Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis lupus familiaris) in Tuscany (Italy)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microscopic Agglutination Test (MAT)
2.3. Bacterial Isolation and Characterization
2.4. Antimicrobial Resistance
2.5. Virulence Genes
2.6. Statistical Analysis
3. Results
3.1. Leptospira spp.
3.2. Salmonella spp.
3.3. Yersinia enterocolitica
3.4. Listeria monocytogenes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wayne, R.K.; Vonholdt, B.M. Evolutionary genomics of dog domestication. Mamm. Genome 2012, 23, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Larson, G.; Karlsson, E.K.; Perri, A.; Webster, M.T.; Ho, S.Y.W.; Peters, J.; Stahl, P.W.; Piper, P.J.; Lingaas, F.; Fredholm, M.; et al. Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc. Natl. Acad. Sci. USA 2012, 109, 8878–8883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scillitani, L.; Monaco, A.; Toso, S. Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur. J. Wildl. Res. 2010, 56, 307–318. [Google Scholar] [CrossRef]
- Fiorello, C.V.; Straub, M.H.; Schwartz, L.M.; Liu, J.; Campbell, A.; Kownacki, A.K.; Foley, J.E. Multiple-host pathogens in domestic hunting dogs in Nicaragua’s Bosawás Biosphere Reserve. Acta Trop. 2017, 167, 183–190. [Google Scholar] [CrossRef]
- Lowden, P.; Wallis, C.; Gee, N.; Hilton, A. Investigating the prevalence of Salmonella in dogs within the Midlands region of the United Kingdom. BMC Vet. Res. 2015, 11. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Irwin, P.J.; Lee, S.; Oh, M.; Ahn, K.; Myung, B.; Shin, S. Comparison of selected canine vector-borne diseases between urban animal shelter and rural hunting dogs in Korea. Parasites Vectors 2010, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Piantedosi, D.; Neola, B.; D’Alessio, N.; Di Prisco, F.; Santoro, M.; Pacifico, L.; Sgroi, G.; Auletta, L.; Buch, J.; Chandrashekar, R.; et al. Seroprevalence and risk factors associated with Ehrlichia canis, Anaplasma spp., Borrelia burgdorferi sensu lato, and D. immitis in hunting dogs from southern Italy. Parasitol. Res. 2017, 116, 2651–2660. [Google Scholar] [CrossRef]
- Cay, A.B.; Letellier, C. Isolation of Aujeszky’s disease virus from two hunting dogs in Belgium after hunting wild boars. Vlaams Diergeneeskd. Tijdschr. 2009, 78, 194–195. [Google Scholar]
- Cano-Terriza, D.; Martínez, R.; Moreno, A.; Pérez-Marín, J.E.; Jiménez-Ruiz, S.; Paniagua, J.; Borge, C.; García-Bocanegra, I. Survey of Aujeszky’s Disease Virus in Hunting Dogs from Spain. Ecohealth 2019, 16, 351–355. [Google Scholar] [CrossRef]
- Ortuño, A.; Scorza, V.; Castellà, J.; Lappin, M. Prevalence of intestinal parasites in shelter and hunting dogs in Catalonia, Northeastern Spain. Vet. J. 2014, 199, 465–467. [Google Scholar] [CrossRef]
- Gómez-Morales, M.A.; Selmi, M.; Ludovisi, A.; Amati, M.; Fiorentino, E.; Breviglieri, L.; Poglayen, G.; Pozio, E. Hunting dogs as sentinel animals for monitoring infections with Trichinella spp. in wildlife. Parasites Vectors 2016, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.J.; Lindsay, D.S.; Sriranganathan, N. Wild boars as sources for infectious diseases in livestock and humans. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2697–2707. [Google Scholar] [CrossRef] [Green Version]
