Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Editing
2.2. Models
2.3. Variance Component Estimates and Model Assumptions
2.4. Estimated Selection Response
3. Results
3.1. Descriptive Statistics and Factor Analysis
3.2. Genetic Parameters and Genetic Correlations
3.3. Genetic Trends and Response to Different Selection Scenarios
4. Discussion
4.1. Heritability
4.2. Genetic Correlations
4.3. Genetic Response under Different Selection Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Tisdell, C. Socioeconomic causes of loss of animal genetic diversity: Analysis and assessment. Ecol. Econ. 2003, 45, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Krupová, Z.; Krupa, E.; Michaličková, M.; Wolfová, M.; Kasarda, R. Economic values for health and feed efficiency traits of dual−purpose cattle in marginal areas. J. Dairy Sci. 2016, 99, 644–656. [Google Scholar] [CrossRef] [Green Version]
- Gandini, G.C.; Villa, E. Analysis of the cultural value of local livestock breeds: A methodology. J. Anim. Breed. Genet. 2003, 120, 1–11. [Google Scholar] [CrossRef]
- Hoffmann, I. Adaptation to climate change−−Exploring the potential of locally adapted breeds. Animal 2013, 7 (Suppl. 2), 346–362. [Google Scholar] [CrossRef]
- Mazza, S.; Guzzo, N.; Sartori, C.; Mantovani, R. Genetic correlations between type and test−day milk yield in small dual−purpose cattle populations: The Aosta Red Pied breed as a case study. J. Dairy Sci. 2016, 99, 8127–8136. [Google Scholar] [CrossRef] [Green Version]
- Sartori, C.; Guzzo, N.; Mazza, S.; Mantovani, R. Genetic correlations among milk yield, morphology, performance test traits and somatic cells in dual−purpose Rendena breed. Animal 2018, 12, 906–914. [Google Scholar] [CrossRef]
- Forabosco, F.; Mantovani, R.; Meneghini, B. European and Indigenous Cattle Breeds in Italy; Schiel & Denver Publishing Limited: Houston, TX, USA, 2011; ISBN 9781849030748. Available online: https://books.google.it/books?id=BiA0YAAACAAJ (accessed on 5 May 2021).
- Ali, A.K.A.; Shook, G.E. An Optimum Transformation for Somatic Cell Concentration in Milk. J. Dairy Sci. 1980, 63, 487–490. [Google Scholar] [CrossRef]
- Mantovani, R.; Cerchiaro, I.; Contiero, B. Factor analysis for genetic evaluation of linear type traits in dual purpose breeds. Ital. J. Anim. Sci. 2005, 4, 31–33. [Google Scholar] [CrossRef]
- Guzzo, N.; Sartori, C.; Mantovani, R. Analysis of genetic correlations between beef traits in young bulls and primiparous cows belonging to the dual−purpose Rendena breed. Animal 2019, 13, 694–701. [Google Scholar] [CrossRef]
- Revelle, W. psych.: Procedures for Psychological, Psychometric, and Personality Research. 2016. Available online: http://www2.uaem.mx/r-mirror/web/packages/psych/ (accessed on 5 May 2021).
