The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Study Protocol
2.2. Anesthesia and Preparatory Procedure
2.3. Catheter Examination
2.4. Conventional and Speckle Tracking Echocardiography
2.5. Color M-Mode Echocardiography for Assessment of IVPG
2.6. Statistical Analysis
3. Results
3.1. Pressure-Volume Analysis by Catheterization
3.2. Conventional and Two-Dimensional Speckle Tracking Echocardiographic Indices
3.3. Intraventricular Pressure Gradients (IVPG) Analysis
3.4. Relationship between Emax and Conventional, Two-Dimensional Speckle Tracking Echocardiographic, and the IVPG Indices
4. Discussion
4.1. Clinical Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- van der Pal, H.J.; van Dalen, E.C.; van Delden, E.; van Dijk, I.W.; Kok, W.E.; Geskus, R.B.; Sieswerda, E.; Oldenburger, F.; Koning, C.C.; van Leeuwen, F.E. High risk of symptomatic cardiac events in childhood cancer survivors. J. Clin. Oncol. 2012, 30, 1429–1437. [Google Scholar] [CrossRef] [Green Version]
- Hallman, B.E.; Hauck, M.L.; Williams, L.E.; Hess, P.R.; Suter, S.E. Incidence and risk factors associated with development of clinical cardiotoxicity in dogs receiving doxorubicin. J. Vet. Intern. Med. 2019, 33, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Said, R.; Nickolich, M.; Lenihan, D.J.; Tsimberidou, A.M. Cardiotoxicity of Anticancer Therapies. In Cardio-Oncology: The Clinical Overlap of Cancer and Heart Disease; Kimmick, G.G., Lenihan, D.J., Sawyer, D.B., Mayer, E.L., Hershman, D.L., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 15–42. [Google Scholar] [CrossRef]
- Felker, G.M.; Thompson, R.E.; Hare, J.M.; Hruban, R.H.; Clemetson, D.E.; Howard, D.L.; Baughman, K.L.; Kasper, E.K. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 2000, 342, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Visser, L.C.; Ciccozzi, M.M.; Sintov, D.J.; Sharpe, A.N. Echocardiographic quantitation of left heart size and function in 122 healthy dogs: A prospective study proposing reference intervals and assessing repeatability. J. Vet. Intern. Med. 2019, 33, 1909–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardinale, D.; Colombo, A.; Lamantia, G.; Colombo, N.; Civelli, M.; De Giacomi, G.; Rubino, M.; Veglia, F.; Fiorentini, C.; Cipolla, C.M. Anthracycline-induced cardiomyopathy: Clinical relevance and response to pharmacologic therapy. J. Am. Coll. Cardiol. 2010, 55, 213–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallay-Lepoutre, J.; Belanger, M.; Nadeau, M. Prospective evaluation of Doppler echocardiography, tissue Doppler imaging and biomarkers measurement for the detection of doxorubicin-induced cardiotoxicity in dogs: A pilot study. Res. Vet. Sci. 2016, 105, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, I.; Ichida, F.; Miura, M.; Okabe, T.; Kanegane, H.; Uese, K.-i.; Hamamichi, Y.; Misaki, T.; Koizumi, S.; Miyawaki, T. Automatic border detection identifies subclinical anthracycline cardiotoxicity in children with malignancy. Circulation 1999, 99, 2367–2370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tassan-Mangina, S.; Codorean, D.; Metivier, M.; Costa, B.; Himberlin, C.; Jouannaud, C.; Blaise, A.M.; Elaerts, J.; Nazeyrollas, P. Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: Early and late alterations of left ventricular function during a prospective study. Eur. J. Echocardiogr. 