- Pacini, M.I.; Forzan, M.; Cilia, G.; Bertelloni, F.; Fratini, F.; Mazzei, M. Detection and Characterization of Viral Pathogens Associated with Reproductive Failure in Wild Boars in Central Italy. Animals 2021, 11, 304. [Google Scholar] [CrossRef]
- Pacini, M.I.; Forzan, M.; Cilia, G.; Bernardini, L.; Marzoli, F.; Pedonese, F.; Bandecchi, P.; Fratini, F.; Mazzei, M. Detection of Pseudorabies Virus in Wild Boar Foetus. Animals 2020, 10, 366. [Google Scholar] [CrossRef] [Green Version]
- Mazzei, M.; Nardini, R.; Verin, R.; Forzan, M.; Poli, A.; Tolari, F. Serologic and molecular survey for hepatitis E virus in wild boar (Sus scrofa) in Central Italy. New Microbes New Infect. 2015, 7, 41–47. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F. Leptospira Infection in Wild Boar (Sus scrofa). In Leptospira Infection in Wild Animals; Fratini, F., Bertelloni, F., Cilia, G., Eds.; Nova Science Publisher: Hauppauge, NY, USA, 2020; pp. 53–77. [Google Scholar]
- Fratini, F.; Bertelloni, F.; Cilia, G. Leptospira Infection in Wild Animals; Nova Science Publisher: Hauppauge, NY, USA, 2020; ISBN 978-1-53618-222-4. [Google Scholar]
- Cilia, G.; Bertelloni, F.; Piredda, I.; Ponti, M.N.; Turchi, B.; Cantinle, C.; Parisi, F.; Pinzauti, P.; Armani, A.; Palmas, B.; et al. Presence of pathogenic Leptospira spp. in the reproductive system and fetuses of wild boars (Sus scrofa) in Italy. PLoS Negl. Trop. Dis. 2020, 14, e0008982. [Google Scholar] [CrossRef]
- Bertelloni, F.; Mazzei, M.; Cilia, G.; Forzan, M.; Felicioli, A.; Sagona, S.; Bandecchi, P.; Turchi, B.; Cerri, D.; Fratini, F. Serological Survey on Bacterial and Viral Pathogens in Wild Boars Hunted in Tuscany. Ecohealth 2020, 17, 85–93. [Google Scholar] [CrossRef]
- Coppola, F.; Cilia, G.; Bertelloni, F.; Casini, L.; D’Addio, E.; Fratini, F.; Cerri, D.; Felicioli, A. Crested porcupine (Hystrix cristata L.): A new potential host for pathogenic Leptospira among semi-fossorial mammals. Comp. Immunol. Microbiol. Infect. Dis. 2020, 70, 101472. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F.; Coppola, F.; Turchi, B.; Biliotti, C.; Poli, A.; Parisi, F.; Felicioli, A.; Cerri, D.; Fratini, F. Isolation of Leptospira serovar Pomona from a crested porcupine (Hystrix cristata, L., 1758). Vet. Med. Sci. 2020, vms3.308. [Google Scholar] [CrossRef]
- Cilia, G.; Turchi, B.; Fratini, F.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Pacini, M.I.; Bertelloni, F. Prevalence, Virulence and Antimicrobial Susceptibility of Salmonella spp., Yersinia enterocolitica and Listeria monocytogenes in European Wild Boar (Sus scrofa) Hunted in Tuscany (Central Italy). Pathogens 2021, 10, 93. [Google Scholar] [CrossRef]
- Cilia, G.; Bertelloni, F.; Angelini, M.; Cerri, D.; Fratini, F. Leptospira Survey in Wild Boar (Sus scrofa) Hunted in Tuscany, Central Italy. Pathogens 2020, 9, 377. [Google Scholar] [CrossRef]
- Magistrali, C.F.; Cucco, L.; Pezzotti, G.; Farneti, S.; Cambiotti, V.; Catania, S.; Prati, P.; Fabbi, M.; Lollai, S.; Mangili, P.; et al. Characterisation of Yersinia pseudotuberculosis isolated from animals with yersiniosis during 1996–2013 indicates the presence of pathogenic and Far Eastern strains in Italy. Vet. Microbiol. 2015, 180, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Martini, A.; Marconi, P.; Ponzetta, M.P.; Giorgetti, A.; Viliani, M. Sanitary monitoring models for wild ungulate stock farms in Tuscany. Vet. Res. Commun. 2005, 29, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, E.; Radaelli, E.; Bertoletti, I.; Bianchi, A.; Scanziani, E.; Tagliabue, S.; Mattiello, S. Leptospira spp. infection in wild ruminants: A survey in Central Italian Alps. Vet. Ital. 2014, 50, 285–291. [Google Scholar] [CrossRef]