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; University of Georgia: Athens, GA, USA, 2018; Volume 125. [Google Scholar]
- Careau, V.; Wolak, M.E.; Carter, P.A.; Garland, T. Limits to behavioral evolution: The quantitative genetics of a complex trait under directional selection. Evolution 2013, 67, 3102–3119. [Google Scholar] [CrossRef] [PubMed]
- Lande, R. Quantitative Genetic Analysis of Multivariate Evolution, Applied to Brain: Body Size Allometry. Evolution 1979, 33, 402. [Google Scholar] [CrossRef] [PubMed]
- Kause, A.; Mikkola, L.; Strandén, I.; Sirkko, K. Genetic parameters for carcass weight, conformation and fat in five beef cattle breeds. Animal 2014, 9, 35–42. [Google Scholar] [CrossRef]
- Mousseau, T.A.; Roff, D.A. Natural selection and the heritability of fitness components. Heredity 1987, 59, 181–197. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Ruminant Fat Metabolism with Particular Reference to Factors Affecting Low Milk Fat and Feed Efficiency. A Review. J. Dairy Sci. 1963, 46, 204–216. [Google Scholar] [CrossRef]
- GURR, M.I. Factors affecting the composition of cow’s milk. Nutr. Bull. 1985, 10, 139–152. [Google Scholar] [CrossRef]
- Sartori, C.; Guzzo, N.; Mantovani, R. Genetic correlations of fighting ability with somatic cells and longevity in cattle. Animal 2020, 14, 13–21. [Google Scholar] [CrossRef]
- Frigo, E.; Samorè, A.B.; Vicario, D.; Bagnato, A.; Pedron, O. Heritabilities and genetic correlations of body condition score and muscularity with productive traits and their trend functions in Italian Simmental cattle. Ital. J. Anim. Sci. 2013, 12, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Kheirabadi, K.; Razmkabir, M. Genetic parameters for daily milk somatic cell score and relationships with yield traits of primiparous Holstein cattle in Iran. J. Anim. Sci. Technol. 2016, 58, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.W. In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personal. Soc. Psychol. Bull. 2002, 28, 1629–1646. [Google Scholar] [CrossRef]
- Battagin, M.; Sartori, C.; Biffani, S.; Penasa, M.; Cassandro, M. Genetic parameters for body condition score, locomotion, angularity, and production traits in Italian Holstein cattle. J. Dairy Sci. 2013, 96, 5344–5351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, J.P.; Goyache, F. Estimation of genetic parameters of type traits in Asturiana de los Valles beef cattle breed. J. Anim. Breed. Genet. 2002, 119, 93–100. [Google Scholar] [CrossRef]
- Mantovani, R.; Cassandro, M.; Contiero, B.; Albera, A.; Bittante, G. Genetic evaluation of type traits in hypertrophic Piemontese cows. J. Anim. Sci. 2010, 88, 3504–3512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marete, A.; Lund, M.S.; Boichard, D.; Ramayo−Caldas, Y. A system−based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS ONE 2018, 13, e0199931. [Google Scholar] [CrossRef]
- Chessa, S.; Nicolazzi, E.L.; Nicoloso, L.; Negrini, R.; Marino, R.; Vicario, D.; Ajmone Marsan, P.; Valentini, A.; Stefanon, B. Analysis of candidate SNPs affecting milk and functional traits in the dual−purpose Italian Simmental cattle. Livest. Sci. 2015, 173, 1–8. [Google Scholar] [CrossRef]
- Olasege, B.S.; Zhang, S.; Zhao, Q.; Liu, D.; Sun, H.; Wang, Q.; Ma, P.; Pan, Y. Genetic parameter estimates for body conformation traits using composite index, principal component, and factor analysis. J. Dairy Sci. 2019, 102, 5219–5229. [Google Scholar] [CrossRef]
