Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotypic Data
2.2. Blood Samples and Genotyping
2.3. Analysis of Genetic and Phenotypic Data
3. Results
3.1. MSTN Variation
3.2. Association Analysis between MSTN Polymorphisms and Sport Performance Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McPherron, A.C.; Lee, S.-J. The transforming growth factor β superfamily. In Growth Factors and Cytokines in Health and Disease; LeRoith, D., Bondy, C., Eds.; JAI Press: Greenwich, CT, USA, 1996; pp. 357–393. [Google Scholar]
- Chang, H.; Brown, C.W.; Matzuk, M.M. Genetic analysis of the mammalian transforming growthfactor-beta superfamily. Endocr. Rev. 2002, 23, 787–823. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lawler, A.M.; Lee, S.-J. Regulation of skeletal muscle mass in mice by a new TGF-b superfamily member. Nature 1997, 387, 83–90. [Google Scholar] [CrossRef]
- McPherron, A.C.; Lee, S.-J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 1997, 94, 12457–12461. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.P.; Lopez-Corrales, N.L.; Kappes, S.M.; Sonstegard, T.S. Myostatin maps to the interval containing the bovine mh locus. Mamm. Genome 1997, 8, 742–744. [Google Scholar] [CrossRef] [PubMed]
- Aiello, D.; Patel, K.; Lasagna, E. The myostatin gene: An overview of mechanisms of action and its relevance to livestock animals. Anim. Genet. 2018, 49, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Hanset, R.; Michaux, C. On the genetic determinism of muscular hypertrophy in the Belgian White and Blue cattle breed. I. Experimental data. Genet. Sel. Evol. 1985, 17, 359–368. [Google Scholar] [CrossRef] [PubMed]
- Grobet, L.; Royo Martin, L.J.; Poncelet, D.; Pirottin, D.; Brouwers, B.; Riquet, J.; Schoeberlein, A.; Dunner, S.; Ménissier, F.; Massabanda, J.; et al. A deletion in the bovine myostatin gene causes the double–muscled phenotype in cattle. Nat. Genet. 1997, 17, 71–74. [Google Scholar] [CrossRef]
- Evans, D.L.; Harris, R.C.; Snow, D.H. Correlation of racing performance with blood lactate and heart rate after exercise in thoroughbred horses. Equine Vet. J. 1993, 25, 441–445. [Google Scholar] [CrossRef]
- Gaffney, B.; Cunningham, E.P. Estimation of genetic trend in racing performance of thoroughbred horses. Nature 1988, 332, 722–724. [Google Scholar] [CrossRef]
- Schröder, W.; Klostermann, A.; Distl, O. Candidate genes for physical performance in the horse. Vet. J. 2010, 190, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Farries, G.; Gough, K.F.; Parnell, A.C.; McGivney, B.A.; McGivney, C.L.; McGettigan, P.A.; MacHugh, D.E.; Katz, L.M.; Hill, E.W. Analysis of genetic variation contributing to measured speed in Thoroughbreds identifies genomic regions involved in the transcriptional response to exercise. Anim. Genet. 2019, 50, 670–685. [Google Scholar] [CrossRef]
- Gu, J.; Orr, N.; Park, S.; Katz, L.M.; Sulimova, G.; MacHugh, D.E.; Hill, E.W. A genome scan for positive selection in thoroughbred horses. PLoS ONE 2009, 4, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.W.; Gu, J.; McGivney, B.A.; MacHugh, D.E. Targets of selection in the Thoroughbred genome contain exercise-relevant gene SNPs associated with elite racecourse performance. Anim. Genet. 2010, 41, 56–63. [Google Scholar] [CrossRef]