- Fratini, F.; Turchi, B.; Ebani, V.V.; Bertelloni, F.; Galiero, A.; Cerri, D. The presence of Leptospira in coypus (Myocastor coypus) and rats (Rattus norvegicus) living in a protected wetland in Tuscany (Italy). Vet. Arh. 2015, 85, 407–414. [Google Scholar]
- Adler, B.; de la Peña Moctezuma, A. Leptospira and leptospirosis. Vet. Microbiol. 2010, 140, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Fons, F. A Review of the Current Status of Relevant Zoonotic Pathogens in Wild Swine (Sus scrofa) Populations: Changes Modulating the Risk of Transmission to Humans. Transbound. Emerg. Dis. 2017, 64, 68–88. [Google Scholar] [CrossRef]
- Ellis, W.A. Animal Leptospirosis. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2015; Volume 387, pp. 99–137. [Google Scholar]
- Adler, B. Leptospira and Leptospirosis. In Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-45059-8. [Google Scholar]
- EFSA. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and adaptation and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504–521. [Google Scholar] [CrossRef] [Green Version]
- Mezal, E.H.; Sabol, A.; Khan, M.A.; Ali, N.; Stefanova, R.; Khan, A.A. Isolation and molecular characterization of Salmonella enterica serovar Enteritidis from poultry house and clinical samples during 2010. Food Microbiol. 2014, 38, 67–74. [Google Scholar] [CrossRef]
- Tirziu, E.; Cumpanasoiu, C.; Gros, R.V.; Seres, M. Yersinia enterocolitica Monographic Study. J. Anim. Sci. Biotechnol. 2011, 44, 144–149. [Google Scholar]
- Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 2001, 14, 584–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamloo, E.; Hosseini, H.; Moghadam, A.Z.; Larsen, H.M.; Haslberger, A.; Alebouyeh, M. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran. J. Vet. Res. 2019, 20, 241–254. [Google Scholar] [PubMed]
- EFSA, (European Food Safety Authority); ECDC, (European Centre for Disease Prevention and Control) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16. [CrossRef]
- Nesbakken, T.; Eckner, K.; Høidal, H.K.; Røtterud, O.J. Occurrence of Yersinia enterocolitica and Campylobacter spp. in slaughter pigs and consequences for meat inspection, slaughtering, and dressing procedures. Int. J. Food Microbiol. 2003, 80, 231–240. [Google Scholar] [CrossRef]
- Hoelzer, K.; Switt, A.I.M.; Wiedmann, M. Animal contact as a source of human non-typhoidal salmonellosis. Vet. Res. 2011, 42, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Cilia, G.; Bogi, S.; Ebani, V.V.; Turini, L.; Nuvoloni, R.; Cerri, D.; Fratini, F.; Turchi, B. Pathotypes and Antimicrobial Susceptibility of Escherichia Coli Isolated from Wild Boar (Sus scrofa) in Tuscany. Animals 2020, 10, 744. [Google Scholar] [CrossRef]
- Cilia, G.; Fratini, F.; Turchi, B.; Angelini, M.; Cerri, D.; Bertelloni, F. Genital Brucella suis Biovar 2 Infection of Wild Boar (Sus scrofa) Hunted in Tuscany (Italy). Microorganisms 2021, 9, 582. [Google Scholar] [CrossRef]
- OIE. Leptospirosis. Man. Diagnostic Tests Vaccines Terr. Anim. 2018. Available online: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.12_LEPTO.pdf (accessed on 16 April 2021).
