Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Fabrication of Implants
2.2. Clinical Trial
2.2.1. Selection of Patients
2.2.2. Protocol
2.2.3. Data Collection
2.2.4. Radiographic Assessment
2.2.5. Lameness Assessment
2.3. Statistical Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Moore, K.; Read, R. Cranial cruciate ligament rupture in the dog a retrospective study comparing surgical techniques. Aust. Vet. J. 1995, 72, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Lampman, T.J.; Lund, E.M.; Lipowitz, A.J. Cranial cruciate disease: Current status of diagnosis, surgery, and risk for disease. Vet. Comp. Orthop. Traumatol. 2003, 16, 122–126. [Google Scholar] [CrossRef]
- Fossum, T.W. Small Animal Surgery, 4th ed.; Elsevier Health Sciences: Philadelphia, PA, USA, 2013. [Google Scholar]
- De Rooster, H.; De Bruin, T.; Van Bree, H. Morphologic and functional features of the canine cruciate ligaments. Vet. Surg. 2006, 35, 769–780. [Google Scholar] [CrossRef]
- Witsberger, T.H.; Villamil, J.A.; Schultz, L.G.; Hahn, A.W.; Cook, J.L. Prevalence of and risk factors for hip dysplasia and cranial cruciate ligament deficiency in dogs. J. Am. Vet. Med Assoc. 2008, 232, 1818–1824. [Google Scholar] [CrossRef] [PubMed]
- LaFaver, S.; Miller, N.A.; Stubbs, W.P.; Taylor, R.A.; Boudrieau, R.J. Tibial Tuberosity Advancement for Stabilization of the Canine Cranial Cruciate Ligament-Deficient Stifle Joint: Surgical Technique, Early Results, and Complications in 101 Dogs. Vet. Surg. 2007, 36, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Bergh, M.S.; Sullivan, C.; Ferrell, C.L.; Troy, J.; Budsberg, S.C. Systematic Review of Surgical Treatments for Cranial Cruciate Ligament Disease in Dogs. J. Am. Anim. Hosp. Assoc. 2014, 50, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Yap, F.W.; Calvo, I.; Smith, D.; Parkin, T. Perioperative risk factors for surgical site infection in tibial tuberosity advancement: 224 stifles. Vet. Comp. Orthop. Traumatol. 2015, 28, 199–206. [Google Scholar] [CrossRef]
- Senatov, F.S.; Niaza, K.V.; Zadorozhnyy, M.Y.; Maksimkin, A.V.; Kaloshkin, S.D.; Estrin, Y.Z. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139–148. [Google Scholar] [CrossRef]
- Montavon, P.M. Tibial tuberosity advancement (TTA) for the treatment of cranial cruciate disease in dogs: Evidences, technique and initial clinical results. In Proceedings of the 12th ESVOT Congress 2004, Munich, Germany, 10–12 September 2004; pp. 254–255. [Google Scholar]
- Wolff, J. The Law of Bone Remodelling, 1st ed.; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Heller, M.O.; Mehta, M.; Taylor, W.R.; Kim, D.; Speirs, A.; Duda, G.N. Influence of prosthesis design and implantation technique on implant stresses after cementless revision THR. J. Orthop. Surg. Res. 2011, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, P.; Zhang, H.; Li, Y.; Ren, M.; Xiang, J.; Zhang, Z.; Ji, P.; Yang, S. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. Mater. Sci. Eng. C 2020, 109, 110551. [Google Scholar] [CrossRef]
