Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk
Abstract
:Simple Summary
Abstract
1. Introduction
2. Use of DM in Allergic Children
Study Design | Number of Children | Mean Age | Duration of Diet | Tolerance Outcome | Reference |
---|---|---|---|---|---|
Double-blind placebo-controlled food challenge | 30 with the IgE- and non-IgE-mediated CMPA 1 | 2.5 years (from 0.6 to 3.8 years) | 3 months | 96% | [26] |
Prospective study; double-blind, placebo-controlled food challenge | 46 with IgE- and non-IgE-mediated CMPA | 36 months (from 12 to 149 months) | 24 months | 82.6% of the total patients (78.8% of the children with IgE-mediated CMPA) | [23] |
Prospective study | 92 highly-problematic children with IgE- and the non-IgE-mediated CMPA | 27.3 months (from 7.5-to 121.5 months) | 48 months | 87% children with non-IgE-mediated CMPA (20/23) 91.3% with IgE-mediated CMPA. (63/69) | [24] |
Open challenge | 70 children including patients with prior anaphylaxis to CM 3 | 5.2 ± 5.3 months (from 6 months to 18 years) | / | 98.5% | [22] |
Open challenge | 70 children with proven IgE-CMPA; 11 patients with proven IgE-FPIES | 5.2 ± 5.3 years (from 6 months to 18 years); 4.73 ± 1.68 months (from 3 to 8 months) | / | 98.7% | [25] |
Open challenge | 6 with CM-FPIES 2 | 3.6 months (from 1.5 to 6 months) | / | 100% | [27] |
Open challenge | 30 with IgE- and non-IgE-mediated CMPA | 4,5 years (from 6 months to 11 years) | / | 96% | [31] |
Study Design | Number of Children | Age | Diet | Auxological Outcome | Reference |
---|---|---|---|---|---|
Prospective study | 16 with IgE-CMPA 1 and 6 CM-FPIES 2 | 20 months (range 9–79 months). | Integrated with DM for 6 months | No negative influence | [25] |
Randomized controlled trial | 156 preterm infants (77 assumed DM 3–fortifier) | 11 days (median age) | DM- fortifier vs. CM 4- fortifier; isocaloric and isoproteic diets for 21 days | Similar auxological outcomes than control group | [35] |
Randomized controlled trial | 122 children (77 assumed DM fortifier) | 18 months | DM–derived fortifier vs. CM fortifier | Similar auxological outcomes than control group | [37] |
3. Immunomodulatory Effects
4. Potential Antioxidant and Antihypertensive Effects
5. Effects on Glucose Metabolism and Potential Coadjutant Action in the Diabetes Treatment
- (1)
- reduction of inflammatory status and leptin/adiponectin ratio. The animals treated with DM showed a reduction in serum inflammatory mediators and in the leptin/adiponectin ratio [48]. These two hormones, derived from adipocytes, are involved in lipid metabolism, energy homeostasis and inflammation [56,57]. A high leptin to adiponectin ratio is related to insulin resistance [58] and a decrease in adiponectin was found linked to the onset of type 2 diabetes in animal models [59].
- (2)
- enhancement of antioxidant defense mechanisms [17], which protects against the development of insulin resistance.
- (3)
- modulation of mitochondrial dynamics that impacts on mitochondrial metabolism. Alteration of mitochondrial dynamics, function and efficiency has impact on several pathological conditions including metabolic diseases such as obesity and type 2 diabetes [60]. DM-treated rats showed more abundant, larger and electron-dense mitochondria in the skeletal muscle at electron microscopy analysis [49]. These characteristics have been associated to more active mitochondria with higher respiratory capacity and improved glucose metabolism [61].
- (4)
- down-regulation of two gluconeogenesis key enzymes: phosphoenolpyruvate carboxykinase 1 (Pck1) and glucose-6-phosphatase (G6PC) [17].
6. Effects on Lipid Metabolism
- An increase in oleylethanolamide (OEA) in the skeletal muscle and in the liver [48]. OEA increase is probably related to the high concentration of palmitic acid in the sn-2 position of the triacylglycerol backbone of DM [5,62]. This type of esterification is similar to that occurring in HM and allows a more effective C16:0 absorption since 2-monoacylglycerols of SFAs are more easily absorbed than free fatty acids (FFA). OEA has been identified as an important regulator of lipid metabolism and can enhance fatty acid oxidation in rats [63].