2006, 7, 141–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, N.L.; Vandervoort, P.M.; Firstenberg, M.S.; Garcia, M.J.; Thomas, J.D. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography. Am. J. Physiol. Heart. Circ. Physiol 2001, 280, H2507–H2515. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Sato, K.; Shimada, K.; Goya, S.; Uemura, A.; Iso, T.; Yazaki, K.; Yilmaz, Z.; Takahashi, K.; Tanaka, R. Changes in left ventricular blood flow during diastole due to differences in chamber size in healthy dogs. Sci. Rep. 2020, 10, 1106. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, K.; Nii, M.; Takigiku, K.; Toyono, M.; Iwashima, S.; Inoue, N.; Tanaka, N.; Matsui, K.; Shigemitsu, S.; Yamada, M. Development of suction force during early diastole from the left atrium to the left ventricle in infants, children, and adolescents. Heart Vessel. 2019, 34, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Danfu Ma, A.S.M.; Yoshida, T.; Matsuura, K.; Shimada, K.; Kitpipatkun, P.; Uemura, A.; Ifuku, M.; Takahashi, K.; Tanaka, R. Intraventricular pressure gradients change during the development of LV hypertrophy: Effect of salvianolic acid B and beta-blocker. Ultrasound 2021. [Google Scholar] [CrossRef]
- Matsuura, K.; Shiraishi, K.; Sato, K.; Shimada, K.; Goya, S.; Uemura, A.; Ifuku, M.; Iso, T.; Takahashi, K.; Tanaka, R. Left ventricular vortex and intraventricular pressure difference in dogs under various loading conditions. Am. J. Physiol. Heart Circ. Physiol. 2019, 316, H882–H888. [Google Scholar] [CrossRef] [PubMed]
- Hodzic, A.; Bonnefous, O.; Langet, H.; Hamiche, W.; Chaufourier, L.; Tournoux, F.; Milliez, P.; Normand, H.; Saloux, E. Analysis of inter-system variability of systolic and diastolic intraventricular pressure gradients derived from color Doppler M-mode echocardiography. Sci. Rep. 2020, 10, 7180. [Google Scholar] [CrossRef]
- Yotti, R.; Bermejo, J.; Antoranz, J.C.; Desco, M.M.; Cortina, C.; Rojo-Alvarez, J.L.; Allué, C.; Martín, L.; Moreno, M.; Serrano, J.A.; et al. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 2005, 112, 2921–2929. [Google Scholar] [CrossRef] [Green Version]
- Rovner, A.; Greenberg, N.L.; Thomas, J.D.; Garcia, M.J. Relationship of diastolic intraventricular pressure gradients and aerobic capacity in patients with diastolic heart failure. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H2081–H2088. [Google Scholar] [CrossRef]
- Timm, K.N.; Perera, C.; Ball, V.; Henry, J.A.; Miller, J.J.; Kerr, M.; West, J.A.; Sharma, E.; Broxholme, J.; Logan, A.; et al. Early detection of doxorubicin-induced cardiotoxicity in rats by its cardiac metabolic signature assessed with hyperpolarized MRI. Commun. Biol. 2020, 3, 692. [Google Scholar] [CrossRef] [PubMed]
- Pino, E.H.M.; Weber, M.N.; de Oliveira, L.O.; Vieira, L.C.; dos Santos, K.H.S.; Liu, I.P.; Gomes, H.M.; Trindade-Gerardi, A.B.; Moreira, J.C.F.; Gerardi, D.G. Evaluation of cardioprotective effects of carvedilol in dogs receiving doxorubicin chemotherapy: A prospective, randomized, double-blind, placebo controlled pilot study. Res. Vet. Sci. 2020. [Google Scholar] [CrossRef]
- Tater, G.; Eberle, N.; Hungerbuehler, S.; Joetzke, A.; Nolte, I.; Wess, G.; Betz, D. Assessment of cardiac troponin I (cTnI) and tissue velocity imaging (TVI) in 14 dogs with malignant lymphoma undergoing chemotherapy treatment with doxorubicin. Vet. Comp. Oncol. 2017, 15, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Tater, G.; Eberle, N.; Hungerbuehler, S.; Joetzke, A.; Nolte, I.; Wess, G.; Betz, D. Ventricular fractional shortening in 108 dogs with malignant lymphoma undergoing chemotherapy with a cyclic combination protocol including doxorubicin. Tierarztl. Prax. Ausg. K Kleintiere Heimtiere 2012, 40, 261–266. [Google Scholar]
