Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Building and Site Description
2.2. Data Acquisition
2.2.1. Measurement of Gas Concentrations
2.2.2. Climatic and Microclimatic Data Measurements
2.2.3. Barn Management and Cow Daily Routine Recordings
2.2.4. Behavioral Activity Recordings
2.3. Data Analysis and Statistical Modelling
2.3.1. Gas Concentration Distribution
2.3.2. Influence of Micro-Climate Parameters on gas Concentrations
2.3.3. Influence of Animal-Related Parameters
3. Results
3.1. Gas Concentrations Distribution
3.2. Effect of Climatic Parameters and Micro-Climate Conditions on Gas Concentrations
3.3. The Effect of THI on Gas Concentrations
3.4. Effect of CBBM on Gas Concentrations
4. Discussion
4.1. Gas Concentration Distribution
4.2. Methodological Considerations
4.3. Effect of THI on Gas Concentrations
4.4. Effect of CBBM on Gas Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Climate change and the global dairy cattle sector. In The Role of the Dairy Cattle Sector in a Low-Carbon Future; Global Agenda for Sustainable Livestock: Manhattan, KS, USA, 2019. [Google Scholar]
- Amon, B.; Stoumann, L. Housed Livestock, Manure Storage, Manure Processing Draft Section for a Guidance Document. 2019, pp. 1–27. Available online: https://ec.europa.eu/info/sites/info/files/livestock_housing_and_manure_storage_-_17sept19.pdf (accessed on 4 September 2020).
- Poteko, J.; Zähner, M.; Schrade, S. Effects of housing system, floor type and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosyst. Eng. 2019, 182, 16–28. [Google Scholar] [CrossRef]
- Baldini, C.; Borgonovo, F.; Gardoni, D.; Guarino, M. Comparison among NH3 and GHGs emissive patterns from different housing solutions of dairy farms. Atmos. Environ. 2016, 141, 60–66. [Google Scholar] [CrossRef]
- Wang, X.; Ndegwa, P.M.; Joo, H.; Neerackal, G.M.; Harrison, J.H.; Stöckle, C.O.; Liu, H. Reliable low-cost devices for monitoring ammonia concentrations and emissions in naturally ventilated dairy barns. Environ. Pollut. 2016, 208, 571–579. [Google Scholar] [CrossRef] [PubMed]
- VERA. Test Protocol for Livestock Housing and Management Systems. Verif. Environ. Technol. Agric. Prod. 2018, 2, 1–55. [Google Scholar]
- Mendes, L.B.; Pieters, J.G.; Snoek, D.; Ogink, N.W.; Brusselman, E.; Demeyer, P. Reduction of ammonia emissions from dairy cattle cubicle houses via improved management- or design-based strategies: A modeling approach. Sci. Total. Environ. 2017, 574, 520–531. [Google Scholar] [CrossRef]
- Saha, C.; Ammon, C.; Berg, W.; Fiedler, M.; Loebsin, C.; Sanftleben, P.; Brunsch, R.; Amon, T. Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci. Total. Environ. 2014, 468–469, 53–62. [Google Scholar] [CrossRef]
- Angrecka, S.; Herbut, P. The impact of natural ventilation on ammonia emissions from free stall barns. Pol. J. Environ. Stud. 2014, 23, 2303–2307. [Google Scholar]
- Porto, S.M.; D’Emilio, A.; Cascone, G. On the influence of the alternation of two different cooling systems on dairy cow daily activities. J. Agric. Eng. 2017, 48, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Honig, H.; Miron, J.; Lehrer, H.; Jackoby, S.; Zachut, M.; Zinou, A.; Portnick, Y.; Moallem, U. Performance and welfare of high-yielding dairy cows subjected to 5 or 8 cooling sessions daily under hot and humid climate. J. Dairy Sci. 2012, 95, 3736–3742. [Google Scholar] [CrossRef] [Green Version]
- Fournel, S.; Rousseau, A.N.; Laberge, B. Rethinking environment control strategy of confined animal housing systems through precision livestock farming. Biosyst. Eng. 2017, 155, 96–123. [Google Scholar] [CrossRef]
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosyst. Eng. 2020, 199, 83–96. [Google Scholar] [CrossRef]
- Fiedler, M.; Saha, C.K.; Ammon, C.; Berg, W.; Loebsin, C.; Sanftleben, P.; Amon, T. Spatial Distribution of Air Flow And CO2 Concentration in a Naturally Ventilated Dairy Building. Environ. Eng. Manag. J. 2014, 13, 2193–2200. [Google Scholar] [CrossRef]
- Saha, C.K.; Fiedler, M.; Ammon, C.; Berg, W.; Loebsin, C.; Amon, B.; Amon, T. Uncertainty in calculating air exchange rate of naturally ventilated dairy building based on point concentrations. Environ. Eng. Manag. J. 2014, 13, 2349–2355. [Google Scholar] [CrossRef]
- Mendes, L.B.; Ogink, N.W.M.; Edouard, N.; Van Dooren, H.J.C.; Tinôco, I.D.F.F.; Mosquera, J. NDIR Gas Sensor for Spatial Monitoring of Carbon Dioxide Concentrations in Naturally Ventilated Livestock Buildings. Sensors 2015, 15, 11239–11257. [Google Scholar] [CrossRef] [Green Version]
- König, M.; Hempel, S.; Janke, D.; Amon, B.; Amon, T. Variabilities in determining air exchange rates in naturally ventilated dairy buildings using the CO2 production model. Biosyst. Eng. 2018, 174, 249–259. [Google Scholar] [CrossRef]