- Enhancement of carnitine palmitoyl-transferase (CPT) activity: Increased respiratory capacity in the skeletal muscle is likely related to an enhancement of CPT activity, which would further increase the entry of long-chain FFAs into the mitochondria, stimulating fatty acid oxidation [48]. CPT is a mitochondrial enzyme responsible for the formation of acyl carnitines by catalyzing the transfer of the acyl group of a long-chain fatty acyl-CoA from coenzyme A to l-carnitine. This reaction allows the increase in lipid oxidation for the movement of the acyl carnitine from the cytosol into the intermembrane space of mitochondria.
- Modulation of mitochondrial function, efficiency, and dynamics: Mitochondrial uncoupling is a dissociation between membrane potential generation and its use for ATP synthesis [64]. Mitochondrial uncoupling dissipates the proton gradient across the inner membrane and creates a futile cycle of glucose and fatty acid oxidation without generating ATP [65], thereby increasing lipid oxidation and reducing intracellular lipid content [66]. Mitochondrial uncoupling induces a less efficient utilization of lipid substrates. This decline in mitochondrial energy efficiency may also contribute to fat burning. Promoting this inefficient metabolism that generates heat instead of ATP, mitochondrial uncoupling can serve as a potential treatment for obesity [64].
7. Antiproliferative and Antitumor Effect
8. Protection of the Intestinal Barrier and Modulatory Effect of the Intestinal Flora
Experimental Model | Effects | Reference |
---|---|---|
Mouse insulinoma beta-pancreatic (MIN6) cells | Anti-diabetes action: DM in the medium (500 μg/mL) improved the viability of damaged pancreatic beta-cells | [17] |
DM 1 and fermented DM samples | Antioxidant activity of fermented DM samples Antihypertensive effect (ACE-inhibitory activity) in fermented DM | [18] |
Murine splenocytes | Immunological modulation: increase in IL-1, IL-6, TNF-α, IL-2 and IFN-γ | [42] |
A549 human lung cancer cells | Anti-proliferative activity induced by DM whey protein (MW 2 > 10 kDa), | |
Human peripheral blood mononuclear cells | Immunological activities: increase in IL-1 and IL-10 | [45] |
Experimental Model | Treatment | Effects | Reference |
---|---|---|---|
Balb/c mice with induced colitis | 3 DM 1 whey fraction (5%, 20% and 50% of lysozyme) for 14 days | Immunological activities: inhibition of IL-13 and TNF-α Improvement in the intestinal barrier and modulatory effects on the gut microbiota. | [46] |
14 elderly subjects ( from 72 to 97 years old) | 200 mL/day of DM for one month | Immunological activities: increase in IL-1, IL-6 and TNF-α | [47] |
Wistar rats | 3 g/kg day of DM powder for 4 weeks. | Antioxidant effects: tendency to increase SOD 2 activity in the plasma of diabetic rats | [17] |
Improvement of metabolism: Reduction in the blood glucose on type 2 diabetic rats and in insulin resistance | |||
Wistar rats | 48 mL/day of DM, for 4 weeks | Antioxidant effects: improvements in oxidative stress markers in the liver; increased activities of liver detoxifying enzymes, increase of antioxidants | [48,49] |
Improvement of metabolism: improved glucose disposal; decrease of blood triglycerides and of fat accumulation in muscles; modulation of the intestinal microbiota | |||
Swiss albino mice. with Ehrlich ascites carcinoma tumour | 0.5 mL/day of DM or kefir of DM for 10 days | Anti-proliferative activity: reduction in tumor volume and increased number of apoptotic cells in the groups treated with fermented DM, not in the groups treated with unfermented DM | [68] |
C57BL/6 mice ileitis induced | Orally treated with DM with the same total daily activity of lysozyme, i.e., 11800 UI in a total adjusted volume of 0.4 (± 0.05) mL for 7 days | Reduction of dysbiosis by mean of stimulation of the intestinal innate immunity | [72] |
9. Antibacterial Properties
- (a)
- (b)
- (c)
- Enterococcus faecalis (DSM 2352), which was inhibited by hydrolyzed DM [84].