- Iwasaki, C.; Hirota, M.; Tanaka, M.; Kitajima, H.; Tabuchi, M.; Ishijima, M.; Park, W.; Sugita, Y.; Miyazawa, K.; Goto, S.; et al. Tuning of titanium microfiber scaffold with uv-photofunctionalization for enhanced osteoblast affinity and function. Int. J. Mol. Sci. 2020, 21, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Zhang, L.; Liu, L.; Lv, L.; Gao, L.; Liu, N.; Wang, X.; Ye, J. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure. J. Orthop. Surg. Res. 2020, 15, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Färber, J. Die Metallentfernung nach Osteosynthesen. Orthopade 2003, 32, 1039–1058. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.D.; Watson, A.T.; Thatcher, L.G.; Wotton, H.; Naber, S.J. Prospective Randomized Clinical and Radiographic Evaluation of a Novel Bioabsorbable Biocomposite Tibial Tuberosity Advancement Cage Implant. Vet. Surg. 2016, 45, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Onche, I.I.; Osagie, O.E.; Inuhu, S. Removal of orthopaedic implants: Indications, outcome and economic implications. J. West Afr. Coll. Surg. 2011, 1, 101–112. [Google Scholar]
- Sanderson, P.L.; Ryan, W.; Turner, P.G. Complications of metalwork removal. Injury 1992, 23, 29–30. [Google Scholar] [CrossRef]
- Bander, N.B.; Barnhart, M.D.; Watson, A.T.; Naber, S.J. Short-term prospective clinical evaluation of a polyglycolic acid tibial tuberosity advancement cage implant. J. Am. Anim. Hosp. Assoc. 2018, 54, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Serratore, V.R.; Barnhart, M.D. Results and complications after removal of tibial tuberosity advancement cage for treatment of surgical site infections: A retrospective study. Vet. Surg. 2018, 47, 768–773. [Google Scholar] [CrossRef]
- McCartney, W.; Ober, C.; Benito, M.; MacDonald, B. Comparison of tension band wiring and other tibial tuberosity advancement techniques for cranial cruciate ligament repair: An experimental study. Acta Vet. Scand. 2019, 61, 1–7. [Google Scholar] [CrossRef]
- Grémare, A.; Guduric, V.; Bareille, R.; Heroguez, V.; Latour, S.; L’Heureux, N.; Fricain, J.-C.; Catros, S.; Le Nihouannen, D. Characterization of printed PLA scaffolds for bone tissue engineering. J. Biomed. Mater. Res. Part A 2018, 106, 887–894. [Google Scholar] [CrossRef]
- Barbieri, D.; Bruijn, J.D.; Luo, X.; Far, S.; Grijpma, D.W.; Yuan, H. Controlling dynamic mechanical properties and degradation of composites for bone regeneration by means of filler content. J. Mech. Behav. Biomed. Mater. 2013, 20, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. Developing bioactive composite materials for tissue replacement. Biomaterials 2003, 24, 2133–2151. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Plastics—Determination of Compressive Properties (ISO 604:2002); ISO: Geneva, Switzerland, 2003. [Google Scholar]
- Arnoczky, S.P. Pathomechanics of Cruciate Ligament and Meniscal Injuries, 2nd ed.; Febiger, L., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1993. [Google Scholar]
- Hayashi, K.; Manley, P.A.; Muir, P. No Cranial cruciate ligament pathophysiology in dogs with cruciate disease: A review. J. Am. Anim. Hosp. Assoc. 2004, 40, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Millet, M.; Bismuth, C.; Labrunie, A.; Marin, B.; Filleur, A.; Pillard, P.; Sonet, J.; Cachon, T.; Etchepareborde, S. Measurement of the patellar tendon-tibial plateau angle and tuberosity advancement in dogs with cranial cruciate ligament rupture: Reliability of the common tangent and tibial plateau methods of measurement. Vet. Comp. Orthop. Traumatol. 2013, 26, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Cook, J.L.; Evans, R.; Conzemius, M.G.; Lascelles, B.D.X.; McIlwraith, C.W.; Pozzi, A.; Clegg, P.; Innes, J.; Schulz, K.; Houlton, J.; et al. Proposed Definitions and Criteria for Reporting Time Frame, Outcome, and Complications for Clinical Orthopedic Studies in Veterinary Medicine. Vet. Surg. 2010, 39, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.E.; Miller, J.M.; Ober, C.P.; Lanz, O.I.; Martin, R.A.; Shires, P.K. Tibial tuberosity advancement in 65 canine stifles. Vet. Comp. Orthop. Traumatol. 2006, 19, 219–227. [Google Scholar] [PubMed] [Green Version]