- Weiss, J.L.; Frederiksen, J.W.; Weisfeldt, M.L. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure. J. Clin. Investig. 1976, 58, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, B.; Steendijk, P.; Lunze, K.; Ovroutski, S.; Falkenberg, J.; Rahmanzadeh, P.; Maarouf, N.; Ewert, P.; Berger, F.; Kuehne, T. Integrated assessment of diastolic and systolic ventricular function using diagnostic cardiac magnetic resonance catheterization: Validation in pigs and application in a clinical pilot study. JACC Cardiovasc. Imaging. 2009, 2, 1271–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urheim, S.; Edvardsen, T.; Torp, H.; Angelsen, B.; Smiseth, O.A. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 2000, 102, 1158–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhoff, D.; Mirsky, I.; Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: A guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H501–H512. [Google Scholar] [CrossRef]
- Boon, J.A. Veterinary Echocardiography; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kobayashi, M.; Takahashi, K.; Yamada, M.; Yazaki, K.; Matsui, K.; Tanaka, N.; Shigemitsu, S.; Akimoto, K.; Kishiro, M.; Nakanishi, K. Assessment of early diastolic intraventricular pressure gradient in the left ventricle among patients with repaired tetralogy of Fallot. Heart Vessel. 2017, 32, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Koutsoukis, A.; Ntalianis, A.; Repasos, E.; Kastritis, E.; Dimopoulos, M.-A.; Paraskevaidis, I. Cardio-oncology: A Focus on Cardiotoxicity. Eur. Cardiol. 2018, 13, 64–69. [Google Scholar] [CrossRef]
- LeBlanc, A.K.; Mazcko, C.N. Improving human cancer therapy through the evaluation of pet dogs. Nat. Rev. Cancer. 2020, 20, 727–742. [Google Scholar] [CrossRef]
- Marchandise, B.; Schroeder, E.; Bosly, A.; Doyen, C.; Weynants, P.; Kremer, R.; Pouleur, H. Early detection of doxorubicin cardiotoxicity: Interest of Doppler echocardiographic analysis of left ventricular filling dynamics. Am. Heart J. 1989, 118, 92–98. [Google Scholar] [CrossRef]
- Sousa, M.; Paulino-Junior, D.; Pascon, J.; Pereira-Neto, G.; Carareto, R.; Camacho, A. Assesment of the TEI index of myocardial performance in dogs with doxorubicin-induced cardiomiopathy. Arch. Med. Vet. 2014, 46, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; McLaughlin, D.; Robinson, E.; Harvey, A.P.; Hookham, M.B.; Shah, A.M.; McDermott, B.J.; Grieve, D.J. Nox2 NADPH oxidase promotes pathologic cardiac remodeling associated with Doxorubicin chemotherapy. Cancer Res. 2010, 70, 9287–9297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruch, C.; Schmermund, A.; Bartel, T.; Schaar, J.; Erbel, R. Tissue Doppler imaging: A new technique for assessment of pseudonormalization of the mitral inflow pattern. Echocardiography 2000, 17, 539–546. [Google Scholar] [CrossRef]
- DiLorenzo, M.; Hwang, W.T.; Goldmuntz, E.; Ky, B.; Mercer-Rosa, L. Diastolic dysfunction in tetralogy of Fallot: Comparison of echocardiography with catheterization. Echocardiography 2018, 35, 1641–1648. [Google Scholar] [CrossRef] [PubMed]