Microorganism | Experimental Model | Reference |
---|---|---|
Listeria monocytogenes (2230/92; ATCC 19111; ATCC: 13932) | digested in vitro DM 1 and DM at concentration 1% on microtiter plates; | [19] |
in situ | [76,81] | |
Staphylococcus aureus (ATCC 8095) (minimal lethal concentration of 64 mg of DM concentrated to 50 folds/mL) | agar well diffusion | [82] |
Staphylococcus aureus (ATCC 8095 ATCC 25923 ATCC: 6538) and (DSM 25923) (by hydrolyzed DM) | in situ | [76,81,83,84] |
Enterococcus faecalis (DSM 2352) | hydrolyzed DM milk tested by inhibition halos test on agar plates | [84] |
Salmonella enterica serovar choleraesuis (CGMCC 1.1859) | Agar diffusion test | [85] |
Salmonella serovar enteritidis (ATCC 13076). and serovar Typhimurium (ATCC 14028) | In situ | [81,83]; |
Shigella dysenteriae(CGMCC 1.1869) | agar diffusion test and in situ | [85] |
Microsporum canis, and Microsporum gypseum (failed to grow at a concentration of 60% and 70% of donkey milk respectively) | microdilution test | [77] |
Trichophyton mentagrophytes and T. rubrum (minimal lethal concentration 32 mg of 50 folds concentrated DM/mL) | agar well diffusion test | [82] |
Echovirus type 5 | 1 mg of DM WP2 fractions/mL in the medium of growth of infected culture of human intestinal epithelial cell line Caco-2 | [84] |
10. Antifungal and Antiviral Properties
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Adams, F. The Genuine Works of Hippocrates. South. Med. J. 1922, 15, 519. [Google Scholar] [CrossRef]
- Pliny the Elder. In The Natural History. Book XXVIII “Remedies Derived from Living Creatures”; H. G. Bohn: London, UK, 1855.
- Lu, D.L.; Zhang, D.F.; Liu, P.L.; Dong, M.L. The nutrition value and exploitation of donkey milk. J. Dairy Sci. Technol. 2006, 29, 11–18. [Google Scholar]
- Lauzier, A.-C. Pratiques D’allaitement à Port-Royal et Aux Enfants-Assistés à la Fin du XIXe Siècle. Gynécologie et Obstétrique. 2011. HAL Id:dumas-00625364. Available online: https://dumas.ccsd.cnrs.fr/dumas-00625364 (accessed on 18 March 2021).
- Altomonte, I.; Salari, F.; Licitra, R.; Martini, M. Donkey and human milk: Insights into their compositional similarities. Int. Dairy J. 2019, 89, 111–118. [Google Scholar] [CrossRef]
- Massouras, T.; Triantaphyllopoulos, K.A.; Theodossiou, I. Chemical composition, protein fraction and fatty acid profile of donkey milk during lactation. Int. Dairy J. 2017, 75, 83–90. [Google Scholar] [CrossRef]
- Salgado, M.J.G.; Silva, A.R.; de Souza, C.O.; Lemos, P.V.F.; Oliveira, R.L.; Oliveira, C.A.D.A.; Ribeiro, C.V.D.M. Days in milk alters the milk fatty acid profile of grazing donkeys: A preliminary study. J. Anim. Physiol. Anim. Nutr. 2021, 1–6. [Google Scholar] [CrossRef]
- Martini, M.; Salari, F.; Licitra, R.; La Motta, C.; Altomonte, I. Lysozyme activity in donkey milk. Int. Dairy J. 2019, 96, 98–101. [Google Scholar] [CrossRef]
- Licitra, R.; Chessa, S.; Salari, F.; Gattolin, S.; Bulgari, O.; Altomonte, I.; Martini, M. Milk protein polymorphism in Amiata donkey. Livest. Sci. 2019, 230, 103845. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Short communication: Technological and seasonal variations of vitamin D and other nutritional components in donkey milk. J. Dairy Sci. 2018, 101, 8721–8725. [Google Scholar] [CrossRef] [Green Version]
- Vincenzetti, S.; Pucciarelli, S.; Santini, G.; Klimanova, Y.; Polzonetti, V.; Polidori, P. B-Vitamins Determination in Donkey Milk. Beverages 2020, 6, 46. [Google Scholar] [CrossRef]