- Hill, E.W.; Gu, J.; Eivers, S.S.; Fonseca, R.G.; McGivney, B.A.; Govindarajan, P.; Orr, N.; Katz, L.M.; MacHugh, D.E. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS ONE 2010, 5, e8645. [Google Scholar] [CrossRef]
- Bower, M.A.; McGivney, B.A.; Campana, M.G.; Gu, J.; Andersson, L.S.; Barrett, E.; Davis, C.R.; Mikko, S.; Stock, F.; Voronkova, V.; et al. The genetic origin and history of speed in the Thoroughbred racehorse. Nat. Commun. 2012, 3, 643. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Liu, D.H.; Cao, C.N.; Wang, S.Q.; Dang, R.H.; Lan, X.Y.; Chen, H.; Zhang, T.; Liu, W.J.; Lei, C.Z. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene 2014, 538, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olio, S.; Wang, Y.; Sartori, C.; Fontanesi, L.; Mantovani, R. Association of myostatin (MSTN) gene polymorphisms with morphological traits in the Italian Heavy Draft Horse breed. Livest. Sci. 2014, 160, 29–36. [Google Scholar] [CrossRef]
- Farries, G.; McGettigan, P.A.; Gough, K.F.; McGivney, B.A.; MacHugh, D.E.; Katz, L.M.; Hill, E.W. Genetic contributions to precocity traits in racing Thoroughbreds. Anim. Genet. 2017, 49, 193–204. [Google Scholar] [CrossRef]
- Hill, E.W.; McGivney, B.A.; Rooney, M.F.; Katz, L.M.; Parnell, A.; MacHugh, D.E. The contribution of myostatin (MSTN) and additional modifying genetic loci to race distance aptitude in Thoroughbred horses racing in different geographic regions. Equine Vet. J. 2019, 51, 625–633. [Google Scholar] [CrossRef]
- Wilkin, T.; Baoutina, A.; Hamilton, N. Equine performance genes and the future of doping in horseracing. Drug Test. Anal. 2017, 9, 1456–1471. [Google Scholar] [CrossRef] [Green Version]
- Cardinali, I.; Lancioni, H.; Giontella, A.; Capodiferro, M.R.; Capomaccio, S.; Buttazzoni, L.; Biggio, G.P.; Cherchi, R.; Albertini, E.; Olivieri, A.; et al. An Overview of Ten Italian Horse Breeds through Mitochondrial DNA. PLoS ONE 2016, 11, e0153004. [Google Scholar] [CrossRef] [Green Version]
- Giontella, A.; Sarti, F.M.; Biggio, G.P.; Giovannini, S.; Cherchi, R.; Pieramati, C.; Silvestrelli, M. Genetic parameters and inbreeding effect of morphological traits in Sardinian Anglo Arab horse. Animals 2020, 10, 791. [Google Scholar] [CrossRef]
- Giontella, A.; Sarti, F.M.; Cardinali, I.; Giovannini, S.; Cherchi, R.; Lancioni, H.; Silvestrelli, M.; Pieramati, C. Genetic variability and population structure in the Sardinian Anglo-Arab horse. Animals 2020, 10, 1018. [Google Scholar] [CrossRef]
- CCIAA. Confédération Internationale de l’Anglo-Arabe. 2020. Available online: https://angloarabhorses.com/ciaa (accessed on 22 September 2020).
- Ewing, L.; Green, P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998, 8, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Ewing, L.; Hillier, L.; Wendl, M.C.; Green, P. Base-calling of automated sequencer traces using phred I. Accuracy assessment. Genome Res. 1998, 8, 175–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickerson, D.A.; Tobe, V.O.; Taylor, S.L. PolyPhred: Automating the detection and genotyping of single nucleotide substitutions using fluorescence-based resequencing. Nucleic Acids Res. 1997, 25, 2745–2751. [Google Scholar] [CrossRef] [Green Version]
- Bhangale, T.R.; Stephens, M.; Nickerson, D.A. Automating resequencing-based detection of insertion-deletion polymorphisms. Nat. Genet. 2006, 38, 1457–1462. [Google Scholar] [CrossRef]
