Assessment of the Relationship between Postpartum Health and Mid-Lactation Performance, Behavior, and Feed Efficiency in Holstein Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Early Lactation Sample Collection and Analysis
2.2. Mid-Lactation Sample Collection and Analysis
2.3. RFI Calculation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Hyperketonemia Descriptive Statistics
3.2. Association of HYK Diagnosis with Mid-lactation Performance and Efficiency
3.3. Association of Health Status with Mid-lactation Performance and Efficiency
3.4. Association of HYK Diagnosis with Mid-lactation Behavior
3.5. Association of Health Status with Mid-lactation Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goff, J.P.; Horst, R.L. Physiological Changes at Parturition and Their Relationship to Metabolic Disorders. J. Dairy Sci. 1997, 80, 1260–1268. [Google Scholar] [CrossRef]
- Drackley, J.K. ADSA foundation scholar award: Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Zwald, N.R.; Weigel, K.A.; Chang, Y.M.; Welper, R.D.; Clay, J.S. Genetic selection for health traits using producer-recorded data. I. Incidence rates, heritability estimates, and sire breeding values. J. Dairy Sci. 2004, 87, 4287–4294. [Google Scholar] [CrossRef] [Green Version]
- Bauman, D.E.; Currie, W.B. Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeostasis and Homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Leslie, K.E.; Duffield, T.F. Metabolic predictors of displaced abomasum in dairy cattle. J. Dairy Sci. 2005, 88, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Association between the proportion of sampled transition cows with increased nonesterified fatty acids and β-hydroxybutyrate and disease incidence, pregnancy rate, and milk production at the herd level. J. Dairy Sci. 2010, 93, 3595–3601. [Google Scholar] [CrossRef] [PubMed]
- Drackley, J.K.; Dann, H.M.; Douglas, G.N.; Janovick Guretzky, N.A.; Litherland, N.B.; Underwood, J.P.; Loor, J.J. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Mordak, R.; Anthony, S.P. Periparturient stress and immune suppression as a potential cause of retained placenta in highly productive dairy cows: Examples of prevention. Acta Vet. Scand. 2015, 57, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Effects of postpartum uterine diseases on milk production and culling in dairy cows. J. Dairy Sci. 2011, 94, 1339–1346. [Google Scholar] [CrossRef]
- Chapinal, N.; Carson, M.E.; LeBlanc, S.J.; Leslie, K.E.; Godden, S.; Capel, M.; Santos, J.E.P.; Overton, M.W.; Duffield, T.F. The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J. Dairy Sci. 2012, 95, 1301–1309. [Google Scholar] [CrossRef] [Green Version]
- Hostens, M.; Ehrlich, J.; Van Ranst, B.; Opsomer, G. On-farm evaluation of the effect of metabolic diseases on the shape of the lactation curve in dairy cows through the MilkBot lactation model. J. Dairy Sci. 2012, 95, 2988–3007. [Google Scholar] [CrossRef]
- Dubuc, J.; Denis-Robichaud, J. A dairy herd-level study of postpartum diseases and their association with reproductive performance and culling. J. Dairy Sci. 2017, 100, 3068–3078. [Google Scholar] [CrossRef] [Green Version]
- Probo, M.; Pascottini, O.B.; LeBlanc, S.; Opsomer, G.; Hostens, M. Association between metabolic diseases and the culling risk of high-yielding dairy cows in a transition management facility using survival and decision tree analysis. J. Dairy Sci. 2018, 101, 9419–9429. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Epidemiology of subclinical ketosis in early lactation dairy cattle. J. Dairy Sci. 2012, 95, 5056–5066. [Google Scholar] [CrossRef] [Green Version]