- Bertelloni, F.; Tosi, G.; Massi, P.; Fiorentini, L.; Parigi, M.; Cerri, D.; Ebani, V.V.V.V. Some pathogenic characters of paratyphoid Salmonella enterica strains isolated from poultry. Asian Pac. J. Trop. Med. 2017, 10, 1161–1166. [Google Scholar] [CrossRef]
- Bottone, E.J. Yersinia enterocolitica: The charisma continues. Clin. Microbiol. Rev. 1997, 10, 257–276. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. M02-A12 Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard-Twelfth Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 35. [Google Scholar]
- Clinical and Laboratory Standard Institute. M31-A3 Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated From Animals; Approved Standard-Third Edition; Clinical and Laboratory Standard Institute: Wayne, PA, USA, 2008; Volume 28, p. 8. [Google Scholar]
- Skyberg, J.A.; Logue, C.M.; Nolan, L.K. Virulence Genotyping of Salmonella spp. with Multiplex PCR. Avian Dis. 2006, 50, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Karasova, D.; Havlickova, H.; Sisak, F.; Rychlik, I. Deletion of sodCI and spvBC in Salmonella enterica serovar Enteritidis reduced its virulence to the natural virulence of serovars Agona, Hadar and Infantis for mice but not for chickens early after infection. Vet. Microbiol. 2009, 139, 304–309. [Google Scholar] [CrossRef]
- Huehn, S.; La Ragione, R.M.; Anjum, M.; Saunders, M.; Woodward, M.J.; Bunge, C.; Helmuth, R.; Hauser, E.; Guerra, B.; Beutlich, J.; et al. Virulotyping and antimicrobial resistance typing of Salmonella enterica serovars relevant to human health in Europe. Foodborne Pathog. Dis. 2010, 7, 523–535. [Google Scholar] [CrossRef]
- Bhowmick, P.P.; Devegowda, D.; Karunasagar, I. Virulotyping of seafood associated Salmonella enterica subsp. enterica isolated from Southwest coast of India. Biotechnol. Bioinforma. Bioeng. 2011, 1, 63–69. [Google Scholar]
- Parvathi, A.; Vijayan, J.; Murali, G.; Chandran, P. Comparative virulence genotyping and antimicrobial susceptibility profiling of environmental and clinical Salmonella enterica from Cochin, India. Curr. Microbiol. 2011, 62, 21–26. [Google Scholar] [CrossRef]
- Thoerner, P.; Kingombe, C.I.B.; Bögli-Stuber, K.; Bissig-Choisat, B.; Wassenaar, T.M.; Frey, J.; Jemmi, T. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl. Environ. Microbiol. 2003, 69, 1810–1816. [Google Scholar] [CrossRef] [Green Version]
- Thisted Lambertz, S.; Danielsson-Tham, M.L. Identification and characterization of pathogenic Yersinia enterocolitica isolates by PCR and pulsed-field gel electrophoresis. Appl. Environ. Microbiol. 2005, 71, 3674–3681. [Google Scholar] [CrossRef] [Green Version]
- Falcão, J.P.; Falcão, D.P.; Pitondo-Silva, A.; Malaspina, A.C.; Brocchi, M. Molecular typing and virulence markers of Yersinia enterocolitica strains from human, animal and food origins isolated between 1968 and 2000 in Brazil. J. Med. Microbiol. 2006, 55, 1539–1548. [Google Scholar] [CrossRef] [Green Version]
- R Core Team, R. A Language and Environment for Statistical Computing; R Found. Stat. Comput: Vienna, Austria, 2015. [Google Scholar]
