Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Isolation and Molecular Identification of C. jejuni, E. coli, and E. faecalis Commensal Strains
2.3. Antimicrobial Susceptibility Testing
2.4. Data Analysis
3. Results
3.1. MIC Distributions
3.2. Antimicrobial Resistance Pattern to Antimicrobials of Classes A and B
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Bester, L.A.; Essack, S.Y. Antibiotic resistance via the food chain: Fact or fiction? S. Afr. J. Sci. 2010, 106, 1–5. [Google Scholar] [CrossRef]
- Hasman, H.; Hammerum, A.M.; Hansen, F.; Hendriksen, R.S.; Olesen, B.; Agersø, Y.; Zankari, E.; Leekitcharoenphon, P.; Stegger, M.; Kaas, R.S. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Eurosurveillance 2015, 20, 30085. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Hueston, W.; Appert, J.; Denny, T.; King, L.; Umber, J.; Valeri, L. Assessing global adoption of one health approaches. EcoHealth 2013, 10, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Augère-Granier, M.L. The EU Poultry Meat and Egg Sector. Main Features Challenges and Prospects; European Parliament: Brussels, Belgium, 2019; ISBN 978-92-846-6032-2.
- EU Commission. Council Directive 99/74/EC of 19 July 1999 laying down minimum standards for the protection of laying hens. Off. J. Eur. Union L 1999, 203, 53–57. [Google Scholar]
- Ministerio de Agricultura Pesca y Alimentación. Caracterización del Sector Avícola de Puesta en España. Año 2019; Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 2019.
- Agunos, A.; Léger, D.; Carson, C. Review of antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can. Vet. J. 2012, 53, 1289. [Google Scholar]
- Landoni, M.F.; Albarellos, G. The use of antimicrobial agents in broiler chickens. Vet. J. 2015, 205, 21–27. [Google Scholar] [CrossRef] [PubMed]
- North American Compendiums Inc. Compendium of Veterinary Products; North American Compendiums Inc.: Port Huron, MI, USA, 2003. [Google Scholar]
- EU Commission Regulation (EC). No. 1831/2003 of the European Parliament and of the Council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union L 2003, 268, 29–43. [Google Scholar]
- EMA. Categorisation of Antibiotics in the European Union. Answer to the Request from the European Commission for Updating the Scientific Advice on the Impact on Public Health and Animal Health of the Use of Antibiotics in Animals; European Medicines Agency: Amsterdam, The Netherlands, 2019.
- WHO. Critically Important Antimicrobials for Human Medicine; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Wallmann, J. Monitoring of antimicrobial resistance in pathogenic bacteria from livestock animals. Int. J. Med. Microbiol. 2006, 296, 81–86. [Google Scholar] [CrossRef]
- Miranda, J.M.; Vázquez, B.I.; Fente, C.A.; Barros-Velázquez, J.; Cepeda, A.; Franco, C.M. Evolution of resistance in poultry intestinal Escherichia coli during three commonly used antimicrobial therapeutic treatments in poultry. Poult. Sci. 2008, 87, 1643–1648. [Google Scholar] [CrossRef]
- EU Commission. Commission implementing decision 2013/652/EU of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria. Off. J. Eur. Union L 2013, 303, 26–39. [Google Scholar]
- EFSA; ECDC. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, e06007. [Google Scholar]
- Horrocks, S.M.; Anderson, R.C.; Nisbet, D.J.; Ricke, S.C. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 2009, 15, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.E.; Corcoran, D.; Dooley, J.S.G.; Fanning, S.; Lucey, B.; Matsuda, M.; McDowell, D.A.; Mégraud, F.; Millar, B.C.; O’Mahony, R. Campylobacter. Vet. Res. 2005, 36, 351–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhotia, R.L.; Stephens, J.F. Drug resistance and R factors among enterobacteria isolated from eggs. Poult. Sci. 1973, 52, 1955–1962. [Google Scholar] [CrossRef] [PubMed]
- Mellata, M. Human and avian extraintestinal pathogenic Escherichia coli: Infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathog. Dis. 2013, 10, 916–932. [Google Scholar] [CrossRef] [Green Version]