- Calvano, C.D.; Glaciale, M.; Palmisano, F.; Cataldi, T.R. Glycosphingolipidomics of donkey milk by hydrophilic interaction liquid chromatography coupled to ESI and multistage MS. Electrophoresis 2018, 39, 1634–1644. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Bartaloni, F.; Salari, F. A preliminary investigation into the unsaponifiable fraction of donkey milk: Sterols of animal origin, phytosterols, and tocopherols. J. Dairy Sci. 2021, 104, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Lazarevic, J.; Tasic, T.; Popovic, S.; Banjac, V.; Djuragic, O.; Kokic, B.; Cabarkapa, I. Changes in milk composition of domestic Balkan donkeys’ breed during lactation periods. Acta Period. Technol. 2017, 48, 187–195. [Google Scholar] [CrossRef]
- Li, W.; Li, M.; Cao, X.; Han, H.; Kong, F.; Yue, X. Comparative analysis of whey proteins in donkey colostrum and mature milk using quantitative proteomics. Food Res. Int. 2020, 127, 108741. [Google Scholar] [CrossRef] [PubMed]
- Cunsolo, V.; Saletti, R.; Muccilli, V.; Gallina, S.; Di Francesco, A.; Foti, S. Proteins and bioactive peptides from donkey milk: The molecular basis for its reduced allergenic properties. Food Res. Int. 2017, 99, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fan, Y.; Shaikh, A.S.; Wang, Z.; Wang, D.; Tan, H. Dezhou donkey (Equus asinus) milk a potential treatment strategy for type 2 diabetes. J. Ethnopharmacol. 2020, 246, 112221. [Google Scholar] [CrossRef] [PubMed]
- Aspri, M.; Leni, G.; Galaverna, G.; Papademas, P. Bioactive properties of fermented donkey milk, before and after in vitro simulated gastrointestinal digestion. Food Chem. 2018, 268, 476–484. [Google Scholar] [CrossRef]
- Tidona, F.; Sekse, C.; Criscione, A.; Jacobsen, M.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes. Int. Dairy J. 2011, 21, 158–165. [Google Scholar] [CrossRef]
- Tidona, F.; Criscione, A.; Devold, T.G.; Bordonaro, S.; Marletta, D.; Vegarud, G.E. Protein composition and micelle size of donkey milk with different protein patterns: Effects on digestibility. Int. Dairy J. 2014, 35, 57–62. [Google Scholar] [CrossRef]
- Mignone, L.E. Whey protein: The “whey” forward for treatment of type 2 diabetes? World J. Diabetes 2015, 6, 1274–1284. [Google Scholar] [CrossRef]
- Barni, S.; Sarti, L.; Mori, F.; Muscas, G.; Belli, F.; Pucci, N.; Novembre, E. Tolerability and palatability of donkey’s milk in children with cow’s milk allergy. Pediatr. Allergy Immunol. 2018, 29, 329–331. [Google Scholar] [CrossRef]
- Monti, G.; Bertino, E.; Muratore, M.C.; Coscia, A.; Cresi, F.; Silvestro, L.; Fabris, C.; Fortunato, D.; Giuffrida, M.G.; Conti, A. Efficacy of donkey’s milk in treating highly problematic cow’s milk allergic children: An in vivo and in vitro study. Pediatr. Allergy Immunol. 2007, 18, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Monti, G.; Viola, S.; Baro, C.; Cresi, F.; Tovo, P.A.; Moro, G.; Ferrero, M.P.; Conti, A.; Bertino, E. Tolerability of donkey’s milk in 92 highly problematic cow’s milk allergic children. J. Biol. Regul. Homeost. Agents 2012, 26, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Sarti, L.; Martini, M.; Brajon, G.; Barni, S.; Salari, F.; Altomonte, I.; Ragona, G.; Mori, F.; Pucci, N.; Muscas, G.; et al. Donkey’s Milk in the Management of Children with Cow’s Milk protein allergy: Nutritional and hygienic aspects. Ital. J. Pediatr. 2019, 45, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vita, D.; Passalacqua, G.; Di Pasquale, G.; Caminiti, L.; Crisafulli, G.; Rulli, I.; Pajno, G.B. Ass’s milk in children with atopic dermatitis and cow’s milk allergy: Crossover comparison with goat’s milk. Pediatr. Allergy Immunol. 2007, 18, 594–598. [Google Scholar] [CrossRef] [PubMed]