- Epstein, M. Feature Senior Care Guidelines Task Force. J. Am. Anim. Hosp. Assoc. 2005, 41, 81–91. [Google Scholar] [PubMed] [Green Version]
- Etchepareborde, S.; Brunel, L.; Bollen, G.; Balligand, M. Preliminary experience of a modified maquet technique for repair of cranial cruciate ligament rupture in dogs. Vet. Comp. Orthop. Traumatol. 2011, 24, 223–227. [Google Scholar] [CrossRef]
- Guerrero, T.G.; Makara, M.A.; Katiofsky, K.; Flückiger, M.A.; Morgan, J.P.; Haessig, M.; Montavon, P.M. Comparison of Healing of the Osteotomy Gap after Tibial Tuberosity Advancement with and without Use of an Autogenous Cancellous Bone Graft. Vet. Surg. 2010, 40, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Danielson, B.; Barnhart, M.; Watson, A.; Kennedy, S.; Naber, S. Short-term radiographic complications and healing assessment of single-session bilateral tibial tuberosity advancements. J. Am. Anim. Hosp. Assoc. 2016, 52, 109–114. [Google Scholar] [CrossRef]
- Mccartney, W.T.; Galvin, E.; James, B.; Donald, M. Analysis of Plate Bone Construct Failure Following Tibial Tuberosity Advancment. Int. J. Appl. Res. Vet. Med. 2011, 9, 193. [Google Scholar]
- Korvick, D.L.; Cummings, J.F.; Grood, E.S.; Holden, J.P.; Feder, S.M.; Butler, D.L. The use of an implantable force transducer to measure patellar tendon forces in goats. J. Biomech. 1996, 29, 557–561. [Google Scholar] [CrossRef]
- Egger, E.L.; Histand, M.B.; Norrdin, R.W.; Konde, L.J.; Schwarz, P.D. Canine Osteotomy Healing when Stabilized with Decreasingly Rigid Fixation Compared to Constantly Rigid Fixation. Vet. Comp. Orthop. Traumatol. 1993, 6, 182–187. [Google Scholar] [CrossRef]
- Steinberg, E.J.; Prata, R.G.; Palazzini, K.; Brown, D.C. Tibial tuberosity advancement for treatment of CrCL injury: Complications and owner satisfaction. J. Am. Anim. Hosp. Assoc. 2011, 47, 250–257. [Google Scholar] [CrossRef]
- Kuipers von Lande, R.G.; Worth, A.J.; Guerrero, T.G.; Owen, M.C.; Hartman, A. Comparison Between a Novel Bovine Xenoimplant and Autogenous Cancellous Bone Graft in Tibial Tuberosity Advancement. Vet. Surg. 2012, 41, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Hans, E.C.; Barnhart, M.D.; Kennedy, S.C.; Naber, S.J. Comparison of complications following tibial tuberosity advancement and tibial plateau levelling osteotomy in very large and giant dogs 50 kg or more in body weight. Vet. Comp. Orthop. Traumatol. 2017, 30, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, R.M.; Silva, M.A.M.; Teixeira, P.P.M.; Dias, L.G.G. Use of castor bean polymer in developing a new technique for tibial tuberosity advancement for cranial cruciate ligament rupture correction in dogs. Veterinární Med. 2016, 2016, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Wuisman, P.I.; Smith, T.M. Degradable Polymers for Skeletal Implants; Nova Science Publishers: Hauppauge, NY, USA, 2009. [Google Scholar]