- Miles, T.D.; McLaughlin, W.; Brown, P.D. Antimicrobial resistance of Escherichia coliisolates from broiler chickens and humans. BMC Vet. Res. 2006, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, J.; Jordens, Z.; Selkon, J.B. Evidence for an animal origin of vancomycin-resistant enterococci. Lancet 1993, 342, 490–491. [Google Scholar] [CrossRef]
- Rivera-Gomis, J.; Marín, P.; Otal, J.; Galecio, J.S.; Martínez-Conesa, C.; Cubero, M.J. Resistance patterns to C and D antibiotic categories for veterinary use of Campylobacter spp., Escherichia coli and Enterococcus spp. commensal isolates from laying hen farms in Spain during 2018. Prev. Vet. Med. 2021, 186, 1–8. [Google Scholar] [CrossRef]
- EU Commission Regulation (EC). No 2160/2003 of the European parliament and of the council of 17 November 2003 on the control of Salmonella and other specified food-borne zoonotic agents. Off. J. Eur. Union L 2003, 50, 1–15. [Google Scholar]
- OIE. Campylobacter jejuni and Campylobacter coli. OIE Terr. Man. 2008, 2, 1–9. [Google Scholar]
- Linton, D.; Lawson, A.J.; Owen, R.J.; Stanley, J. PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J. Clin. Microbiol. 1997, 35, 2568–2572. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.; Stewart, T.M.; Nawaz, M.S. PCR identification of Campylobacter coli and Campylobacter jejuni by partial sequencing of virulence genes. Mol. Cell. Probes 2005, 19, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Ke, D.; Picard, F.J.; Martineau, F.; Ménard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR assay for rapid detection of enterococci. J. Clin. Microbiol. 1999, 37, 3497–3503. [Google Scholar] [CrossRef] [Green Version]
- Ge, B.; Wang, F.; Sjölund-Karlsson, M.; McDermott, P.F. Antimicrobial resistance in Campylobacter: Susceptibility testing methods and resistance trends. J. Microbiol. Methods 2013, 95, 57–67. [Google Scholar] [CrossRef]
- EFSA. Manual for reporting on antimicrobial resistance within the framework of Directive 2003/99/EC and Decision 2013/652/EU for information derived from the year 2019. EFSA Support. Publ. 2020, 17, 1794E. [Google Scholar]
- EUCAST. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahlmeter, G.; Brown, D.F.J.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Österlund, A.; Rodloff, A.; Steinbakk, M.; Urbaskova, P.; Vatopoulos, A. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 2003, 52, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Wales, A.; Davies, R. Review of hatchery transmission of bacteria with focus on Salmonella, chick pathogens and antimicrobial resistance. Worlds. Poult. Sci. J. 2020, 76, 517–536. [Google Scholar] [CrossRef]
- Petersen, A.; Christensen, J.P.; Kuhnert, P.; Bisgaard, M.; Olsen, J.E. Vertical transmission of a fluoroquinolone-resistant Escherichia coli within an integrated broiler operation. Vet. Microbiol. 2006, 116, 120–128. [Google Scholar] [CrossRef]
- Urdahl, A.M.; Norstrom, M.; Bergsjø, B.; Grøntvedt, C.A. The Surveillance Programme for Methicillin Resistant Staphylococcus Aureus in Pigs in Norway 2017. Surveillance Programmes for Terrestrial and Aquatic Animals in Norway. Annual Report 2017; Norwegian Veterinary Institute: Oslo, Norway, 2018. [Google Scholar]
- Aarestrup, F.M.; Kruse, H.; Tast, E.; Hammerum, A.M.; Jensen, L.B. Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microb. Drug Resist. 2000, 6, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Klare, I.; Badstübner, D.; Konstabel, C.; Böhme, G.; Claus, H.; Witte, W. Decreased incidence of VanA-type vancomycin-resistant enterococci isolated from poultry meat and from fecal samples of humans in the community after discontinuation of avoparcin usage in animal husbandry. Microb. Drug Resist. 1999, 5, 45–52. [Google Scholar] [CrossRef]
- Kühn, I.; Iversen, A.; Finn, M.; Greko, C.; Burman, L.G.; Blanch, A.R.; Vilanova, X.; Manero, A.; Taylor, H.; Caplin, J. Occurrence and relatedness of vancomycin-resistant enterococci in animals, humans, and the environment in different European regions. Appl. Environ. Microbiol. 2005, 71, 5383–5390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECDC. Antimicrobial resistance surveillance in Europe 2015. In Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); European Centre for Disease Prevention and Control: Stockholm, Sweden, 2017. [Google Scholar]