- Mori, F.; Sarti, L.; Barni, S.; Pucci, N.; Belli, F.; Stagi, S.; Novembre, E. Donkey´s Milk Is Well Accepted and Tolerated by Infants With Cow´s Milk Food Protein–Induced Enterocolitis Syndrome: A Preliminary Study. J. Investig. Allergol. Clin. Immunol. 2017, 27, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Peeters, C.; Herman, A.; Baeck, M. Donkey’s milk allergy. Br. J. Dermatol. 2017, 177, 1760–1761. [Google Scholar] [CrossRef]
- Giorgis, V.; Rölla, G.; Raie, A.; Geuna, M.; Boita, M.; Lamberti, C.; Nebbia, S.; Giribaldi, M.; Giuffrida, M.; Brussino, L.; et al. A Case of Work-Related Donkey Milk Allergy. J. Investig. Allergol. Clin. Immunol. 2018, 28, 197–199. [Google Scholar] [CrossRef]
- Martini, M.; Swiontek, K.; Antonicelli, L.; Garritani, M.S.; Bilò, M.B.; Mistrello, G.; Amato, S.; Revets, D.; Ollert, M.; Morisset, M.; et al. Lysozyme, a new allergen in donkey’s milk. Clin. Exp. Allergy 2018, 48, 1521–1523. [Google Scholar] [CrossRef]
- Tesse, R.; Paglialunga, C.; Braccio, S.; Armenio, L. Adequacy and tolerance to ass’s milk in an Italian cohort of children with cow’s milk allergy. Ital. J. Pediatr. 2009, 35, 19. [Google Scholar] [CrossRef] [Green Version]
- Aranceta, J.; Pérez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Br. J. Nutr. 2012, 107, S8–S22. [Google Scholar] [CrossRef]
- Fiocchi, A.; Brozek, J.; Schünemann, H.; Bahna, S.L.; von Berg, A.; Beyer, K.; Bozzola, M.; Bradsher, J.; Compalati, E.; Ebisawa, M.; et al. World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow’s Milk Allergy (DRACMA) Guidelines. World Allergy Organ. J. 2010, 3, 57–161. [Google Scholar] [CrossRef] [Green Version]
- Muraro, M.A.; Giampietro, P.G.; Galli, E. Soy formulas and nonbovine milk. Ann. Allergy, Asthma Immunol. 2002, 89, 97–101. [Google Scholar] [CrossRef]
- Bertino, E.; Cavallarin, L.; Cresi, F.; Tonetto, P.; Peila, C.; Ansaldi, G.; Raia, M.; Varalda, A.; Giribaldi, M.; Conti, A.; et al. A Novel Donkey Milk–derived Human Milk Fortifier in Feeding Preterm Infants: A Randomized Controlled Trial. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 116–123. [Google Scholar] [CrossRef] [Green Version]
- Cresi, F.; Maggiora, E.; Pirra, A.; Tonetto, P.; Rubino, C.; Cavallarin, L.; Giribaldi, M.; Moro, G.E.; Peila, C.; Coscia, A. Effects on Gastroesophageal Reflux of Donkey Milk-Derived Human Milk Fortifier Versus Standard Fortifier in Preterm Newborns: Additional Data from the FortiLat Study. Nutrients 2020, 12, 2142. [Google Scholar] [CrossRef]
- Peila, C.; Spada, E.; DeAntoni, S.; Iuliano, E.; Moro, G.E.; Giribaldi, M.; Cavallarin, L.; Cresi, F.; Coscia, A. The “Fortilat” Randomized Clinical Trial Follow-Up: Neurodevelopmental Outcome at 18 Months of Age. Nutrients 2020, 12, 3807. [Google Scholar] [CrossRef]
- Corvaglia, L.; Zama, D.; Gualdi, S.; Ferlini, M.; Aceti, A.; Faldella, G. Gastro-oesophageal reflux increases the number of apnoeas in very preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2008, 94, F188–F192. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal evolution of true protein, amino acids and bioactive proteins in breast milk: A developmental perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Addo, C.N.A.; Ferragut, V. Evaluating the Ultra-High Pressure Homogenization (UHPH) and Pasteurization effects on the quality and shelf life of donkey milk. Int. J. Food Stud. 2015, 4, 104–115. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Mao, X.; Gu, J.; Sun, Y.; Xu, S.; Zhang, X.; Yang, H.; Ren, F. Anti-proliferative and anti-tumour effect of active components in donkey milk on A549 human lung cancer cells. Int. Dairy J. 2009, 19, 703–708. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Forsum, E.; Hambraeus, L. A Longitudinal Study of the Protein Content of Human Milk from Well-Nourished Swedish Mothers. Ann. Nutr. Metab. 1977, 21, 106–109. [Google Scholar] [CrossRef]