- Dube, B.; Dzama, K.; Banga, C.B.; Norris, D. An analysis of the genetic relationship between udder health and udder conformation traits in South African Jersey cows. Animal 2009, 3, 494–500. [Google Scholar] [CrossRef] [Green Version]
- De Haas, Y.; Janss, L.L.G.; Kadarmideen, H.N. Genetic and phenotypic parameters for conformation and yield traits in three Swiss dairy cattle breeds. J. Anim. Breed. Genet. 2007, 124, 12–19. [Google Scholar] [CrossRef]
- Jensen, J.; Mao, I.L.; Andersen, B.B.; Madsen, P. Genetic parameters of growth, feed intake, feed conversion and carcass composition of dual−purpose bulls in performance testing. J. Anim. Sci. 1991, 69, 931–939. [Google Scholar] [CrossRef]
- Aass, L. Variation in carcass and meat quality traits and their relations to growth in dual purpose cattle. Livest. Prod. Sci. 1996, 46, 1–12. [Google Scholar] [CrossRef]
- Sbarra, F.; Mantovani, R.; Bittante, G. Heritability of performance test traits in Chianina, Marchigiana and Romagnola breeds. Ital. J. Anim. Sci. 2009, 8, 107–109. [Google Scholar] [CrossRef]
- Bonfatti, V.; Albera, A.; Carnier, P. Genetic associations between daily BW gain and live fleshiness of station−tested young bulls and carcass and meat quality traits of commercial intact males in Piemontese cattle. J. Anim. Sci. 2013, 91, 2057–2066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karacaören, B.; Jaffrézic, F.; Kadarmideen, H.N. Genetic parameters for functional traits in dairy cattle from daily random regression models. J. Dairy Sci. 2006, 89, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Meredith, B.K.; Berry, D.P.; Kearney, F.; Finlay, E.K.; Fahey, A.G.; Bradley, D.G.; Lynn, D.J. A genome−wide association study for somatic cell score using the Illumina high−density bovine beadchip identifies several novel QTL potentially related to mastitis susceptibility. Front. Genet. 2013, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, T.H.; Lawlor, T.J. Genetic Parameters of Conformation Traits, Milk Yield, and Herd Life in Holsteins. J. Dairy Sci. 1992, 75, 1987–1998. [Google Scholar] [CrossRef]
- Samoré, A.B.; Rizzi, R.; Rossoni, A.; Bagnato, A. Genetic parameters for functional longevity, type traits, somatic cell scores, milk flow and production in the Italian Brown Swiss. Ital. J. Anim. Sci. 2010, 9, 145–152. [Google Scholar] [CrossRef]
- Ptak, E.; Jagusiak, W.; Zarnecki, A. Session 15. Free communications in Animal Genetics Relationship between test day somatic cell score and conformation traits in Polish Holstein. In Proceedings of the 59th Annual Meeting of the European Association for Animal Production, Vilnius, Lithuania, 24−27 August 2008. [Google Scholar]
- Maiorano, A.M.; Lourenco, D.L.; Tsuruta, S.; Toro Ospina, A.M.; Stafuzza, N.B.; Masuda, Y.; Filho, A.E.V.; Dos Santos Goncalves Cyrillo, J.N.; Curi, R.A.; De Vasconcelos Silva, J.A. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS ONE 2018, 13, e0200694. [Google Scholar] [CrossRef] [Green Version]
- Croué, I.; Fouilloux, M.N.; Saintilan, R.; Ducrocq, V. Carcass traits of young bulls in dual−purpose cattle: Genetic parameters and genetic correlations with veal calf, type and production traits. Animal 2017, 11, 929–937. [Google Scholar] [CrossRef]
- Hazel, L.N. The Genetic Basis for Constructing Selection Indexes. Genetics 1943, 28, 476–490. [Google Scholar] [CrossRef] [PubMed]
Traits | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
Milk traits | ||||