- Poandl, T.; Trenka-Benthin, S.; Azri-Meehan, S. A new faster degrading biocomposite material: Long-term invivo tissue reaction and absorption. In Annual Meeting of the Arthroscopy; Association of North America: Vancouver, BC, Canada, 2005. [Google Scholar]
- Zhang, H.; Mao, X.; Du, Z.; Jiang, W.; Han, X.; Zhao, D.; Han, D.; Li, Q. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. Sci. Technol. Adv. Mater. 2016, 17, 136–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verheyen, C.C.P.M.; de Wijn, J.R.; Van Blitterswijk, C.A.; de Groot, K.; Rozing, P.M. Hydroxylapatite/poly(L-lactide) composites: An animal study on push-out strengths and interface histology. J. Biomed. Mater. Res. 1993, 27, 433–444. [Google Scholar] [CrossRef]
- Lin, P.-L.; Fang, H.-W.; Tseng, T.; Lee, W.-H. Effects of hydroxyapatite dosage on mechanical and biological behaviors of polylactic acid composite materials. Mater. Lett. 2007, 61, 3009–3013. [Google Scholar] [CrossRef]
- Wei, G.; Ma, P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749–4757. [Google Scholar] [CrossRef]
- Chai, Y.C.; Roberts, S.J.; Schrooten, J.; Luyten, F.P. Probing the osteoinductive effect of calcium phosphate by using an in vitro biomimetic model. Tissue Eng. 2010, 17, 1083–1097. [Google Scholar] [CrossRef]
- Barradas, A.M.; Fernandes, H.A.; Groena, N.; ChinChaibc, Y.; Schrootencd, J.; van de Peppel, J.; van Leeuwen, J.P.; van Blitterswijk, C.A.; de Boer, J. A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomater. 2012, 33, 3205–3215. [Google Scholar] [CrossRef] [PubMed]
- Böstman, O.M.; Pihlajamäki, H.K. Adverse tissue reactions to bioabsorbable fixation devices. Clin. Orthop. Relat. Res. 2000, 371, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Barber, F.A.; Dockery, W.D. Long-Term Absorption of Poly-L-Lactic Acid Interference Screws. Arthrosc. J. Arthrosc. Relat. Surg. 2006, 22, 820–826. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.; Wardale, J.; Best, J.; Cameron, R.; Rushton, N.; Brooks, N. Effects of lactic acid and glycolic acid on human osteoblasts: A way to understand PLGA involvement in PLGA/calcium phosphate composite failure. J. Orthop. Res. 2012, 30, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.J.A.; Bom, R.M.; Tavares, S.O. Tibial tuberosity advancement technique in small breed dogs: Study of 30 consecutive dogs (35 stifles). J. Small Anim. Pract. 2019, 60, 305–312. [Google Scholar] [CrossRef]
- Bernardi-Villavicencio, C.; Jimenez-Socorro, A.N.; Rojo-Salvador, C.; Robles-Sanmartin, J.; Rodriguez-Quiros, J. Short-term outcomes and complications of 65 cases of porous TTA with flange: A prospective clinical study in dogs. BMC Vet. Res. 2020, 16, 1–12. [Google Scholar] [CrossRef]
- Stein, S.; Schmoekel, H. Short-term and eight to 12 months results of a tibial tuberosity advancement as treatment of canine cranial cruciate ligament damage. J. Small Anim. Pract. 2008, 49, 398–404. [Google Scholar] [CrossRef]
- Voss, K.; Damur, D.M.; Guerrero, T.; Hoessig, M.; Montavon, R.M. Force plate gait analysis to assess limb function after tibial tuberosity advancement in dogs with cranial cruciate ligament disease. Vet. Comp. Orthop. Traumatol. 2008, 21, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castañón García, F. Estudio Comparativo de las Técnicas Quirúrgicas, TTA Clásica Securos®, TTA Porous® y TTA Porous® con PRP, Para el Tratamiento de la Rotura del Ligamento Cruzado Anterior en el Perro. Ph.D. Thesis, University of León, León, Spain, 2015. [Google Scholar]