- McArt, J.A.A.; Nydam, D.V.; Overton, M.W. Hyperketonemia in early lactation dairy cattle: A deterministic estimate of component and total cost per case. J. Dairy Sci. 2015, 98, 2043–2054. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Arnold, L.M.; Stowe, C.J.; Harmon, R.J.; Bewley, J.M. Estimating US dairy clinical disease costs with a stochastic simulation model. J. Dairy Sci. 2017, 100, 1472–1486. [Google Scholar] [CrossRef] [Green Version]
- VandeHaar, M.J.; Armentano, L.E.; Weigel, K.; Spurlock, D.M.; Tempelman, R.J.; Veerkamp, R. Harnessing the genetics of the modern dairy cow to continue improvements in feed efficiency. J. Dairy Sci. 2016, 99, 4941–4954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.; Friggens, N.C.; Berry, D.P.; Faverdin, P. Isolating the cow-specific part of residual energy intake in lactating dairy cows using random regressions. Animal 2018, 12, 1396–1404. [Google Scholar] [CrossRef]
- Pralle, R.S.; Amdall, J.D.; Fourdraine, R.H.; Oetzel, G.R.; White, H.M. Hyperketonemia predictions provide an on-farm management tool with epidemiological insights. Animals 2021, accepted. [Google Scholar]
- Rathbun, F.M.; Pralle, R.S.; Bertics, S.J.; Armentano, L.E.; Cho, K.; Do, C.; Weigel, K.A.; White, H.M. Relationships between body condition score change, prior mid-lactation phenotypic residual feed intake, and hyperketonemia onset in transition dairy cows. J. Dairy Sci. 2017, 100, 3685–3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, H.M. ADSA Foundation Scholar Award: Influencing hepatic metabolism: Can nutrient partitioning be modulated to optimize metabolic health in the transition dairy cow? J. Dairy Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.B.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckelkamp, E.A. Invited Review: Current state of wearable precision dairy technologies in disease detection. Appl. Anim. Sci. 2019, 35, 209–220. [Google Scholar] [CrossRef]
- Sailer, K.J.; Pralle, R.S.; Oliveira, R.C.; Erb, S.J.; Oetzel, G.R.; White, H.M. Technical note: Validation of the BHBCheck blood β-hydroxybutyrate meter as a diagnostic tool for hyperketonemia in dairy cows. J. Dairy Sci. 2018, 101, 1524–1529. [Google Scholar] [CrossRef]
- Caputo Oliveira, R.; Sailer, K.J.; Holdorf, H.T.; Seely, C.R.; Pralle, R.S.; Hall, M.B.; Bello, N.M.; White, H.M. Postpartum supplementation of fermented ammoniated condensed whey improved feed efficiency and plasma metabolite profile. J. Dairy Sci. 2019, 102, 2283–2297. [Google Scholar] [CrossRef]
- Dairy Record Managment Services. In DHI Glossary; DRMS: Ames, IA, USA, 2010.
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Wolfger, B.; Jones, B.W.; Orsel, K.; Bewley, J.M. Technical note: Evaluation of an ear-attached real-time location monitoring system. J. Dairy Sci. 2017, 100, 2219–2224. [Google Scholar] [CrossRef]
- Reiter, S.; Sattlecker, G.; Lidauer, L.; Kickinger, F.; Öhlschuster, M.; Auer, W.; Schweinzer, V.; Klein-Jöbstl, D.; Drillich, M.; Iwersen, M. Evaluation of an ear-tag-based accelerometer for monitoring rumination in dairy cows. J. Dairy Sci. 2018, 101, 3398–3411. [Google Scholar] [CrossRef] [Green Version]
- Schweinzer, V.; Gusterer, E.; Kanz, P.; Krieger, S.; Süss, D.; Lidauer, L.; Berger, A.; Kickinger, F.; Öhlschuster, M.; Auer, W.; et al. Evaluation of an ear-attached accelerometer for detecting estrus events in indoor housed dairy cows. Theriogenology 2019, 130, 19–25. [Google Scholar] [CrossRef]
- Tempelman, R.J.; Spurlock, D.M.; Coffey, M.; Veerkamp, R.F.; Armentano, L.E.; Weigel, K.A.; de Haas, Y.; Staples, C.R.; Connor, E.E.; Lu, Y.; et al. Heterogeneity in genetic and nongenetic variation and energy sink relationships for residual feed intake across research stations and countries. J. Dairy Sci. 2015, 98, 2013–2026. [Google Scholar] [CrossRef] [Green Version]