- Gordon, D. Viewing and editing assembled sequences using Consed. In Current Protocols in Bioinformatics; Baxevanis, D., Davison, D.B., Eds.; Wiley: New York, NY, USA, 2004; pp. 1121–1124. [Google Scholar]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, E.W.; McGivney, B.A.; Gu, J.; Whiston, R.; MacHugh, D.E. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genom. 2010, 11, 552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baron, E.E.; Lopes, M.S.; Mendonça, D.; da Câmara Machado, A. SNP identification and polymorphism analysis in exon 2 of the horse myostatin gene. Anim. Genet. 2011, 43, 229–232. [Google Scholar] [CrossRef]
- Stefaniuk, M.; Ropka-Molik, K.; Piórkowska, K.; Kulisa, M.; Podstawski, Z. Analysis of polymorphisms in the equine MSTN gene in Polish populations of horse breeds. Livest. Sci. 2016, 187, 151–157. [Google Scholar] [CrossRef]
- Cunningham, E.P.; Dooley, J.J.; Splan, R.K.; Bradley, D.G. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 2001, 32, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.W.; Bradley, D.G.; Al-Barody, M.; Ertugru, O.; Splan, R.K.; Zakharov, I.; Cunningham, E.P. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 2002, 33, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.W.; Fonseca, R.G.; McGivney, B.A.; Gu, J.; MacHugh, D.E.; Katz, L.M. MSTN genotype (g.66493737C/T) association with speed indices in Thoroughbred racehorses. J. Appl. Physiol. 2012, 112, 86–90. [Google Scholar] [CrossRef] [Green Version]
- Rooney, M.F.; Hill, E.W.; Kelly, V.P.; Porter, R.K. The “speed gene” effect of myostatin arises in Thoroughbred horses due to a promoter proximal SINE insertion. PLoS ONE 2018, 13, e0205664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, B.; Westerberg, L. On the correlation between heterozygosity and fitness in natural populations. Mol. Ecol. 2002, 11, 2467–2474. [Google Scholar] [CrossRef]
- Chapman, J.R.; Nakagawa, S.; Coltman, D.W.; Slate, J.; Sheldon, B.C. A quantitative review of heterozygosity-fitness correlations in animal populations. Mol. Ecol. 2009, 18, 2746–2765. [Google Scholar] [CrossRef]
- Ricard, A. Does heterozygosity at the DMRT3 gene make French trotters better racers? Genet. Sel. Evol. 2015, 47, 10. [Google Scholar] [CrossRef] [Green Version]
- Harkins, J.D.; Kamerling, S.G.; Church, G. Effect of competition on performance of thoroughbred racehorses. J. Appl. Physiol. 1992, 72, 836–841. [Google Scholar] [CrossRef]
- Bailey, C.J.; Reid, S.W.; Hodgson, D.R.; Rose, R.J. Factors associated with time until first race and career duration for Thoroughbred racehorses. Am. J. Vet. Res. 1999, 60, 1196–1200. [Google Scholar]
- Martínez, R.; Godoy, A.; Naretto, E.; White, A. Neuroendocrine changes produced by competition stress on the Thoroughbred racehorse. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1988, 91, 599–602. [Google Scholar] [CrossRef]
- Kusano, K.; Yamazaki, M.; Kiuchi, M.; Kaneko, K.; Koyama, K. Reference range of blood biomarkers for oxidative stress in Thoroughbred racehorses (2–5 years old). J. Equine Sci. 2016, 27, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Pazzola, M.; Pira, E.; Sedda, G.; Vacca, G.M.; Cocco, R.; Sechi, S.; Bonelli, P.; Nicolussi, P. Responses of hematological parameters, beta-endorphin, cortisol, reactive oxygen metabolites, and biological antioxidant potential in horses participating in a traditional tournament. J. Anim. Sci. 2015, 93, 1573–1580. [Google Scholar] [CrossRef]