- Klaasen, H.L.B.M.; van der Veen, M.; Sutton, D.; Molkenboer, M.J.C.H. A new tetravalent canine leptospirosis vaccine provides at least 12 months immunity against infection. Vet. Immunol. Immunopathol. 2014, 158, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.E.R.; Wiggans, K.T.; Wennogle, S.A.; Curtis, K.; Chandrashekar, R.; Lappin, M.R. Vaccine-Associated Leptospira Antibodies in Client-Owned Dogs. J. Vet. Intern. Med. 2014, 28, 789–792. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.D.; Annis, K.M.; Lappin, M.R.; Lunn, K.F. Variability in Results of the Microscopic Agglutination Test in Dogs with Clinical Leptospirosis and Dogs Vaccinated against Leptospirosis. J. Vet. Intern. Med. 2011, 25, 426–432. [Google Scholar] [CrossRef]
- Bertelloni, F.; Turchi, B.; Vattiata, E.; Viola, P.; Pardini, S.; Cerri, D.; Fratini, F. Serological survey on Leptospira infection in slaughtered swine in North-Central Italy. Epidemiol. Infect. 2018, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.V.; Cerri, D.; Poli, A.; Andreani, E. Prevalence of Leptospira and Brucella Antibodies in Wild Boars (Sus scrofa) in Tuscany, Italy. J. Wildl. Dis. 2003, 39, 718–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenlee, J.J.; Alt, D.P.; Bolin, C.A.; Zuerner, R.L.; Andreasen, C.B. Experimental canine leptospirosis caused by Leptospira interrogans serovars pomona and bratislava. Am. J. Vet. Res. 2005, 66, 1816–1822. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, R.E.; Lin, R.C.; Langston, C.E.; Scrivani, P.V.; Erb, H.N.; Barr, S.C. Influence of infecting serogroup on clinical features of leptospirosis in dogs. J. Vet. Intern. Med. 2006, 20, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Cerri, D.; Ebani, V.V.; Fratini, F.; Pinzauti, P.; Andreani, E. Epidemiology of leptospirosis: Observations on serological data obtained by a “diagnostic laboratory for leptospirosis” from 1995 to 2001. New Microbiol. 2003, 26, 383–389. [Google Scholar] [PubMed]
- Bertelloni, F.; Cilia, G.; Turchi, B.; Pinzauti, P.; Cerri, D.; Fratini, F. Epidemiology of leptospirosis in North-Central Italy: Fifteen years of serological data (2002–2016). Comp. Immunol. Microbiol. Infect. Dis. 2019, 65, 14–22. [Google Scholar] [CrossRef]
- Tagliabue, S.; Figarolli, B.M.; D’Incau, M.; Foschi, G.; Gennero, M.S.; Giordani, R.; Giordani, R.; Natale, A.; Papa, P.; Ponti, N.; et al. Serological surveillance of Leptospirosis in Italy: Two-year national data (2010–2011). Vet. Ital. 2016, 52, 129–138. [Google Scholar] [CrossRef]
- Scanziani, E.; Origgi, F.; Giusti, A.M.; Iacchia, G.; Vasino, A.; Pirovano, G.; Scarpa, P.; Tagliabue, S. Serological survey of leptospiral infection in kennelled dogs in Italy. J. Small Anim. Pract. 2002, 43, 154–157. [Google Scholar] [CrossRef]
- Ayral, F.C.; Bicout, D.J.; Pereira, H.; Artois, M.; Kodjo, A. Distribution of Leptospira serogroups in cattle herds and dogs in France. Am. J. Trop. Med. Hyg. 2014, 91, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Renaud, C.; Andrews, S.; Djelouadji, Z.; Lecheval, S.; Corrao-Revol, N.; Buff, S.; Demont, P.; Kodjo, A. Prevalence of the Leptospira serovars bratislava, grippotyphosa, mozdok and pomona in French dogs. Vet. J. 2013, 196, 126–127. [Google Scholar] [CrossRef]
- Geisen, V.; Stengel, C.; Brem, S.; Müller, W.; Greene, C.; Hartmann, K. Canine leptospirosis infections? clinical signs and outcome with different suspected Leptospira serogroups (42 cases). J. Small Anim. Pract. 2007, 48, 324–328. [Google Scholar] [CrossRef]