- Duffield, T.F.; Sandals, D.; Leslie, K.E.; Lissemore, K.; McBride, B.W.; Lumsden, J.H.; Dick, P.; Bagg, R. Efficacy of Monensin for the Prevention of Subclinical Ketosis in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2866–2873. [Google Scholar] [CrossRef]
- McArt, J.A.A.; Nydam, D.V.; Oetzel, G.R. Dry period and parturient predictors of early lactation hyperketonemia in dairy cattle. J. Dairy Sci. 2013, 96, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Mahrt, A.; Burfeind, O.; Heuwieser, W. Evaluation of hyperketonemia risk period and screening protocols for early-lactation dairy cows. J. Dairy Sci. 2015, 98, 3110–3119. [Google Scholar] [CrossRef] [Green Version]
- Vanholder, T.; Papen, J.; Bemers, R.; Vertenten, G.; Berge, A.C.B. Risk factors for subclinical and clinical ketosis and association with production parameters in dairy cows in the Netherlands. J. Dairy Sci. 2015, 98, 880–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffield, T.F.; Lissemore, K.D.; McBride, B.W.; Leslie, K.E. Impact of hyperketonemia in early lactation dairy cows on health and production. J. Dairy Sci. 2009, 92, 571–580. [Google Scholar] [CrossRef] [Green Version]
- Connor, E.E.; Hutchison, J.L.; Norman, H.D.; Olson, K.M.; Van Tassell, C.P.; Leith, J.M.; Baldwin VI, R.L. Use of residual feed intake in Holsteins during early lactation shows potential to improve feed efficiency through genetic selection. J. Anim. Sci. 2013, 91, 3978–3988. [Google Scholar] [CrossRef]
- Martin, M.J.; Dórea, J.R.R.; Borchers, M.R.; Wallace, R.L.; Bertics, S.J.; DeNise, S.K.; Weigel, K.A.; White, H.M. Comparison of methods to predict feed intake and residual feed intake using behavioral and metabolite data in addition to classical performance variables. J. Dairy Sci. 2021, 104. [Google Scholar] [CrossRef]
- de Souza, R.A.; Tempelman, R.J.; Allen, M.S.; VandeHaar, M.J. Updating predictions of dry matter intake of lactating dairy cows. J. Dairy Sci. 2019, 102, 7948–7960. [Google Scholar] [CrossRef] [Green Version]
- Chandler, T.L.; Pralle, R.S.; Dórea, J.R.R.; Poock, S.E.; Oetzel, G.R.; Fourdraine, R.H.; White, H.M. Predicting hyperketonemia by logistic and linear regression using test-day milk and performance variables in early-lactation Holstein and Jersey cows. J. Dairy Sci. 2018, 2476–2491. [Google Scholar] [CrossRef]
- Pralle, R.S.; Weigel, K.W.; White, H.M. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network. J. Dairy Sci. 2018, 101, 4378–4387. [Google Scholar] [CrossRef] [Green Version]
- van der Drift, S.G.A.; Jorritsma, R.; Schonewille, J.T.; Knijn, H.M.; Stegeman, J.A. Routine detection of hyperketonemia in dairy cows using Fourier transform infrared spectroscopy analysis of β-hydroxybutyrate and acetone in milk in combination with test-day information. J. Dairy Sci. 2012, 95, 4886–4898. [Google Scholar] [CrossRef] [Green Version]
- Nehme Marinho, M.; Zimpel, R.; Peñagaricano, F.; Santos, J.E.P. Assessing feed efficiency in early and mid lactation and its associations with performance and health in Holstein cows. J. Dairy Sci. 2021, 104, 5493–5507. [Google Scholar] [CrossRef]
- Tsai, I.C.; Mayo, L.M.; Jones, B.W.; Stone, A.E.; Janse, S.A.; Bewley, J.M. Precision dairy monitoring technologies use in disease detection: Differences in behavioral and physiological variables measured with precision dairy monitoring technologies between cows with or without metritis, hyperketonemia, and hypocalcemia. Livest. Sci. 2020, 104334. [Google Scholar] [CrossRef]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J. Dairy Sci. 2016, 99, 7395–7410. [Google Scholar] [CrossRef] [Green Version]