- Cieslak, J.; Borowska, A.; Wodas, L.; Mackowski, M. Interbreed distribution of the myostatin (MSTN) gene 5′-flanking variants and their relationship with horse biometric traits. J. Equine Vet. Sci. 2018, 60, 83–89. [Google Scholar] [CrossRef]
- de Matteis, R.; Pereira, G.L.; Casarotto, L.T.; Tavernaro, A.J.S.; Silva, J.A., II; Chardulo, L.A.L.; Curi, R.A. Variants in the chromosomal region of the myostatin gene and their association with lines, performance, and body measurements of Quarter horses. J. Equine Vet. Sci. 2018, 71, 75–83. [Google Scholar] [CrossRef]
- Miyata, H.; Itoh, R.; Sato, F.; Takebe, N.; Hada, T.; Tozaki, T. Effect of Myostatin SNP on muscle fiber properties in male Thoroughbred horses during training period. J. Physiol. Sci. 2018, 68, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Rooney, M.F.; Porter, R.K.; Katz, L.M.; Hill, E.W. Skeletal muscle mitochondrial bioenergetics and associations with myostatin genotypes in the Thoroughbred horse. PLoS ONE 2017, 12, e0186247. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Scotti, E.; Fontanesi, L.; Tassinari, M. Analysis of the 227 bp short interspersed nuclear element (SINE) insertion of the promoter of the myostatin (MSTN) gene in different horse breeds. Vet. Ital. 2014, 50, 193–197. [Google Scholar]
- Petersen, J.L.; Valberg, S.J.; Mickelson, J.R.; McCue, M.E. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim. Genet. 2014, 45, 827–835. [Google Scholar] [CrossRef] [Green Version]
SNP ID | Chr Position | HGVS Name | Gene Region | ObsH | ExpH | HWpv | MAF | Alleles |
---|---|---|---|---|---|---|---|---|
rs69472472 | 66609244 | c.373+506T>C | intron 1 | - | - | - | - | - |
rs1095048834 | 66609160 | c.373+590T>G | intron 1 | - | - | - | - | - |
rs1095048850 | 66608770 | c.374−850G>A | intron 1 | 0.04 | 0.04 | 1.0 | 0.02 | G:(A) |
rs1095048833 | 66608717 | c.374−797T>C | intron 1 | 0.02 | 0.02 | 1.0 | 0.01 | T:(C) |
rs1095048832 | 66608687 | c.374−767T>C | intron 1 | 0.02 | 0.02 | 1.0 | 0.01 | T:(C) |
rs397152648 | 66608679 | c.374−759T>C | intron 1 | 0.23 | 0.22 | 0.91 | 0.13 * | T:(C) |
rs1095048831 | 66608524 | c.374−604A>C | intron 1 | 0.16 | 0.17 | 0.89 | 0.09 * | A:(C) |
rs1095048830 | 66608467 | c.374−547A>C | intron 1 | 0.02 | 0.02 | 1.0 | 0.01 | A:(C) |
rs1095048829 | 66608461 | c.374−541C>T | intron 1 | 0.18 | 0.22 | 0.80 | 0.13 * | C:(T) |
rs1095048849 | 66606564 | c.747−983T>A | intron 2 | 0.04 | 0.04 | 1.0 | 0.02 | T:(A) |
rs1095048848 | 66606554 | c.747−993T>C | intron 2 | 0.52 | 0.50 | 0.67 | 0.48 * | T:(C) |
rs1095048847 | 66606457 | c.748−927A>T | intron 2 | 0.06 | 0.07 | 0.35 | 0.03 | A:(T) |
rs1095048846 | 66605717 | c.748−187A>G | intron 2 | - | - | - | - | A:G |
rs1095048842 | 66605570 | c.748−40delA | intron 2 | - | - | - | - | A:_ |
SNPs at MSTN (ECA18) | Traits 1 | Genotype Effect | Fixed Effects | |
---|---|---|---|---|
Sex | ArB 2 | |||
rs397152648 | Total prizes won | 0.047 * | 0.002 ** | 0.002 ** |
PrIndex | 0.034 * | 0.001 *** | 0.001 *** | |
1st-PlIndex | 0.079 | 0.118 | 0.001 *** | |
Tot-PlIndex | 0.225 | 0.092 | 0.001 *** | |
rs1095048831 | Total prizes won | 0.941 | 0.004 ** | 0.008 ** |
PrIndex | 0.663 | 0.003 ** | 0.002 ** | |
1st-PlIndex | 0.875 | 0.153 | 0.002 ** | |
Tot-PlIndex | 0.804 | 0.133 | 0.001 *** | |