- Licitra, R.; Li, J.; Liang, X.; Altomonte, I.; Salari, F.; Yan, J.; Martini, M. Profile and content of sialylated oligosaccharides in donkey milk at early lactation. LWT 2019, 115, 108437. [Google Scholar] [CrossRef]
- Tafaro, A.; Magrone, T.; Jirillo, F.; Martemucci, G.; D’Alessandro, A.; Amati, L. Immunological Properties of Donkeys Milk: Its Potential Use in the Prevention of Atherosclerosis. Curr. Pharm. Des. 2007, 13, 3711–3717. [Google Scholar] [CrossRef]
- Jiang, L.; Lv, J.; Liu, J.; Hao, X.; Ren, F.; Guo, H. Donkey milk lysozyme ameliorates dextran sulfate sodium-induced colitis by improving intestinal barrier function and gut microbiota composition. J. Funct. Foods 2018, 48, 144–152. [Google Scholar] [CrossRef]
- Amati, L.; Marzulli, G.; Martulli, M.; Tafaro, A.; Jirillo, F.; Pugliese, V.; Martemucci, G.; D’Alessandro, A. Donkey and Goat Milk Intake and Modulation of the Human Aged Immune Response. Curr. Pharm. Des. 2010, 16, 864–869. [Google Scholar] [CrossRef] [PubMed]
- Trinchese, G.; Cavaliere, G.; De Filippo, C.; Aceto, S.; Prisco, M.; Chun, J.T.; Penna, E.; Negri, R.; Muredda, L.; Demurtas, A.; et al. Human Milk and Donkey Milk, Compared to Cow Milk, Reduce Inflammatory Mediators and Modulate Glucose and Lipid Metabolism, Acting on Mitochondrial Function and Oleylethanolamide Levels in Rat Skeletal Muscle. Front. Physiol. 2018, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Trinchese, G.; Cavaliere, G.; Canani, R.B.; Matamoros, S.; Bergamo, P.; De Filippo, C.; Aceto, S.; Gaita, M.; Cerino, P.; Negri, R.; et al. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota. J. Nutr. Biochem. 2015, 26, 1136–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Chiozzi, R.Z.; Laganà, A. Peptidome characterization and bioactivity analysis of donkey milk. J. Proteom. 2015, 119, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Chiozzi, R.Z.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Samperi, R.; Laganà, A. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 5657–5666. [Google Scholar] [CrossRef]
- Ugidos-Rodríguez, S.; Matallana-González, M.C.; Sánchez-Mata, M.C. Lactose malabsorption and intolerance: A review. Food Funct. 2018, 9, 4056–4068. [Google Scholar] [CrossRef]
- Kaskous, S. Cow’s milk consumption and risk of disease. Emir. J. Food Agric. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Nilsson, M.; Stenberg, M.; Frid, A.H.; Holst, J.J.; Björck, I.M.E. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: The role of plasma amino acids and incretins. Am. J. Clin. Nutr. 2004, 80, 1246–1253. [Google Scholar] [CrossRef]
- Weng, J.; Ji, L.; Jia, W.; Lu, J.; Zhou, Z.; Zou, D.; Zhu, D.; Chen, L.; Chen, L.; Guo, L.; et al. Standards of care for type 2 diabetes in China. Diabetes/Metab. Res. Rev. 2016, 32, 442–458. [Google Scholar] [CrossRef]
- Minokoshi, Y.; Kim, Y.-B.; Peroni, O.D.; Fryer, L.G.D.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Cell Biol. 2002, 415, 339–343. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Oda, N.; Imamura, S.; Fujita, T.; Uchida, Y.; Inagaki, K.; Kakizawa, H.; Hayakawa, N.; Suzuki, A.; Takeda, J.; Horikawa, Y.; et al. The ratio of leptin to adiponectin can be used as an index of insulin resistance. Metabolism 2008, 57, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Chakraborti, C.K. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World J. Diabetes 2015, 6, 1296–1308. [Google Scholar] [CrossRef]