- De Madron, É. 7—Global Left Ventricular Systolic Function Assessment. In Clinical Echocardiography of the Dog and Cat; de Madron, É., Chetboul, V., Bussadori, C., Eds.; Elsevier Masson: St. Louis, MO, USA, 2015; pp. 111–125. [Google Scholar] [CrossRef]
- Alves de Souza, R.C.; Camacho, A.A. Neurohormonal, hemodynamic, and electrocardiographic evaluations of healthy dogs receiving long-term administration of doxorubicin. Am. J. Vet. Res. 2006, 67, 1319–1325. [Google Scholar] [CrossRef] [PubMed]
- Surachetpong, S.D.; Teewasutrakul, P.; Rungsipipat, A. Serial measurements of cardiac troponin I (cTnI) in dogs treated with doxorubicin. Jpn. J. Vet. Res. 2016, 64, 221–233. [Google Scholar]
- Accordino, M.K.; Neugut, A.I.; Hershman, D.L. Cardiac effects of anticancer therapy in the elderly. J. Clin. Oncol. 2014, 32, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, G.T.; Joshi, V.M.; Ness, K.K.; Marwick, T.H.; Zhang, N.; Srivastava, D.; Griffin, B.P.; Grimm, R.A.; Thomas, J.; Phelan, D.; et al. Comprehensive Echocardiographic Detection of Treatment-Related Cardiac Dysfunction in Adult Survivors of Childhood Cancer: Results From the St. Jude Lifetime Cohort Study. J. Am. Coll. Cardiol. 2015, 65, 2511–2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshizuka, R.; Ishizu, T.; Kameda, Y.; Kawamura, R.; Seo, Y.; Aonuma, K. Longitudinal strain impairment as a marker of the progression of heart failure with preserved ejection fraction in a rat model. J. Am. Soc. Echocardiogr. 2013, 26, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Santoro, C.; Arpino, G.; Esposito, R.; Lembo, M.; Paciolla, I.; Cardalesi, C.; de Simone, G.; Trimarco, B.; De Placido, S.; Galderisi, M. 2D and 3D strain for detection of subclinical anthracycline cardiotoxicity in breast cancer patients: A balance with feasibility. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 930–936. [Google Scholar] [CrossRef]
- Negishi, K.; Negishi, T.; Haluska, B.A.; Hare, J.L.; Plana, J.C.; Marwick, T.H. Use of speckle strain to assess left ventricular responses to cardiotoxic chemotherapy and cardioprotection. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Mor-Avi, V.; Lang, R.M.; Badano, L.P.; Belohlavek, M.; Cardim, N.M.; Derumeaux, G.; Galderisi, M.; Marwick, T.; Nagueh, S.F.; Sengupta, P.P.; et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur. J. Echocardiogr. 2011, 12, 167–205. [Google Scholar] [CrossRef]
- D’Hooge, J.; Barbosa, D.; Gao, H.; Claus, P.; Prater, D.; Hamilton, J.; Lysyansky, P.; Abe, Y.; Ito, Y.; Houle, H.; et al. Two-dimensional speckle tracking echocardiography: Standardization efforts based on synthetic ultrasound data. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 693–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shigemitsu, S.; Takahashi, K.; Yazaki, K.; Kobayashi, M.; Yamada, M.; Akimoto, K.; Tamaichi, H.; Fujimura, J.; Saito, M.; Nii, M.; et al. New insight into the intraventricular pressure gradient as a sensitive indicator of diastolic cardiac dysfunction in patients with childhood cancer after anthracycline therapy. Heart Vessel. 