rs1095048829 | Total prizes won | 0.578 | 0.002 ** | 0.008 ** |
PrIndex | 0.493 | 0.002 ** | 0.003 ** | |
1st-PlIndex | 0.680 | 0.082 | 0.005 ** | |
Tot-PlIndex | 0.282 | 0.071 | 0.001 *** | |
rs1095048848 | Total prizes won | 0.736 | 0.005 ** | 0.003 ** |
PrIndex | 0.960 | 0.003 ** | 0.001 *** | |
1st-PlIndex | 0.813 | 0.126 | 0.002 ** | |
Tot-PlIndex | 0.993 | 0.098 | 0.001 *** |
SNPs at MSTN (ECA18) | Traits 1 | Genotype Effect | Fixed Effects 2 | Random Effects 3 | |||
---|---|---|---|---|---|---|---|
Sex | ArB | D | H | J | |||
rs397152648 | ArIndex | 0.042 * | 0.171 | 0.001 *** | 0.001 *** | 25.02 | 3.00 |
PuIndex | 0.090 | 0.001 *** | 0.001 *** | 0.001 *** | 11.01 | 3.24 | |
SuIndex | 0.034 * | 0.001 *** | 0.003 ** | 0.001 *** | 17.03 | 1.20 | |
rs1095048831 | ArIndex | 0.978 | 0.243 | 0.002 ** | 0.001 *** | 26.53 | 3.35 |
PuIndex | 0.682 | 0.003 ** | 0.001 *** | 0.001 *** | 11.48 | 3.35 | |
SuIndex | 0.798 | 0.001 *** | 0.011 * | 0.001 *** | 17.47 | 1.08 | |
rs1095048829 | ArIndex | 0.485 | 0.141 | 0.005 ** | 0.001 *** | 25.69 | 3.54 |
PuIndex | 0.276 | 0.001 *** | 0.001 *** | 0.001 *** | 11.55 | 3.18 | |
SuIndex | 0.330 | 0.001 *** | 0.008 ** | 0.001 *** | 17.05 | 1.28 | |
rs1095048848 | ArIndex | 0.795 | 0.229 | 0.002 ** | 0.001 *** | 25.91 | 3.78 |
PuIndex | 0.868 | 0.002 ** | 0.001 *** | 0.001 *** | 10.90 | 3.73 | |
SuIndex | 0.865 | 0.001 *** | 0.006 ** | 0.001 *** | 16.85 | 1.64 |
SNPs at MSTN (ECA18) | rs397152648 | rs1095048831 | rs1095048829 | rs1095048848 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Genotype | TT | TC | AA | AC | CC | CT | CC | CT | TT | |
Individual horse | (n) | (136) | (41) | (149) | (29) | (141) | (33) | (41) | (93) | (46) |
Traits 1 | Total prizes, € | 6213 | 9315 * | 6748 | 6619 | 7131 | 6183 | 6618 | 6965 | 5818 |
PrIndex, € | 742 | 1115 * | 787 | 872 | 853 | 722 | 776 | 810 | 767 | |
1st-PlIndex | 0.164 | 0.220 | 0.171 | 0.177 | 0.181 | 0.166 | 0.161 | 0.178 | 0.184 | |
Tot-PlIndex | 0.378 | 0.442 | 0.388 | 0.374 | 0.404 | 0.341 | 0.389 | 0.382 | 0.385 | |
Individual race | (n) | (943) | (278) | (1037) | (186) | (937) | (251) | (265) | (657) | (317) |
Traits 2 | ArIndex | 0.477 | 0.545 * | 0.485 | 0.484 | 0.492 | 0.467 | 0.470 | 0.481 | 0.497 |
PuIndex | 0.110 | 0.133 * | 0.115 | 0.109 | 0.120 | 0.104 | 0.120 | 0.112 | 0.115 | |
SuIndex | 719 | 1056 | 774 | 820 | 838 | 671 | 814 | 751 | 717 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pira, E.; Vacca, G.M.; Dettori, M.L.; Piras, G.; Moro, M.; Paschino, P.; Pazzola, M. Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals 2021, 11, 964. https://doi.org/10.3390/ani11040964
Pira E, Vacca GM, Dettori ML, Piras G, Moro M, Paschino P, Pazzola M. Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals. 2021; 11(4):964. https://doi.org/10.3390/ani11040964
Chicago/Turabian StylePira, Emanuela, Giuseppe Massimo Vacca, Maria Luisa Dettori, Gianpiera Piras, Massimiliano Moro, Pietro Paschino, and Michele Pazzola. 2021. "Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses" Animals 11, no. 4: 964. https://doi.org/10.3390/ani11040964
APA StylePira, E., Vacca, G. M., Dettori, M. L., Piras, G., Moro, M., Paschino, P., & Pazzola, M. (2021). Polymorphisms at Myostatin Gene (MSTN) and the Associations with Sport Performances in Anglo-Arabian Racehorses. Animals, 11(4), 964. https://doi.org/10.3390/ani11040964