- Cavaliere, G.; Trinchese, G.; Bergamo, P.; De Filippo, C.; Mattace Raso, G.; Gifuni, G.; Putti, R.; Moni, B.H.; Canani, R.B.; Meli, R.; et al. Polyunsaturated Fatty Acids Attenuate Diet Induced Obesity and Insulin Resistance, Modulating Mitochondrial Respiratory Uncoupling in Rat Skeletal Muscle. PLoS ONE 2016, 11, e0149033. [Google Scholar] [CrossRef] [Green Version]
- Mannella, C.A. The relevance of mitochondrial membrane topology to mitochondrial function. Biochim. Biophys. Acta 2006, 1762, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2015, 56, 1952–1959. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Chen, L.; Lin, X.; Xu, Y.; Ren, J.; Fu, J.; Qiu, Y. Effect of oleoylethanolamide on diet-induced nonalcoholic fatty liver in rats. J. Pharmacol. Sci. 2015, 127, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Demine, S.; Renard, P.; Arnould, T. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Tseng, Y.-H.; Cypess, A.M.; Kahn, C.R. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 2010, 9, 465–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, M.-E.; Green, K.; Brand, M.D. The Efficiency of Cellular Energy Transduction and Its Implications for Obesity. Annu. Rev. Nutr. 2008, 28, 13–33. [Google Scholar] [CrossRef]
- Li, Q.; Li, M.; Zhang, J.; Shi, X.; Yang, M.; Zheng, Y.; Cao, X.; Yue, X.; Ma, S. Donkey milk inhibits triple-negative breast tumor progression and is associated with increased cleaved-caspase-3 expression. Food Funct. 2020, 11, 3053–3065. [Google Scholar] [CrossRef] [PubMed]
- Esener, O.; Balkan, B.; Armutak, E.; Uvez, A.; Yildiz, G.; Hafizoglu, M.; Yilmazer, N.; Gurel-Gurevin, E. Donkey milk kefir induces apoptosis and suppresses proliferation of Ehrlich ascites carcinoma by decreasing iNOS in mice. Biotech. Histochem. 2018, 93, 424–431. [Google Scholar] [CrossRef]
- Vannini, F.; Kashfi, K.; Nath, N. The dual role of iNOS in cancer. Redox Biol. 2015, 6, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Taskin, E.I.; Kapucu, A.; Akgün-Dar, K.; Yagci, A.; Caner, M.; Firat, U.B.; Firat, I.; Dogruman, H. Effects of an oral treatment with concentrated grape juice (ENT) on cell NOS (eNOS and iNOS) expression and proliferation in experimentally induced carcinoma in mice. Rev. Méd. Vét. 2008, 159, 123–129. [Google Scholar]
- Doherty, A.M.; Lodge, C.J.; Dharmage, S.C.; Dai, X.; Bode, L.; Lowe, A.J. Human Milk Oligosaccharides and Associations With Immune-Mediated Disease and Infection in Childhood: A Systematic Review. Front. Pediatr. 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Yvon, S.; Olier, M.; Leveque, M.; Jard, G.; Tormo, H.; Haimoud-Lekhal, D.A.; Peter, M.; Eutamène, H. Donkey milk consumption exerts anti-inflammatory properties by normalizing antimicrobial peptides levels in Paneth’s cells in a model of ileitis in mice. Eur. J. Nutr. 2018, 57, 155–166. [Google Scholar] [CrossRef]
- Yvon, S.; Schwebel, L.; Belahcen, L.; Tormo, H.; Peter, M.; Haimoud-Lekhal, D.A.; Eutamene, H.; Jard, G. Effects of thermized donkey milk with lysozyme activity on altered gut barrier in mice exposed to water-avoidance stress. J. Dairy Sci. 2019, 102, 7697–7706. [Google Scholar] [CrossRef]
- Marletta, D.; Tidona, F.; Bordonaro, S. Donkey Milk Proteins: Digestibility and Nutritional Significance. In Milk Proteins—From Structure to Biological Properties and Health Aspects; Gigli, I., Ed.; InTech: Rijeka, Croatia, 2016; pp. 199–209. [Google Scholar]
- Penders, J.; Gerhold, K.; Stobberingh, E.E.; Thijs, C.; Zimmermann, K.; Lau, S.; Hamelmann, E. Establishment of the intestinal microbiota and its role for atopic dermatitis in early childhood. J. Allergy Clin. Immunol. 2013, 132, 601–607.e8. [Google Scholar] [CrossRef]
