 1.21 |
C16:0 | 13.17 | 17.52 |
C18:0 | 2.73 | 2.67 |
C18:1n-9 | 30.33 | 27.53 |
C18:2n-6 | 32.04 | 29.02 |
C18:3n-3 | 15.62 | 14.15 |
C22:6n-3 (DHA) 7 | − | 2.85 |
Traits | Pretreatment | Diet | Sampling | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | MA | C | MA | 7 | 14 | 21 | 28 | 35 | D | S | D × S | ||
Milk yield, kg | 1.26 | 1.27 | 1.25 | 1.30 | 1.28 | 1.25 | 1.26 | 1.30 | 1.28 | 0.017 | 0.171 | 0.897 | 0.948 |
Fat, % | 3.92 | 3.83 | 3.71 | 3.74 | 3.75 | 3.63 | 3.62 | 3.87 | 3.74 | 0.035 | 0.675 | 0.159 | 0.991 |
Protein, % | 3.41 | 3.49 | 3.40 | 3.44 | 3.44 | 3.34 | 3.50 | 3.51 | 3.32 | 0.031 | 0.493 | 0.191 | 0.889 |
Lactose, % | 4.41 | 4.45 | 4.45 | 4.44 | 4.41 | 4.45 | 4.44 | 4.45 | 4.46 | 0.011 | 0.753 | 0.732 | 0.527 |
Total solids, % | 12.43 | 12.49 | 12.32 | 12.44 | 12.35 | 12.34 | 12.34 | 12.50 | 12.38 | 0.052 | 0.245 | 0.834 | 0.879 |
SCC, log cell/mL | 5.63 | 5.58 | 5.73 | 5.34 | 5.69 a | 5.54 b | 5.61 b | 5.47 b | 5.52 b | 0.035 | 0.000 | 0.000 | 0.608 |
Mastitis Pathogens | Pretreatment | p-Value | Treatment | p-Value | ||
---|---|---|---|---|---|---|
C (n = 14) | MA (n = 14) | C (n = 70) | MA (n = 70) | |||
Negative | 64 (n = 9) | 71 (n = 10) | 0.365 | 69 (n = 78) | 90 (n = 60) | <0.001 |
Infected samples * | 36 (n = 5) | 29 (n = 4) | 0.365 | 31 (n = 22) | 10 (n = 10) | <0.001 |
Fatty Acids | Diet | Sampling Days | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
C | MA | 21 | 35 | D | S | D × S | ||
C4:0 | 1.46 | 1.44 | 1.45 | 1.45 | 0.009 | 0.176 | 0.984 | 0.320 |
C6:0 | 1.19 | 1.17 | 1.17 | 1.19 | 0.019 | 0.624 | 0.637 | 0.777 |
C8:0 | 1.83 | 1.84 | 1.82 | 1.86 | 0.034 | 0.971 | 0.590 | 0.320 |
C10:0 | 7.20 | 8.29 | 7.77 | 8.23 | 0.076 | 0.000 | 0.004 | 0.030 |
C12:0 | 4.82 | 4.70 | 4.52 | 5.00 | 0.116 | 0.617 | 0.043 | 0.179 |
C14:0 | 10.87 | 11.88 | 11.36 | 11.40 | 0.124 | 0.000 | 0.880 | 0.004 |
C14:1 | 0.19 | 0.25 | 0.22 | 0.23 | 0.006 | 0.000 | 0.284 | 0.001 |
C16:0 | 29.44 | 34.66 | 32.29 | 31.82 | 0.385 | 0.000 | 0.546 | 0.011 |
C16:1 | 0.56 | 0.68 | 0.59 | 0.65 | 0.003 | 0.000 | 0.000 | 0.000 |
C18:0 | 9.54 | 6.59 | 7.34 | 8.79 | 0.193 | 0.000 | 0.000 | 0.075 |
c11 C18:1n-9 | 23.63 | 18.64 | 20.13 | 22.13 | 0.217 | 0.000 | 0.000 | 0.653 |
t11 C18:1n-7 | 1.39 | 1.68 | 1.49 | 1.58 | 0.021 | 0.000 | 0.054 | 0.298 |
rumenic acid | 0.65 | 0.99 | 0.81 | 0.83 | 0.014 | 0.000 | 0.454 | 0.002 |