- Ross, M.; Worrell, T.W. Thigh and calf girth following knee injury and surgery. J. Orthop. Sports Phys. Ther. 1998, 27, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Millis, D.; Scroggs, L.; Levine, D. Variables affecting thigh circumfer- ence measurements in dogs. In Proceedings of the First International Symposium on Rehabilitation and Physical Therapy in Veterinary Medicine; Oregon State University: Corvallis, OR, USA, 1999; pp. 7–11. [Google Scholar]
- Millis, D.; Levine, D.; Mynatt, T. Changes in muscle mass following transection of the cranial cruciate ligament and immediate stifle stabilization. In Proceedings of the First International Symposium on Rehabilitation and Physical Therapy in Veterinary Medicine, Knoxville, TN, USA, 10–14 August 1999; Oregon State University: Corvallis, OR, USA, 1999; p. 3. [Google Scholar]
- Kannus, P.; Järvinen, M.; Józsa, L. Thigh muscle atrophy and postoperative osteoarthrosis after knee ligament tears. Acta Chir Hung. 1988, 29, 151–161. [Google Scholar]
- MacDonald, T.L.; Allen, D.A.; Monteith, G.J. Clinical assessment following tibial tuberosity advancement in 28 stifles at 6 months and 1 year after surgery. Can. Vet. J. 2013, 54, 249–254. [Google Scholar] [PubMed]
- Stauffer, K.D.; Elkins, A.D.; Wehrenberg, A.P.; Character, B.J. Complications Associated With 696 Tibial Plateau Leveling Osteotomies (2001–2003). J. Am. Anim. Hosp. Assoc. 2006, 42, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Bisgard, S.K.; Barnhart, M.D.; Shiroma, J.T.; Kennedy, S.C.; Schertel, E.R. The Effect of Cancellous Autograft and Novel Plate Design on Radiographic Healing and Postoperative Complications in Tibial Tuberosity Advancement for Cranial Cruciate-Deficient Canine Stifles. Vet. Surg. 2011, 40, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Wolf, R.E.; Scavelli, T.D.; Hoelzler, M.G.; Fulcher, R.P.; Bastian, R.P. Surgical and postoperative complications associated with tibial tuberosity advancement for cranial cruciate ligament rupture in dogs: 458 cases (2007–2009). J. Am. Vet. Med. Assoc. 2009, 240, 1481–1487. [Google Scholar] [CrossRef]
- Brunel, L.; Etchepareborde, S.; Barthélémy, N.; Farnir, F.; Balligand, M. Mechanical testing of a new osteotomy design for tibial tuberosity advancement using the Modified Maquet Technique. Vet. Comp. Orthop. Traumatol. 2013, 26, 47–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samoy, Y.; Verhoeven, G.; Bosmans, T.; Van Der Vekens, E.; De Bakker, E.; Verleyen, P.; Van Ryssen, B. TTA Rapid: Description of the Technique and Short Term Clinical Trial Results of the First 50 Cases. Vet. Surg. 2015, 44, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Ness, M.G. The Modified Maquet Procedure (MMP) in Dogs: Technical Development and Initial Clinical Experience. J. Am. Anim. Hosp. Assoc. 2016, 52, 242–250. [Google Scholar] [CrossRef]
- Dymond, N.; Goldsmid, S.; Simpson, D. Tibial tuberosity advancement in 92 canine stifles: Initial results. Aust. Vet. J. 2010, 88, 381–385. [Google Scholar] [CrossRef]
- Barton, A.J.; Sagers, R.D.; Pitt, W.G. Bacterial adhesion to orthopedic implant polymers. J. Biomed. Mater. Res. 1996, 30, 403–410. [Google Scholar] [CrossRef]