- Tsai, H.J.; Huang, H.C.; Lin, C.M.; Lien, Y.Y.; Chou, C.H. Salmonellae and campylobacters in household and stray dogs in Northern Taiwan. Vet. Res. Commun. 2007, 31, 931–939. [Google Scholar] [CrossRef]
- Procter, T.D.; Pearl, D.L.; Finley, R.L.; Leonard, E.K.; Janecko, N.; Reid-Smith, R.J.; Weese, J.S.; Peregrine, A.S.; Sargeant, J.M. A Cross-Sectional Study Examining Campylobacter and Other Zoonotic Enteric Pathogens in Dogs that Frequent Dog Parks in Three Cities in South-Western Ontario and Risk Factors for Shedding of Campylobacter spp. Zoonoses Public Health 2014, 61, 208–218. [Google Scholar] [CrossRef]
- Noda, T.; Murakami, K.; Ishiguro, Y.; Asai, T. Chicken Meat Is an Infection Source of Salmonella Serovar Infantis for Humans in Japan. Foodborne Pathog. Dis. 2010, 7, 727–735. [Google Scholar] [CrossRef]
- Borowiak, M.; Szabo, I.; Baumann, B.; Junker, E.; Hammerl, J.A.; Kaesbohrer, A.; Malorny, B.; Fischer, J. VIM-1-producing Salmonella Infantis isolated from swine and minced pork meat in Germany. J. Antimicrob. Chemother. 2017, 72, 2131–2133. [Google Scholar] [CrossRef] [Green Version]
- Chiari, M.; Zanoni, M.; Tagliabue, S.; Lavazza, A.; Alborali, L.G. Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Vet. Scand. 2013, 55, 42. [Google Scholar] [CrossRef] [Green Version]
- Botti, V.; Valérie Navillod, F.; Domenis, L.; Orusa, R.; Pepe, E.; Robetto, S.; Guidetti, C. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010. Vet. Ital. 2013, 49, 195–202. [Google Scholar] [CrossRef]
- Philbey, A.W.; Mather, H.A.; Gibbons, J.F.; Thompson, H.; Taylor, D.J.; Coia, J.E. Serovars, bacteriophage types and antimicrobial sensitivities associated with salmonellosis in dogs in the UK (1954–2012). Vet. Rec. 2014, 174, 94. [Google Scholar] [CrossRef]
- Seepersadsingh, N.; Adesiyun, A.A.; Seebaransingh, R. Prevalence and antimicrobial resistance of Salmonella spp. in non-diarrhoeic dogs in Trinidad. J. Vet. Med. Ser. B Infect. Dis. Vet. Public Health 2004, 51, 337–342. [Google Scholar] [CrossRef]
- Caleja, C.; de Toro, M.; Gonçalves, A.; Themudo, P.; Vieira-Pinto, M.; Monteiro, D.; Rodrigues, J.; Sáenz, Y.; Carvalho, C.; Igrejas, G.; et al. Antimicrobial resistance and class I integrons in Salmonella enterica isolates from wild boars and Bísaro pigs. Int. Microbiol. 2011, 14, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region –Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Knodler, L.A.; Vallance, B.A.; Hensel, M.; Jäckel, D.; Finlay, B.B.; Steele-Mortimer, O. Salmonella type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. Mol. Microbiol. 2003, 49, 685–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Cui, Z.; Wang, H.; Tang, L.; Yang, J.; Gu, L.; Jin, D.; Luo, L.; Qiu, H.; Xiao, Y.; et al. Pathogenic strains of Yersinia enterocolitica isolated from domestic dogs (Canis familiaris) belonging to farmers are of the same subtype as pathogenic Y. enterocolitica strains isolated from humans and may be a source of human infection in Jiangsu Province, China. J. Clin. Microbiol. 2010, 48, 1604–1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamm, I.; Hailer, M.; Depner, B.; Kopp, P.A.; Rau, J. Yersinia enterocolitica in diagnostic fecal samples from European dogs and cats: Identification by Fourier transform infrared spectroscopy and matrix-Assisted laser desorption ionization-time of flight mass spectrometry. J. Clin. Microbiol. 