- Aznar, J.; Lepe, J.A.; Dowzicky, M.J. Antimicrobial susceptibility among E. faecalis and E. faecium from France, Germany, Italy, Spain and the UK (TEST Surveillance Study, 2004–2009). J. Chemother. 2012, 24, 74–80. [Google Scholar] [CrossRef]
- O’Dea, M.; Sahibzada, S.; Jordan, D.; Laird, T.; Lee, T.; Hewson, K.; Pang, S.; Abraham, R.; Coombs, G.W.; Harris, T. Genomic, antimicrobial resistance, and public health insights into Enterococcus spp. from Australian chickens. J. Clin. Microbiol. 2019, 57, e00319-19. [Google Scholar] [CrossRef] [Green Version]
- Dowzicky, M.; Talbot, G.H.; Feger, C.; Prokocimer, P.; Etienne, J.; Leclercq, R. Characterization of isolates associated with emerging resistance to quinupristin/dalfopristin (Synercid®) during a worldwide clinical program. Diagn. Microbiol. Infect. Dis. 2000, 37, 57–62. [Google Scholar] [CrossRef]
- Hershberger, E.; Donabedian, S.; Konstantinou, K.; Zervos, M.J.; Eliopoulos, G.M. Quinupristin-dalfopristin resistance in gram-positive bacteria: Mechanism of resistance and epidemiology. Clin. Infect. Dis. 2004, 38, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Wang, R.; Liang, B.; Bai, N.; Liu, Y. Systematic review and meta-analysis of the effectiveness and safety of tigecycline for treatment of infectious disease. Antimicrob. Agents Chemother. 2011, 55, 1162–1172. [Google Scholar] [CrossRef] [Green Version]
- Van den Bogaard, A.E.; Hazen, M.; Hoyer, M.; Oostenbach, P.; Stobberingh, E.E. Effects of Flavophospholipol on Resistance in Fecal Escherichia coli and Enterococci of Fattening P. Antimicrob. Agents Chemother. 2002, 46, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Donabedian, S.M.; Perri, M.B.; Vager, D.; Hershberger, E.; Malani, P.; Simjee, S.; Chow, J.; Vergis, E.N.; Muder, R.R.; Gay, K. Quinupristin-dalfopristin resistance in Enterococcus faecium isolates from humans, farm animals, and grocery store meat in the United States. J. Clin. Microbiol. 2006, 44, 3361–3365. [Google Scholar] [CrossRef] [Green Version]
- WHO. Joint FAO/OIE/WHO Expert Workshop on Non-Human Antimicrobial Usage and Antimicrobial Resistance: Scientific Assessment: Geneva, 1–5 December 2003; World Health Organization: Geneva, Switzerland, 2004. [Google Scholar]
- Hanning, I.B.; Nutt, J.D.; Ricke, S.C. Salmonellosis outbreaks in the United States due to fresh produce: Sources and potential intervention measures. Foodborne Pathog. Dis. 2009, 6, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Barza, M. Potential mechanisms of increased disease in humans from antimicrobial resistance in food animals. Clin. Infect. Dis. 2002, 34, S123–S125. [Google Scholar] [CrossRef]
- Helms, M.; Simonsen, J.; Olsen, K.E.P.; Mølbak, K. Adverse health events associated with antimicrobial drug resistance in Campylobacter species: A registry-based cohort study. J. Infect. Dis. 2005, 191, 1050–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Been, M.; Lanza, V.F.; de Toro, M.; Scharringa, J.; Dohmen, W.; Du, Y.; Hu, J.; Lei, Y.; Li, N.; Tooming-Klunderud, A. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014, 10, e1004776. [Google Scholar] [CrossRef] [PubMed]
- Lazarus, B.; Paterson, D.L.; Mollinger, J.L.; Rogers, B.A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review. Clin. Infect. Dis. 2015, 60, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Jakobsen, L.; Kurbasic, A.; Skjøt-Rasmussen, L.; Ejrnæs, K.; Porsbo, L.J.; Pedersen, K.; Jensen, L.B.; Emborg, H.-D.; Agersø, Y.; Olsen, K.E.P. Escherichia coli isolates from broiler chicken meat, broiler chickens, pork, and pigs share phylogroups and antimicrobial resistance with community-dwelling humans and patients with urinary tract infection. Foodborne Pathog. Dis. 2010, 7, 537–547. [Google Scholar] [CrossRef]
- PRAN Programme. Available online: http://resistenciaantibioticos.es/en (accessed on 3 November 2020).