- Saric, L.; Saric, B.; Kravic, S.; Plavsic, D.; Milovanovic, I.; Gubić, J.M.; Nedeljković, N.M. Antibacterial activity of domestic Balkan donkey milk toward Listeria monocytogenes and Staphylococcus aureus. Food Feed. Res. 2014, 41, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Altomonte, I.; Nardoni, S.; Mancianti, F.; Perrucci, S.; Licitra, R.; Salari, F.; Martini, M. Preliminary results on antifungal activity of donkey milk. Large Anim. Rev. 2019, 25, 179–181. [Google Scholar]
- Ozturkoglu-Budak, S. Effect of different treatments on the stability of lysozyme, lactoferrin and β-lactoglobulin in donkey’s milk. Int. J. Dairy Technol. 2018, 71, 36–45. [Google Scholar] [CrossRef]
- Brumini, D.; Criscione, A.; Bordonaro, S.; Vegarud, G.E.; Marletta, D. Whey proteins and their antimicrobial properties in donkey milk: A brief review. Dairy Sci. Technol. 2016, 96, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Murua, A.; Todorov, S.; Vieira, A.; Martinez, R.; Cencič, A.; Franco, B. Isolation and identification of bacteriocinogenic strain of Lactobacillus plantarum with potential beneficial properties from donkey milk. J. Appl. Microbiol. 2013, 114, 1793–1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebrahimi, A.; Moosavy, M.; Khatibi, S.A.; Barabadi, Z.; Hajibemani, A. A comparative study of the antibacterial properties of milk from different domestic animals. Int. J. Dairy Technol. 2021, 74, 425–430. [Google Scholar] [CrossRef]
- Koutb, M.; Khider, M.; Ali, E.H.; Hussein, N.A. Antimicrobial Activity of Donkey Milk against Dermatomycotic Fungi and Foodborne Bacteria. Int. J. Biomed. Mater. Res. 2016, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Šarić, L.Ć.; Šarić, B.M.; Mandić, A.I.; Torbica, A.M.; Tomić, J.M.; Cvetković, D.D.; Okanović, Đ.G. Antibacterial properties of Domestic Balkan donkeys’ milk. Int. Dairy J. 2012, 25, 142–146. [Google Scholar] [CrossRef]
- Nazzaro, F. Isolation of Components with Antimicrobial Property from the Donkey Milk: A Preliminary Study. Open Food Sci. J. 2010, 4, 43–47. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Zhao, L.; Jiang, L.; Dong, M.-L.; Ren, F.-Z. The antimicrobial activity of donkey milk and its microflora changes during storage. Food Control. 2008, 19, 1191–1195. [Google Scholar] [CrossRef]
- Brumini, D.; Furlund, C.B.; Comi, I.; Devold, T.G.; Marletta, D.; Vegarud, G.E.; Jonassen, C.M. Antiviral activity of donkey milk protein fractions on echovirus type 5. Int. Dairy J. 2013, 28, 109–111. [Google Scholar] [CrossRef]
- Tinari, A.; Pietrantoni, A.; Ammendolia, M.G.; Valenti, P.; Superti, F. Inhibitory activity of bovine lactoferrin against echovirus induced programmed cell death in vitro. Int. J. Antimicrob. Agents 2005, 25, 433–438. [Google Scholar] [CrossRef]
- Park, K.; Song, J.; Baek, K.; Lee, C.; Kim, D.; Cho, S.; Park, J.; Choi, Y.; Kang, B.; Choi, H.; et al. Genetic diversity of a Korean echovirus 5 isolate and response of the strain to five antiviral drugs. Virol. J. 2011, 8, 79. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martini, M.; Altomonte, I.; Tricò, D.; Lapenta, R.; Salari, F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals 2021, 11, 1382. https://doi.org/10.3390/ani11051382
Martini M, Altomonte I, Tricò D, Lapenta R, Salari F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals. 2021; 11(5):1382. https://doi.org/10.3390/ani11051382
Chicago/Turabian StyleMartini, Mina, Iolanda Altomonte, Domenico Tricò, Riccardo Lapenta, and Federica Salari. 2021. "Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk" Animals 11, no. 5: 1382. https://doi.org/10.3390/ani11051382
APA StyleMartini, M., Altomonte, I., Tricò, D., Lapenta, R., & Salari, F. (2021). Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals, 11(5), 1382. https://doi.org/10.3390/ani11051382