2013, 51, 887–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredriksson-Ahomaa, M.; Korte, T.; Korkeala, H. Transmission of Yersinia enterocolitica 4/O:3 to pets via contaminated pork. Lett. Appl. Microbiol. 2001, 32, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kabeya, H.; Sato, S.; Yamazaki, A.; Kamata, Y.; Taira, K.; Asakura, H.; Sugiyama, H.; Takai, S.; Maruyama, S. Prevalence of yersinia among wild sika deer (Cervus nippon) and boars (sus scrofa) in Japan. J. Wildl. Dis. 2020, 56, 270–277. [Google Scholar] [CrossRef]
- Syczyło, K.; Platt-Samoraj, A.; Bancerz-Kisiel, A.; Szczerba-Turek, A.; Pajdak-Czaus, J.; Łabuć, S.; Procajło, Z.; Socha, P.; Chuzhebayeva, G.; Szweda, W. The prevalence of Yersinia enterocolitica in game animals in Poland. PLoS ONE 2018, 13, e0195136. [Google Scholar] [CrossRef]
- Foti, M.; Rinaldo, D.; Guercio, A.; Giacopello, C.; Aleo, A.; De Leo, F.; Fisichella, V.; Mammina, C. Pathogenic microorganisms carried by migratory birds passing through the territory of the island of Ustica, Sicily (Italy). Avian Pathol. 2011, 40, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Foti, M.; Siclari, A.; Mascetti, A.; Fisichella, V. Study of the spread of antimicrobial-resistant Enterobacteriaceae from wild mammals in the National Park of Aspromonte (Calabria, Italy). Environ. Toxicol. Pharmacol. 2018, 63, 69–73. [Google Scholar] [CrossRef]
- von Altrock, A.; Seinige, D.; Kehrenberg, C. Yersinia enterocolitica isolates from wild boars hunted in Lower Saxony, Germany. Appl. Environ. Microbiol. 2015, 81, 4835–4840. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI Supplement for Global Application, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Dog | Sex | Year | Breed | Hunting Company | Leptospira Serogroup | Vaccine | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ic | Ca | Po | Gr | Ta | Au | Se | Ba | ||||||
D1 * | M | 2 | SM | Pisa | 1:100 | 1:100 | 1:400 | 1:100 | E | ||||
D2 * | F | 6 | SM | Pisa | 1:100 | 1:100 | 1:100 | E | |||||
D3 * | F | 2 | SM | Pisa | 1:100 | 1:100 | 1:200 | 1:100 | E | ||||
D4 * | M | 2 | SM | Pisa | 1:100 | 1:100 | 1:200 | E | |||||
D5 * | M | 2 | SM | Pisa | 1:100 | 1:100 | 1:100 | 1:100 | E | ||||
D6 * | F | 9 | ES | Pisa | 1:100 | 1:100 | 1:100 | 1:100 | E | ||||
D7 * | M | 6 | ES | Pisa | 1:100 | 1:100 | 1:100 | 1:100 | E | ||||
D8 * | F | 6 | SM | Pisa | 1:100 | 1:100 | 1:200 | 1:100 | E | ||||
D9 * | F | 4 | SM | Pisa | 1:100 | 1:100 | 1:400 | 1:200 | E | ||||
D10 * | M | 4 | SM | Pisa | 1:200 | 1:100 | 1:400 | 1:100 | E | ||||
D11 * | F | 10 | SM | Pisa | 1:100 | 1:100 | 1:100 | E | |||||
D12 * | F | 2 | SM | Pisa | 1:100 | 1:100 | 1:200 | E | |||||
D13 * | F | 1 | SM | Pisa | 1:100 | 1:100 | 1:400 | 1:100 | E | ||||
D14 * | F | 1 | SM | Pisa | 1:100 | 1:100 | 1:200 | 1:100 | E | ||||
D15 * | F | 2 | SM | Pisa | 1:100 | 1:100 | 1:100 | E | |||||
D16 * | F | 3 | SM | Pisa | 1:100 | 1:200 | 1:400 | 1:100 | E | ||||
D17 + | M | 2 | ESS | Pisa | 1:100 | 1:100 | 1:200 | 1:200 | E | ||||
D18 + | F | 7 | ESS | Pisa | 1:200 | 1:100 | 1:200 | 1:100 | E | ||||
D19 ¤ | M | 4 | SM | Pisa | 1:100 | 1:200 | 1:200 | 1:100 | 1:100 | N | |||