Milk yield (kg/d) | 16.30 | 5.36 | 0.60 | 45.20 |
Fat yield (kg/d) | 0.62 | 0.21 | 0.02 | 2.163 |
Protein yield (kg/d) | 0.56 | 0.17 | 0.02 | 1.49 |
Somatic cell score (points) | 2.33 | 1.86 | −3.64 | 10.84 |
Linear Type traits (points; scale 1–50) | ||||
Strength/Robustness | 29.15 | 6.67 | Tight and weak | Large and strong |
Thinness | 26.42 | 5.46 | Heavy and coarse | Thin and sharp |
Shoulders | 28.80 | 5.65 | Loose | Smooth and adherent |
Top line | 28.86 | 5.99 | Weak | Straight and strong |
Rear legs - side view | 27.66 | 4.80 | Straight | Sickle-Hocked |
Rear legs - rear view | 29.09 | 5.54 | Cow-hocked | Correct |
Foot angle | 26.17 | 4.89 | Narrow | Wide |
Pastern | 27.02 | 5.11 | Weak | Straight and strong |
Fore udder strength | 27.68 | 5.54 | Loose | Tight |
Fore udder length | 26.73 | 5.35 | Short | Long |
Rear udder height | 26.83 | 5.41 | Short | Tall |
Rear udder width | 27.14 | 6.03 | Narrow | Broad |
Suspensory ligament | 28.43 | 5.19 | Weak | Strong |
Udder depth | 30.47 | 5.44 | Deep | Shallow |
Udder symmetry | 24.18 | 2.75 | Not levelled front | Not leveled rear |
Teats position - rear view | 23.50 | 3.58 | Far | Close |
Teats Position - side view | 26.74 | 3.92 | Far | Close |
Teats length | 26.18 | 5.07 | Short | Long |
Front muscularity | 28.61 | 6.13 | Scarce | Developed |
Rear muscularity | 27.60 | 5.61 | Scarce | Developed |
Head typicality | 26.44 | 6.21 | Poor | Very good |
Performance test traits: | ||||
Average daily gain (kg/d) | 1.15 | 0.11 | 0.74 | 1.50 |
SEUROP score (points) | 103.3 | 4.09 | 90.0 | 120.0 |
Carcass yield (%) | 56.15 | 1.23 | 51.0 | 60.0 |
Lattent Factor | Var | Var % |
---|---|---|
FA1 | 2.68 | 0.13% |
FA2 | 2.38 | 0.11% |
FA3 | 2.03 | 0.10% |
FA4 | 2.03 | 0.10% |
FA5 | 1.91 | 0.09% |
FA6 | 1.20 | 0.06% |
FA7 | 1.25 | 0.06% |
Variance Component | Hereditability | |||||
---|---|---|---|---|---|---|
Traits | σ2a 1 | σ2pe 1 | σ2e 1 | h2 | HPD 5 2 | HPD 95 3 |
Milk traits: | ||||||
Milk yield | 2.211 | 3.112 | 4.837 | 0.219 | 0.181 | 0.301 |
Fat yield | 2.600 4 | 3.190 4 | 8.735 4 | 0.178 | 0.117 | 0.215 |
Protein yield | 1.895 4 | 3.230 4 | 10.03 4 | 0.125 | 0.112 | 0.201 |
Somatic cell score (SCS, points) | 0.379 | 0.847 | 1.608 | 0.133 | 0.119 | 0.148 |
Morphological aspects traits: | ||||||
Udder volume factor (F2-UV) | 0.244 | 0.594 | 0.309 | 0.254 | 0.364 | |
Udder conformation factor (F3-UC) | 0.300 | 0.597 | 0.325 | 0.274 | 0.388 | |
Rear legs factor (F7-RL) | 0.208 | 0.661 | 0.238 | 0.181 | 0.241 | |
Head typicality (HT) | 13.001 | 21.600 | 0.374 | 0.304 | 0.417 | |
Beef traits: | ||||||
Rear muscularity (RM) | 9.144 | 18.214 | 0.328 | 0.279 | 0.385 | |
Average daily gain (ADG, kg/d) | 2.631 | 6.590 | 0.282 | 0.094 | 0.494 | |
SEUROP (points) | 0.529 | 0.863 | 0.376 | 0.184 | 0.567 | |
Carcass yield (CY, %) | 9.180 | 8.972 | 0.501 | 0.310 | 0.697 |
TRAITS 1 | MY | FY | PY | SCS | F2−UV | F3−UC | F7−RL | HT | RM | ADG | SEUROP | CY |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MY | 0.758 | 0.845 | 0.069 | 0.330 | −0.444 | 0.060 | −0.091 | −0.458 | −0.071 | −0.240 | −0.156 | |
FY | 0.768 | 0.824 | 0.067 | 0.286 | −0.326 | 0.045 | −0.136 | −0.413 | −0.092 | 0.029 | −0.103 | |
PY | 0.905 | 0.766 | 0.088 | 0.289 | −0.423 | 0.099 | −0.163 | −0.397 | −0.066 | 0.175 | −0.156 | |
SCS | −0.149 | −0.08 | −0.111 | 0.246 | 0.149 | 0.190 | −0.109 | −0.156 | −0.184 | −0.008 | −0.259 | |
F2−UV | 0.240 | 0.172 | 0.211 | −0.001 | −0.208 | 0.097 | 0.129 | −0.319 | −0.121 | −0.351 | −0.359 | |