2019, 34, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- Ohara, T.; Niebel, C.L.; Stewart, K.C.; Charonko, J.J.; Pu, M.; Vlachos, P.P.; Little, W.C. Loss of adrenergic augmentation of diastolic intra-LV pressure difference in patients with diastolic dysfunction: Evaluation by color M-mode echocardiography. JACC Cardiovasc. Imaging 2012, 5, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Bell, S.P.; Nyland, L.; Tischler, M.D.; McNabb, M.; Granzier, H.; LeWinter, M.M. Alterations in the determinants of diastolic suction during pacing tachycardia. Circ. Res. 2000, 87, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firstenberg, M.S.; Greenberg, N.L.; Garcia, M.J.; Thomas, J.D. Relationship between ventricular contractility and early diastolic intraventricular pressure gradients: A diastolic link to systolic function. J. Am. Soc. Echocardiogr. 2008, 21, 501–506. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F., 3rd; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef]
- Steine, K.; Stugaard, M.; Smiseth, O. Mechanisms of diastolic intraventricular regional pressure differences and flow in the inflow and outflow tracts. J. Am. Coll. Cardiol. 2002, 40, 983–990. [Google Scholar] [CrossRef] [Green Version]
Indices | Unit | Pre | Post | Post2 | p-Value |
---|---|---|---|---|---|
Stiffness constant β | mmHg/mL | 0.09 ± 0.03 | 0.13 ± 0.04 | 0.15 ± 0.05 | 0.07 |
Tau | ms | 32 ± 9 | 36 ± 8 | 37 ± 6 | 0.57 |
LV end-diastolic pressure | mmHg/mL | 11 ± 7 | 13 ± 5 | 10 ± 3 | 0.67 |
Emax | mmHg/mL | 8.4 ± 0.8 | 6.1 ± 1.6 * | 4.4 ± 0.7 †‡ | <0.001 |
Indices | Unit | Pre | Post | Post2 | p-Value |
---|---|---|---|---|---|
Conventional indices | |||||
HR | pbm | 112 ± 12 | 111 ± 10 | 105 ± 14 | 0.52 |
LVIDd | mm | 30 ± 1 | 32 ± 1 | 33 ± 4 | 0.28 |
EF | % | 78 ± 5 | 72 ± 9 | 70 ± 11 | 0.13 |
FS | % | 40 ± 5 | 36 ± 7 | 34 ± 8 | 0.15 |
E velocity | cm/s | 76 ± 10 | 67 ± 9 | 69 ± 10 | 0.29 |
A velocity | cm/s | 48 ± 16 | 43 ± 15 | 50 ± 12 | 0.61 |
E/A | 1.8 ± 0.8 | 1.7 ± 0.6 | 1.4 ± 0.3 | 0.31 | |
E DecT | ms | 86 ± 9 | 86 ± 14 | 91 ± 30 | 0.88 |
ś | cm/s | 8.6 ± 1.3 | 8.0 ± 1.6 | 7.5 ± 0.5 | 0.18 |
é | cm/s | 9.5 ± 1.3 | 8.0 ± 1.7 | 8.2 ± 1.7 | 0.23 |
á | cm/s | 8.0 ± 2.4 | 7.2 ± 2.2 | 7.1 ± 1.1 | 0.66 |
E/é | 8.0 ± 1.0 | 8.7 ± 1.2 | 8.9 ± 1.4 | 0.26 | |
Two- dimensional speckle tracking echocardiography indices | |||||
GLS | % | 17 ± 3 | 15 ± 2 | 16 ± 3 | 0.57 |
EDSR | 1/s | 2.1 ± 0.6 | 1.6 ± 0.4 | 2.0 ± 0.4 | 0.22 |
LV twist | ° | 8.1 ± 3.5 | 5.8 ± 2.8 | 5.4 ± 1. 2 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuura, K.; Shiraishi, K.; Mandour, A.S.; Sato, K.; Shimada, K.; Goya, S.; Yoshida, T.; Kitpipatkun, P.; Hamabe, L.; Uemura, A.; et al. The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs. Animals 2021, 11, 1122. https://doi.org/10.3390/ani11041122
Matsuura K, Shiraishi K, Mandour AS, Sato K, Shimada K, Goya S, Yoshida T, Kitpipatkun P, Hamabe L, Uemura A, et al. The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs. Animals. 2021; 11(4):1122. https://doi.org/10.3390/ani11041122
Chicago/Turabian StyleMatsuura, Katsuhiro, Kenjirou Shiraishi, Ahmed S. Mandour, Kotomi Sato, Kazumi Shimada, Seijirow Goya, Tomohiko Yoshida, Pitipat Kitpipatkun, Lina Hamabe, Akiko Uemura, and et al. 2021. "The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs" Animals 11, no. 4: 1122. https://doi.org/10.3390/ani11041122
APA StyleMatsuura, K., Shiraishi, K., Mandour, A. S., Sato, K., Shimada, K., Goya, S., Yoshida, T., Kitpipatkun, P., Hamabe, L., Uemura, A., Yilmaz, Z., Ifuku, M., Iso, T., Takahashi, K., & Tanaka, R. (2021). The Utility of Intraventricular Pressure Gradient for Early Detection of Chemotherapy-Induced Subclinical Cardiac Dysfunction in Dogs. Animals, 11(4), 1122. https://doi.org/10.3390/ani11041122