D20 ¤ | F | 3 | SM | Pisa | 1:200 | ||||||||
D21 ¤ | M | 2 | SM | Pisa | 1:200 | ||||||||
D22 ° | M | 9 | BS | Pisa | 1:100 | 1:100 | 1:400 | 1:100 | 1:100 | N | |||
D23 ° | F | 3 | ESS | Pisa | 1:100 | 1:100 | 1:200 | 1:100 | E | ||||
D24 # | M | 6 | BS | Pisa | 1:100 | 1:100 | C | ||||||
D25 # | M | 3 | SM | Pisa | 1:200 | ||||||||
D26 # | M | 3 | SM | Pisa | 1:200 | ||||||||
D27 # | M | 3 | SM | Pisa | 1:400 | ||||||||
D28 # | M | 2 | SM | Pisa | 1:200 | ||||||||
D29 # | F | 3 | SM | Pisa | 1:200 | ||||||||
D30 # | F | 8 | SM | Pisa | 1:200 | ||||||||
D31 | M | 1 | SM | Lucca | 1:100 | 1:100 | 1:200 | 1:200 | 1:100 | N | |||
D32 • | M | 2 | SM | Lucca | 1:100 | 1:100 | 1:400 | 1:100 | 1:100 | N | |||
D33 • | M | 11 | GF | Lucca | 1:100 | 1:100 | 1:100 | 1:100 | N | ||||
D34 • | F | 2 | GF | Lucca | 1:100 | 1:100 | 1:100 | 1:100 | N | ||||
D35 • | M | 3 | SM | Lucca | 1:100 | 1:100 | 1:100 | 1:200 | 1:100 | N | |||
D36 • | M | 3 | SM | Lucca | 1:100 | 1:100 | 1:100 | 1:100 | N | ||||
D37 • | F | 7 | SM | Lucca | 1:100 | 1:100 | 1:100 | 1:100 | N | ||||
D38 ◊ | M | 7 | HB | Lucca | 1:200 | ||||||||
D39 ◊ | F | 4 | SM | Lucca | 1:200 | 1:100 | |||||||
D40 ◊ | F | 4 | SM | Lucca | 1:100 | 1:200 | |||||||
D41 □ | M | 6 | SM | Lucca | |||||||||
D42 □ | M | 5 | SM | Lucca | 1:200 |
Isolate | Serotype | Dog | Virulence Gene Profile | Antimicrobial Resistance Profile |
---|---|---|---|---|
S395 | Infantis | D2 | pipB, sopE | Streptomycin |
S396 | Infantis | D9 | - | - |
S397 | Infantis | D13 | pipB | - |
S398 | Infantis | D16 | pipB | Streptomycin |
Isolate | Biotype | Dog | Virulence Gene Profile | Antimicrobial Resistance Profile |
---|---|---|---|---|
YD1 | 1 | D6 | ail | AMP, KF |
YD2 | 1 | D7 | ystA | AMP, AMC, KF, FOX |
YD3 | 1 | D10 | AMP, AMC, KF | |
YD4 | 4 | D13 | ystA, ystB, inv | AMP, AMC, KF, FOX, C, S, NA |
YD5 | 1 | D15 | ail | AMP, AMC, KF |
YD6 | 1 | D16 | ystB | AMP, AMC, KF |
YD7 | 1 | D17 | virF | AMP, AMC, KF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cilia, G.; Fratini, F.; Turchi, B.; Ebani, V.V.; Turini, L.; Bilei, S.; Bossù, T.; De Marchis, M.L.; Cerri, D.; Bertelloni, F. Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis lupus familiaris) in Tuscany (Italy). Animals 2021, 11, 1139. https://doi.org/10.3390/ani11041139
Cilia G, Fratini F, Turchi B, Ebani VV, Turini L, Bilei S, Bossù T, De Marchis ML, Cerri D, Bertelloni F. Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis lupus familiaris) in Tuscany (Italy). Animals. 2021; 11(4):1139. https://doi.org/10.3390/ani11041139
Chicago/Turabian StyleCilia, Giovanni, Filippo Fratini, Barbara Turchi, Valentina Virginia Ebani, Luca Turini, Stefano Bilei, Teresa Bossù, Maria Laura De Marchis, Domenico Cerri, and Fabrizio Bertelloni. 2021. "Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis lupus familiaris) in Tuscany (Italy)" Animals 11, no. 4: 1139. https://doi.org/10.3390/ani11041139
APA StyleCilia, G., Fratini, F., Turchi, B., Ebani, V. V., Turini, L., Bilei, S., Bossù, T., De Marchis, M. L., Cerri, D., & Bertelloni, F. (2021). Presence and Characterization of Zoonotic Bacterial Pathogens in Wild Boar Hunting Dogs (Canis lupus familiaris) in Tuscany (Italy). Animals, 11(4), 1139. https://doi.org/10.3390/ani11041139