Microorganism | A Category Antimicrobials | B Category Antimicrobials |
---|---|---|
C. jejuni | Quinolones (ciprofloxacin, CIP; nalidixic acid, NAL) | |
E. coli | Glycylcyclines (tigecycline, TIG) Carbapenems (meropenem, MER) | Cephalosporins (cefotaxime, CTA; ceftazidime, CTZ) Polymyxins (colistin, COL) Quinolones (ciprofloxacin, CIP; nalidixic acid, NAL) |
E. faecalis | Glycylcyclines (tigecycline, TIG) Glycopeptides (vancomycin, VAN, teicoplanin, TEI) Lipopeptides (daptomycin, DAP) Oxazolidinones (linezolid, LIN) Streptogramins (Quinupristin-dalfopristin, QUD) | Quinolones (ciprofloxacin, CIP) |
EMA Category | Antimicrobial Agent | Distribution of MICs (in µg/mL and Number of Strains) | MIC50 | MIC90 | ECOFF | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0075 | 0.015 | 0.03 | 0.064 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | |||||
B Category | Ciprofloxacyn | 0 | 0 | 0 | 52 | 0 | 0 | 0 | 4 | 4 | 8 | 20 | 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤0.125 | ≥16 | >0.5 |
N° Strains | 13 | 1 | 1 | 2 | 5 | 3 | |||||||||||||||||
Nalidixic acid | 0 | 0 | 0 | 0 | 0 | 0 | 56 | 0 | 0 | 0 | 0 | 0 | 4 | 40 | 0 | 0 | 0 | 0 | 0 | ≤1 | ≥64 | >16 | |
N° Strains | 14 | 1 | 10 |
EMA Category | Antimicrobial Agent | Distribution of MICs (in µg/mL and Number of Strains) | MIC50 | MIC90 | ECOFF | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0075 | 0.015 | 0.03 | 0.064 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | |||||
A Category | Meropenem | 0 | 18.46 | 34.87 | 16.41 | 4.62 | 1.54 | 3.08 | 6.15 | 3.59 | 1.03 | 2.05 | 8.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤0.03 | 8 | >0.125 |
N° Strains | 36 | 68 | 32 | 9 | 3 | 6 | 12 | 7 | 2 | 4 | 16 | ||||||||||||
Tigecycline | 0 | 0 | 0 | 0 | 9.23 | 38.97 | 21.03 | 14.87 | 12.31 | 3.08 | 0.51 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.5 | 2 | >1 | |
N° Strains | 18 | 76 | 41 | 29 | 24 | 6 | 1 | ||||||||||||||||
Ceftazidime | 0 | 0 | 0 | 0 | 0 | 18.46 | 55.38 | 3.08 | 4.10 | 0.51 | 18.46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤0.5 | ≥8 | >0.5 | |
B Category | N° Strains | 36 | 108 | 6 | 8 | 1 | 36 | ||||||||||||||||
Colistin | 0 | 0 | 0 | 0 | 0 | 0 | 17.44 | 40.00 | 0.51 | 2.56 | 6.15 | 33.33 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤1 | ≥16 | >2 | |
N° Strains | 34 | 78 | 1 | 5 | 12 | 65 | |||||||||||||||||
Nalidixic acid | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16.41 | 32.82 | 13.85 | 6.67 | 0.51 | 0.51 | 29.23 | 0 | 0 | 0 | 0 | 8 | ≥128 | >16 | |
N° Strains | 32 | 64 | 27 | 13 | 1 | 1 | 57 | ||||||||||||||||