- Park, H.; Keyurapan, E.; Gill, H.S.; Selhi, H.S.; McFarland, E.G. Suture anchors and tacks for shoulder surgery, part II: The prevention and treatment of complications. Am. J. Sports Med. 2006, 34, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, A.; Ghodadra, N.; Karas, V.; Salata, M.J.; Cole, B.J. Complications of bioabsorbable suture anchors in the shoulder. Am. J. Sports Med. 2012, 40, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
Mean Time for Radiologic Follow-Ups (Days) | ||
---|---|---|
First follow-up | Second follow-up | Third follow-up |
35.22 ± 10.72 | 71.88 ± 9.39 | 154.27 ± 22.02 |
Ossification Degree | First Follow-Up | Second Follow-Up | Third Follow-Up |
---|---|---|---|
0 | 5 | 0 | 0 |
1 | 6 | 2 | 0 |
2 | 3 | 5 | 0 |
3 | 4 | 9 | 8 |
4 | 0 | 2 | 10 |
Mean | 1.33 ± 1.13 | 2.61 ± 0.84 | 3.55 ± 0.51 |
Ossification Degree | N of Patient per Follow-Up | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
<30 kg (n = 10) | ≥30 kg (n = 8) | <7 Years (84 Months) (n = 12) | ≥7 Years (84 Months) (n = 6) | |||||||||
First | Second | Third | First | Second | Third | First | Second | Third | First | Second | Third | |
0 | 4 | 0 | 0 | 1 | 0 | 0 | 4 | 0 | 0 | 1 | 0 | 0 |
1 | 2 | 1 | 0 | 4 | 1 | 0 | 3 | 1 | 0 | 3 | 1 | 0 |
2 | 2 | 4 | 0 | 1 | 1 | 0 | 3 | 5 | 0 | 0 | 0 | 0 |
3 | 2 | 3 | 5 | 2 | 6 | 3 | 2 | 5 | 4 | 2 | 4 | 4 |
4 | 0 | 2 | 5 | 0 | 0 | 5 | 0 | 1 | 8 | 0 | 1 | 2 |
Mean | 1.2 ± 1.22 | 2.6 ± 0.96 | 3.5 ± 0.52 | 1.5 ± 1.06 | 2.6 ± 0.74 | 3.6 ± 0.51 | 1.2 ± 1.13 | 2.5 ± 0.79 | 3.6 ± 0.49 | 1.5 ± 1.22 | 2.8 ± 0.98 | 3.3 ± 0.51 |
Statistically significant differences | No statistically significant differences between groups for the same control time | No statistically significant differences between groups for the same control time | ||||||||||
Mean weight/age | 18.72 ± 6.48 kg | 36.62 ± 9.62 kg | 51.83 ± 21.65 months | 112.33 ± 12.27 months |
Lameness Degree | Pre-Surgical Assessment | First Follow-Up | Second Follow-Up | Third Follow-Up |
---|---|---|---|---|
0 | 0 | 3 | 9 | 16 |
1 | 0 | 3 | 4 | 2 |
2 | 1 | 5 | 4 | 0 |
3 | 10 | 5 | 1 | 0 |
4 | 3 | 1 | 0 | 0 |
5 | 5 | 1 | 0 | 0 |
Mean | 3.5 ± 0.92 | 2.05 ± 1.39 | 0.83 ± 0.98 | 0.11 ± 0.32 |
Complications | ||
---|---|---|
Minor | Fracture of the distal cortical of the tibial crest | 1 |
Apparition of masses in the incision region | 1 | |
Major | Tension band wiring rupture with or without tibial crest displacement | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valiño-Cultelli, V.; Varela-López, Ó.; González-Cantalapiedra, A. Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals 2021, 11, 1271. https://doi.org/10.3390/ani11051271
Valiño-Cultelli V, Varela-López Ó, González-Cantalapiedra A. Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals. 2021; 11(5):1271. https://doi.org/10.3390/ani11051271
Chicago/Turabian StyleValiño-Cultelli, Victoria, Óscar Varela-López, and Antonio González-Cantalapiedra. 2021. "Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT)" Animals 11, no. 5: 1271. https://doi.org/10.3390/ani11051271
APA StyleValiño-Cultelli, V., Varela-López, Ó., & González-Cantalapiedra, A. (2021). Preliminary Clinical and Radiographic Evaluation of a Novel Resorbable Implant of Polylactic Acid (PLA) for Tibial Tuberosity Advancement (TTA) by Modified Maquet Technique (MMT). Animals, 11(5), 1271. https://doi.org/10.3390/ani11051271