- Itle, A.J.; Huzzey, J.M.; Weary, D.M.; Keyserlingk, M.A.G. Von Clinical ketosis and standing behavior in transition cows. J. Dairy Sci. 2015, 98, 128–134. [Google Scholar] [CrossRef] [Green Version]
- Piñeiro, J.M.; Menichetti, B.T.; Barragan, A.A.; Relling, A.E.; Weiss, W.P.; Bas, S.; Schuenemann, G.M. Associations of pre- and postpartum lying time with metabolic, inflammation, and health status of lactating dairy cows. J. Dairy Sci. 2019, 102, 3348–3361. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; Leblanc, S.J.; Mcbride, B.W.; Duffield, T.F.; Devries, T.J. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 7473–7480. [Google Scholar] [CrossRef] [Green Version]
- Rutherford, A.J.; Oikonomou, G.; Smith, R.F. The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle. J. Dairy Sci. 2016, 4808–4815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grandl, F.; Luzi, S.P.; Furger, M.; Zeitz, J.O.; Leiber, F.; Ortmann, S.; Clauss, M.; Kreuzer, M.; Schwarm, A. Biological implications of longevity in dairy cows: 1. Changes in feed intake, feeding behavior, and digestion with age. J. Dairy Sci. 2016, 99, 3457–3471. [Google Scholar] [CrossRef] [Green Version]
- Soriani, N.; Trevisi, E.; Calamari, L. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J. Anim. Sci. 2012, 90, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Association of rumination time with subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 5604–5618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schirmann, K.; Weary, D.M.; Heuwieser, W.; Chapinal, N.; Cerri, R.L.A.; von Keyserlingk, M.A.G. Short communication: Rumination and feeding behaviors differ between healthy and sick dairy cows during the transition period. J. Dairy Sci. 2016, 99, 9917–9924. [Google Scholar] [CrossRef]
- Goldhawk, C.; Chapinal, N.; Veira, D.M.; Weary, D.M.; Keyserlingk, M.A.G. Von Prepartum feeding behavior is an early indicator of subclinical ketosis. J. Dairy Sci. 2009, 92, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part II. Mastitis. J. Dairy Sci. 2016, 99, 7411–7421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neave, H.W.; Lomb, J.; Weary, D.M.; LeBlanc, S.J.; Huzzey, J.M.; von Keyserlingk, M.A.G. Behavioral changes before metritis diagnosis in dairy cows. J. Dairy Sci. 2018, 101, 4388–4399. [Google Scholar] [CrossRef] [PubMed]
- Barragan, A.A.; Piñeiro, J.M.; Schuenemann, G.M.; Sanders, D.E.; Lakritz, J. Assessment of daily activity patterns and biomarkers of pain, inflammation, and stress in lactating dairy cows diagnosed with clinical metritis. J. Dairy Sci. 2018, 101, 8248–8258. [Google Scholar] [CrossRef]
- Gusterer, E.; Kanz, P.; Krieger, S.; Schweinzer, V.; Süss, D.; Lidauer, L.; Kickinger, F.; Ohlschuster, M.; Auer, W.; Drillich, M.; et al. Sensor technology to support herd health monitoring: Using rumination duration and activity measures as unspecific variables for the early detection of dairy cows with health deviations. Theriogenology 2020, 157, 61–69. [Google Scholar] [CrossRef]
- Stevenson, J.S.; Banuelos, S.; Mendonça, L.G.D. Transition dairy cow health is associated with first postpartum ovulation risk, metabolic status, milk production, rumination, and physical activity *. J. Dairy Sci. 2020, 103, 9573–9586. [Google Scholar] [CrossRef]
BHB Concentration (mmol/L) at Diagnosis | Days in Milk at Diagnosis | |||||
---|---|---|---|---|---|---|
Lactation Number | n | Incidence | Mean | SD | Mean | SD |
2 | 72 | 25.0% | 1.6 | 0.5 | 9.4 | 4.7 |
3 | 45 | 46.7% | 1.9 | 0.9 | 9.7 | 5.5 |
≥4 | 62 | 53.2% | 1.8 | 0.6 | 8.9 | 4.4 |
Lactation Number | Hyperketonemia | RP 3 | Metritis | Milk Fever | DA 4 | Mastitis |