Cefotaxime | 0 | 0 | 0 | 0 | 18.46 | 57.95 | 3.59 | 0.51 | 1.03 | 18.46 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ≤0.25 | ≥4 | >0.25 | |
N° Strains | 36 | 113 | 7 | 1 | 2 | 36 | |||||||||||||||||
Ciprofloxacin | 15.90 | 14.87 | 9.23 | 2.05 | 4.62 | 16.92 | 6.67 | 12.31 | 13.33 | 1.03 | 3.08 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 2 | >0.064 | |
N° Strains | 31 | 29 | 18 | 4 | 9 | 33 | 13 | 24 | 26 | 2 | 6 |
EMA Category | Antimicrobial Agent | Distribution of MICs (in µg/mL and Number of Strains) | MIC50 | MIC90 | ECOFF | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0075 | 0.015 | 0.03 | 0.064 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | |||||
A Category | Tigecycline | 2.05 | 0 | 0 | 4.62 | 11.79 | 38.97 | 28.21 | 5.13 | 1.03 | 8.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.25 | 1 | >0.25 |
N° Strains | 4 | 9 | 23 | 76 | 55 | 10 | 2 | 16 | |||||||||||||||
Vancomycin | 0 | 0 | 0 | 0 | 0 | 0 | 54.87 | 10.26 | 13.33 | 10.77 | 9.74 | 0.51 | 0.00 | 0.00 | 0.51 | 0 | 0 | 0 | 0 | ≤1 | 8 | >4 | |
N° Strains | 107 | 20 | 26 | 21 | 19 | 1 | 0 | 0 | 1 | ||||||||||||||
Teicoplanin | 0 | 0 | 0 | 0 | 0 | 69.74 | 12.82 | 13.33 | 1.03 | 0.00 | 0.51 | 0.00 | 1.54 | 1.03 | 0 | 0 | 0 | 0 | 0 | ≤0.5 | 1 | >2 | |
N° Strains | 136 | 25 | 26 | 2 | 0 | 1 | 0 | 3 | 2 | ||||||||||||||
Daptomycin | 0 | 0 | 0 | 0 | 2.05 | 2.05 | 1.54 | 9.74 | 44.10 | 32.31 | 6.67 | 1.03 | 0.51 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 4 | >4 | |
N° Strains | 4 | 4 | 3 | 19 | 86 | 63 | 13 | 2 | 1 | ||||||||||||||
Linezolid | 0 | 0 | 0 | 0 | 0 | 2.05 | 0.00 | 7.69 | 44.10 | 34.36 | 2.05 | 1.03 | 1.03 | 7.69 | 0 | 0 | 0 | 0 | 0 | 2 | 8 | >4 | |
N° Strains | 0 | 4 | 0 | 15 | 86 | 67 | 4 | 2 | 2 | 15 | 0 | 0 | 0 | 0 | 0 | ||||||||
Quinupristin-dalfopristin | 0 | 0 | 0 | 0 | 0 | 3.08 | 0.00 | 3.59 | 12.31 | 18.46 | 27.69 | 21.54 | 7.69 | 5.64 | 0 | 0 | 0 | 0 | 0 | 8 | 32 | >1 | |
N° Strains | 6 | 7 | 24 | 36 | 54 | 42 | 15 | 11 | |||||||||||||||
B Category | Ciprofloxacin | 0 | 0 | 0 | 2.05 | 0.51 | 1.03 | 5.64 | 16.92 | 24.10 | 32.82 | 5.64 | 11.28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | ≥16 | >4 |
N° Strains | 4 | 1 | 2 | 11 | 33 | 47 | 64 | 11 | 22 |
Multirresistance | Microorganism | N° of Strains | % | Resistance Profile | N° of Strains | % |
---|---|---|---|---|---|---|
Resistant to 3 | E. coli | 26 | 13.33 | Quinolones Cephalosporins Polymyxins | 12 | 6.15 |
Glycylcyclines Cephalosporins Polymyxins | 2 | 1.03 | ||||
Glycylcyclines Quinolones Polymyxins | 10 | 5.13 | ||||