F3−UC | −0.122 | −0.067 | −0.104 | 0.0122 | 0.003 | 0.098 | 0.079 | 0.346 | −0.128 | 0.067 | 0.061 | |
F7−RL | 0.02 | 0.014 | 0.021 | 0.012 | 0.033 | 0.01 | 0.075 | −0.324 | 0.148 | −0.156 | −0.159 | |
HT | −0.02 | −0.012 | −0.023 | −0.022 | 0.07 | 0.021 | 0.085 | 0.075 | −0.189 | 0.208 | 0.171 | |
RM | −0.134 | −0.079 | −0.086 | 0.001 | −0.120 | 0.128 | −0.177 | 0.085 | 0.656 | 0.798 | 0.849 | |
ADG | −0.014 | −0.108 | −0.015 | −0.046 | −0.034 | −0.037 | 0.043 | −0.604 | 0.182 | 0.839 | 0.545 | |
SEUROP | −0.057 | 0.006 | 0.034 | −0.002 | −0.133 | 0.025 | −0.052 | 0.087 | 0.276 | 0.621 | 0.928 | |
CY | −0.047 | −0.024 | −0.041 | −0.07 | −0.109 | 0.019 | −0.041 | 0.06 | 0.241 | 0.545 | 0.825 |
Scenario | MY | FY | PY | SCS | F2−UV | F3−UC | F7−RL | HT | RM | ADG | SEUROP | CY | Milk 2 | Morph. 3 | Beef 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0 | 0.24 | 0.46 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.2 | 0 | 0 | 0.7 | 0 | 0.3 |
S2 | 0 | 0.24 | 0.46 | 0 5 | 0 | 0 | 0 | 0 | 0.1 | 0.2 | 0 | 0 | 0.7 | 0 | 0.3 |
S3 | 0 | 0.24 | 0.46 | 0 5 | 0 | 0 | 0 | 0 | 0 5 | 0.3 | 0 | 0 | 0.7 | 0 | 0.3 |
S4 | 0 | 0.217 | 0.433 | 0 | 0 | 0.07 | 0 | 0.03 | 0.15 | 0 | 0.05 | 0.05 | 0.65 | 0.1 | 0.25 |
S5 | 0 | 0.217 | 0.433 | 0 | 0 | 0.035 | 0 | 0.015 | 0.2 | 0 | 0.05 | 0.05 | 0.65 | 0.05 | 0.3 |
S6 | 0 | 0.18 | 0.37 | 0 | 0 | 0.07 | 0 | 0.03 | 0.15 | 0 | 0.1 | 0.1 | 0.55 | 0.1 | 0.35 |
S7 | 0 | 0.18 | 0.37 | 0 | 0 | 0.035 | 0 | 0.015 | 0.2 | 0 | 0.1 | 0.1 | 0.55 | 0.05 | 0.4 |
S9 | 0 | 0.24 | 0.46 | 0 5 | 0 | 0 5 | 0 5 | 0 5 | 0.2 | 0 | 0.05 | 0.05 | 0.7 | 0 | 0.3 |
Scenario | MY | FY | PY | SCS | F2−UV | F3−UC | F7−RL | HT | RM | ADG | SEUROP | CY | Milk 2 | Morph. 3 | Beef 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 0 | 0.24 | 0.46 | 0 | 0 | 0 | 0 | 0 | 0.1 | 0.2 | 0 | 0 | 0.7 | 0 | 0.3 |
S2 | 0 | 0.186 | 0.356 | −0.225 5 | 0 | 0 | 0 | 0 | 0.077 | 0.155 | 0 | 0 | 0.768 | 0 | 0.232 |
S3 | 0 | 0.175 | 0.335 | −0.220 5 | 0 | 0 | 0 | 0 | 0.052 5 | 0.218 | 0 | 0 | 0.730 | 0 | 0.270 |
S4 | 0 | 0.217 | 0.433 | 0 | 0 | 0.07 | 0 | 0.03 | 0.15 | 0 | 0.05 | 0.05 | 0.65 | 0.1 | 0.25 |
S5 | 0 | 0.217 | 0.433 | 0 | 0 | 0.035 | 0 | 0.015 | 0.2 | 0 | 0.05 | 0.05 | 0.65 | 0.05 | 0.3 |
S6 | 0 | 0.18 | 0.37 | 0 | 0 | 0.07 | 0 | 0.03 | 0.15 | 0 | 0.1 | 0.1 | 0.55 | 0.1 | 0.35 |
S7 | 0 | 0.18 | 0.37 | 0 | 0 | 0.035 | 0 | 0.015 | 0.2 | 0 | 0.1 | 0.1 | 0.55 | 0.05 | 0.4 |
S8 | 0 | 0.153 | 0.294 | −0.134 5 | 0 | 0.160 5 | 0.052 5 | 0.015 5 | 0.128 | 0 | 0.032 | 0.032 | 0.581 | 0.227 | 0.191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancin, E.; Sartori, C.; Guzzo, N.; Tuliozi, B.; Mantovani, R. Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed. Animals 2021, 11, 1340. https://doi.org/10.3390/ani11051340
Mancin E, Sartori C, Guzzo N, Tuliozi B, Mantovani R. Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed. Animals. 2021; 11(5):1340. https://doi.org/10.3390/ani11051340
Chicago/Turabian StyleMancin, Enrico, Cristina Sartori, Nadia Guzzo, Beniamino Tuliozi, and Roberto Mantovani. 2021. "Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed" Animals 11, no. 5: 1340. https://doi.org/10.3390/ani11051340
APA StyleMancin, E., Sartori, C., Guzzo, N., Tuliozi, B., & Mantovani, R. (2021). Selection Response Due to Different Combination of Antagonistic Milk, Beef, and Morphological Traits in the Alpine Grey Cattle Breed. Animals, 11(5), 1340. https://doi.org/10.3390/ani11051340