---|---|---|---|---|---|---|
2 | 25% (18/72) | 7% (5/72) | 6% (4/72) | 0% (0/72) | 3% (2/72) | 1% (1/72) |
3 | 47% (21/45) | 7% (3/45) | 0% (0/45) | 0% (0/45) | 11% (5/45) | 7% (3/45) |
≥4 | 53% (33/45) | 8% (5/62) | 10% (6/62) | 6% (4/62) | 3% (2/62) | 6% (4/62) |
Diagnosis 1 | ||||
---|---|---|---|---|
Item 2 | nonHYK | HYK | SEM | p-Value |
DMI, kg/day | 31.6 | 32.0 | 0.4 | 0.35 |
BCS | 3.19 | 3.11 | 0.03 | 0.05 |
Body weight, kg | 747 | 734 | 7 | 0.14 |
Milk yield, kg/day | 50.4 | 51.9 | 0.6 | 0.06 |
FCM, kg/day | 50.2 | 52.2 | 0.6 | 0.01 |
ECM, kg/day | 51.0 | 52.6 | 0.6 | 0.03 |
Milk fat concentration 3, % | 3.50 | 3.55 | 0.06 | 0.03 |
Milk fat yield, kg/day | 1.75 | 1.83 | 0.03 | 0.03 |
Milk protein concentration, % | 3.06 | 3.01 | 0.02 | 0.14 |
Milk protein yield, kg/day | 1.54 | 1.56 | 0.02 | 0.53 |
RFI, kg/day | −0.18 | 0.22 | 0.20 | 0.13 |
FCM/DMI | 1.58 | 1.62 | 0.02 | 0.12 |
ECM/DMI | 1.65 | 1.68 | 0.02 | 0.27 |
Health Status 1 | |||||
---|---|---|---|---|---|
Item 2 | HLT | DIS | DIS+ | SEM | p-Value |
DMI, kg/day | 31.7 | 31.8 | 31.9 | 0.6 | 0.92 |
BCS | 3.18 | 3.13 | 3.16 | 0.05 | 0.46 |
Body weight, kg | 747 | 732 | 747 | 13 | 0.29 |
Milk yield, kg/day | 51.0 | 51.3 | 50.2 | 1.1 | 0.70 |
FCM, kg/day | 50.5 | 51.9 | 50.4 | 1.1 | 0.21 |
ECM, kg/day | 51.3 | 52.3 | 51.0 | 1.1 | 0.37 |
Milk fat concentration, % | 3.48 | 3.59 | 3.52 | 0.11 | 0.40 |
Milk fat yield, kg/day | 1.75 | 1.83 | 1.76 | 0.05 | 0.18 |
Milk protein concentration, % | 3.06 | 3.02 | 3.02 | 0.04 | 0.47 |
Milk protein yield, kg/day | 1.56 | 1.54 | 1.52 | 0.04 | 0.67 |
RFI, kg/day | −0.17 | 0.16 | 0.13 | 0.36 | 0.46 |
FCM/DMI | 1.59 | 1.62 | 1.58 | 0.03 | 0.40 |
ECM/DMI | 1.66 | 1.68 | 1.64 | 0.03 | 0.56 |
Diagnosis 1 | |||
---|---|---|---|
Behavior, min/Day | nonHYK | HYK | p-Value |
Lie | 809 [788, 831] | 808 [782, 834] | 0.92 |
Ruminate 2 | 587 [574, 601] | 607 [591, 623] | 0.61 |
Total active | 1034 [1021, 1047] | 1035 [1020, 1050] | 0.93 |
Active | 958 [943, 973] | 975 [957, 992] | 0.14 |
Highly active 3 | 48 [38, 61] | 32 [24, 41] | 0.02 |
Feedbunk | 221 [214, 228] | 225 [217, 233] | 0.46 |
Health Status 1 | ||||
---|---|---|---|---|
Behavior, min/Day | HLT | DIS | DIS+ | p-Value |
Lie | 808 [784, 832] | 809 [779, 839] | 810 [772, 848] | 1.00 |
Ruminate 2 | 586 [571, 601] | 598 [579, 616] | 618 [595, 642] | 0.51 |
Total active | 1036 [1022, 1050] | 1033 [1016, 1050] | 1031 [1009, 1053] | 0.93 |
Active | 957 [941, 974] | 976 [956, 996] | 967 [941, 993] | 0.37 |
Highly active 3 | 52 a [44, 66] | 28 b [21, 38] | 37 a,b [25, 56] | 0.01 |
Feedbunk | 221 [213, 228] | 223 [214, 233] | 228 [216, 240] | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.J.; Weigel, K.A.; White, H.M. Assessment of the Relationship between Postpartum Health and Mid-Lactation Performance, Behavior, and Feed Efficiency in Holstein Dairy Cows. Animals 2021, 11, 1385. https://doi.org/10.3390/ani11051385
Martin MJ, Weigel KA, White HM. Assessment of the Relationship between Postpartum Health and Mid-Lactation Performance, Behavior, and Feed Efficiency in Holstein Dairy Cows. Animals. 2021; 11(5):1385. https://doi.org/10.3390/ani11051385
Chicago/Turabian StyleMartin, Malia J., Kent A. Weigel, and Heather M. White. 2021. "Assessment of the Relationship between Postpartum Health and Mid-Lactation Performance, Behavior, and Feed Efficiency in Holstein Dairy Cows" Animals 11, no. 5: 1385. https://doi.org/10.3390/ani11051385
APA StyleMartin, M. J., Weigel, K. A., & White, H. M. (2021). Assessment of the Relationship between Postpartum Health and Mid-Lactation Performance, Behavior, and Feed Efficiency in Holstein Dairy Cows. Animals, 11(5), 1385. https://doi.org/10.3390/ani11051385