Carbapenems Quinolones Cephalosporins | 2 | 1.03 | ||||
E. faecalis | 19 | 9.74 | Streptogramins Glycopeptides Quinolones | 1 | 0.51 | |
Streptogramins Glycylcyclines Quinolones | 5 | 2.56 | ||||
Streptogramins Glycylcyclines Glycopeptides | 2 | 1.03 | ||||
Streptogramins Glycylcyclines Oxazolidinones | 3 | 1.54 | ||||
Streptogramins Glycylcyclines Lipopeptides | 3 | 1.54 | ||||
Streptogramins Lipopeptides Quinolones | 1 | 0.51 | ||||
Streptogramins Lipopeptides Glycopeptides | 3 | 1.54 | ||||
Streptogramins Oxazolidinones Glycopeptides | 1 | 0.51 | ||||
Resistant to 4 | E. coli | 35 | 17.95 | Glycylcyclines Quinolones Cephalosporins Polymyxins | 1 | 0.51 |
Carbapenems Quinolones Cephalosporins Polymyxins | 30 | 15.38 | ||||
Carbapenems Glycylcyclines Quinolones Polymyxins | 3 | 1.54 | ||||
Carbapenems Glycylcyclines Quinolones Cephalosporins | 1 | 0.51 | ||||
E. faecalis | 13 | 6.67 | Streptogramins Glycylcyclines Lipopeptides Quinolones | 1 | 0.51 | |
Streptogramins Glycylcyclines Glycopeptides Quinolones | 2 | 1.03 | ||||
Streptogramins Glycylcyclines Oxazolidinones Quinolones | 7 | 3.59 | ||||
Streptogramins Glycylcyclines Oxazolidinones Glycopeptides | 2 | 1.03 | ||||
Streptogramins Lipopeptides Glycopeptides Quinolones | 1 | 0.51 | ||||
Resistant to 5 | E. coli | 7 | 3.59 | Carbapenems Glycylcyclines Quinolones Cephalosporins Polymyxins | 7 | 3.59 |
E. faecalis | 7 | 3.59 | Streptogramins Glycylcyclines Oxazolidinones Glycopeptides Quinolones | 7 | 3.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivera-Gomis, J.; Marín, P.; Martínez-Conesa, C.; Otal, J.; Jordán, M.J.; Escudero, E.; Cubero, M.J. Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain. Animals 2021, 11, 1284. https://doi.org/10.3390/ani11051284
Rivera-Gomis J, Marín P, Martínez-Conesa C, Otal J, Jordán MJ, Escudero E, Cubero MJ. Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain. Animals. 2021; 11(5):1284. https://doi.org/10.3390/ani11051284
Chicago/Turabian StyleRivera-Gomis, Jorge, Pedro Marín, Cristina Martínez-Conesa, Julio Otal, María José Jordán, Elisa Escudero, and María José Cubero. 2021. "Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain" Animals 11, no. 5: 1284. https://doi.org/10.3390/ani11051284
APA StyleRivera-Gomis, J., Marín, P., Martínez-Conesa, C., Otal, J., Jordán, M. J., Escudero, E., & Cubero, M. J. (2021). Antimicrobial Resistance of Campylobacter jejuni, Escherichia coli and Enterococcus faecalis Commensal Isolates from Laying Hen Farms in Spain. Animals, 11(5), 1284. https://doi.org/10.3390/ani11051284