C18:2n-6 | 3.33 | 3.06 | 3.21 | 3.18 | 0.054 | 0.016 | 0.731 | 0.697 |
C18:3n-3 | 1.18 | 0.95 | 1.11 | 1.02 | 0.014 | 0.000 | 0.003 | 0.001 |
C20:3n-6 | 0.03 | 0.03 | 0.03 | 0.02 | 0.001 | 0.328 | 0.001 | 0.328 |
C20:4n-6 | 0.18 | 0.20 | 0.19 | 0.19 | 0.003 | 0.005 | 0.517 | 0.009 |
C20:5n-3 (EPA) | 0.09 | 0.07 | 0.09 | 0.08 | 0.002 | 0.000 | 0.001 | 0.007 |
C22:5n-3 | 0.22 | 0.18 | 0.20 | 0.20 | 0.004 | 0.000 | 0.707 | 0.065 |
C22:6n-3 (DHA) | 0.04 | 0.32 | 0.16 | 0.21 | 0.004 | 0.000 | 0.000 | 0.000 |
palmitic/oleic ratio | 0.82 | 0.54 | 0.64 | 0.72 | 0.012 | 0.000 | 0.001 | 0.044 |
odd FA | 2.28 | 2.26 | 2.26 | 2.27 | 0.020 | 0.782 | 0.950 | 0.224 |
SFA | 67.46 | 71.08 | 68.25 | 70.28 | 0.438 | 0.000 | 0.024 | 0.003 |
MUFA | 25.81 | 21.29 | 22.47 | 24.63 | 0.220 | 0.000 | 0.000 | 0.482 |
PUFA | 5.77 | 5.82 | 5.84 | 5.76 | 0.061 | 0.658 | 0.533 | 0.233 |
n-6 | 3.56 | 3.30 | 3.45 | 3.41 | 0.055 | 0.021 | 0.730 | 0.582 |
n-3 | 1.56 | 1.54 | 1.58 | 1.52 | 0.018 | 0.632 | 0.107 | 0.837 |
n-6/n-3 ratio | 2.32 | 2.14 | 2.20 | 2.26 | 0.039 | 0.028 | 0.440 | 0.413 |
AI | 2.95 | 2.48 | 2.63 | 2.79 | 0.041 | 0.000 | 0.057 | 0.000 |
Days 1 | Daily Intake of DHA, mg/Day | Average Milk DHA Content, mg/100 g Milk | Milk Production, kg | DHA in Milk Yield, mg/Day | DHA Efficiency Ratio 2, % |
---|---|---|---|---|---|
21 | 1352.29 | 9.06 | 1.19 | 107.80 | 7.97 |
35 | 1352.29 | 13.32 | 1.19 | 158.62 | 11.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pajor, F.; Egerszegi, I.; Szűcs, Á.; Póti, P.; Bodnár, Á. Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats’ Milk. Animals 2021, 11, 1097. https://doi.org/10.3390/ani11041097
Pajor F, Egerszegi I, Szűcs Á, Póti P, Bodnár Á. Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats’ Milk. Animals. 2021; 11(4):1097. https://doi.org/10.3390/ani11041097
Chicago/Turabian StylePajor, Ferenc, István Egerszegi, Ágnes Szűcs, Péter Póti, and Ákos Bodnár. 2021. "Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats’ Milk" Animals 11, no. 4: 1097. https://doi.org/10.3390/ani11041097
APA StylePajor, F., Egerszegi, I., Szűcs, Á., Póti, P., & Bodnár, Á. (2021). Effect of Marine Algae Supplementation on Somatic Cell Count, Prevalence of Udder Pathogens, and Fatty Acid Profile of Dairy Goats’ Milk. Animals, 11(4), 1097. https://doi.org/10.3390/ani11041097