- Zhang, G.; Strøm, J.; Li, B.; Rom, H.; Morsing, S.; Dahl, P.; Wang, C. Emission of Ammonia and Other Contaminant Gases from Naturally Ventilated Dairy Cattle Buildings. Biosyst. Eng. 2005, 92, 355–364. [Google Scholar] [CrossRef]
- Schrade, S.; Zeyer, K.; Gygax, L.; Emmenegger, L.; Hartung, E.; Keck, M. Ammonia emissions and emission factors of naturally ventilated dairy housing with solid floors and an outdoor exercise area in Switzerland. Atmos. Environ. 2012, 47, 183–194. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, G.; Kai, P. Ammonia and methane emissions from two naturally ventilated dairy cattle buildings and the influence of climatic factors on ammonia emissions. Atmos. Environ. 2012, 61, 232–243. [Google Scholar] [CrossRef]
- Saha, C.K.; Ammon, C.; Berg, W.; Loebsin, C.; Fiedler, M.; Brunsch, R.; Von Bobrutzki, K. The effect of external wind speed and direction on sampling point concentrations, air change rate and emissions from a naturally ventilated dairy building. Biosyst. Eng. 2013, 114, 267–278. [Google Scholar] [CrossRef]
- Rong, L.; Liu, D.; Pedersen, E.F.; Zhang, G. Effect of climate parameters on air exchange rate and ammonia and methane emissions from a hybrid ventilated dairy cow building. Energy Build. 2014, 82, 632–643. [Google Scholar] [CrossRef]
- Hempel, S.; Saha, C.K.; Fiedler, M.; Berg, W.; Hansen, C.; Amon, B.; Amon, T. Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn. Biosyst. Eng. 2016, 145, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Ngwabie, N.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows. Atmos. Environ. 2011, 45, 6760–6768. [Google Scholar] [CrossRef]
- Schmithausen, A.J.; Schiefler, I.; Trimborn, M.; Gerlach, K.; Südekum, K.-H.; Pries, M.; Büscher, W. Quantification of Methane and Ammonia Emissions in a Naturally Ventilated Barn by Using Defined Criteria to Calculate Emission Rates. Animals 2018, 8, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bava, L.; Tamburini, A.; Penati, C.; Riva, E.; Mattachini, G.; Provolo, G.; Sandrucci, A. Effects of feeding frequency and environmental conditions on dry matter intake, milk yield and behaviour of dairy cows milked in conventional or automatic milking systems. Ital. J. Anim. Sci. 2012, 11, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Calegari, F.; Calamari, L.; Frazzi, E. Misting and fan cooling of the rest area in a dairy barn. Int. J. Biometeorol. 2011, 56, 287–295. [Google Scholar] [CrossRef]
- D’Emilio, A.; Porto, S.M.; Cascone, G.; Bella, M.; Gulino, M. Mitigating heat stress of dairy cows bred in a free-stall barn by sprinkler systems coupled with forced ventilation. J. Agric. Eng. 2017, 48, 190–195. [Google Scholar] [CrossRef] [Green Version]
- LumaSenseTechnologies. Instruction Manual Instruction Manual. Int. Bus. 2003, pp. 1–26. Available online: https://innova.lumasenseinc.com/manuals/1409/ (accessed on 17 April 2018).
- Arcidiacono, C.; Porto, S.M.C.; Cascone, G. On ammonia concentrations in naturally ventilated dairy houses located in Sicily. Agric. Eng. Int. CIGR J. 2015, 2015, 294–310. [Google Scholar]
- Arcidiacono, C.; Mancino, M.; Porto, S. Moving mean-based algorithm for dairy cow’s oestrus detection from uniaxial-accelerometer data acquired in a free-stall barn. Comput. Electron. Agric. 2020, 175, 105498. [Google Scholar] [CrossRef]
- Overton, M.; Sischo, W.; Temple, G.; Moore, D. Using Time-Lapse Video Photography to Assess Dairy Cattle Lying Behavior in a Free-Stall Barn. J. Dairy Sci. 2002, 85, 2407–2413. [Google Scholar] [CrossRef]
- Fregonesi, J.; Veira, D.; Von Keyserlingk, M.; Weary, D. Effects of Bedding Quality on Lying Behavior of Dairy Cows. J. Dairy Sci. 2007, 90, 5468–5472. [Google Scholar] [CrossRef] [Green Version]
- National Research Council—NRC. In A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971.
- Bohmanova, J.; Misztal, I.; Cole, J. Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Ministero delle Politiche Agricole Alimentari e Forestali. Allerta caldo bovini da latte. Available online: https://www.politicheagricole.it/flex/FixedPages/Common/miepfy900_allerCaldo.php/L/IT (accessed on 4 January 2019).
- Zimbelman, R.B.; Collier, R. Feeding Strategies for High-Producing Dairy Cows during Periods of Elevated Feeding Strategies for High-Producing Dairy Cows during Periods of Elevated Heat and Humidity. In Proceedings of the Tri-State Dairy Nutrition Conference, Fort Wayne, ID, USA, 19–20 April 2011; pp. 111–125. [Google Scholar]
- Hempel, S.; König, M.; Menz, C.; Janke, D.; Amon, B.; Banhazi, T.M.; Estellés, F.; Amon, T. Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability. Biosyst. Eng. 2018, 166, 58–75. [Google Scholar] [CrossRef]
- Armstrong, D. Heat Stress Interaction with Shade and Cooling. J. Dairy Sci. 1994, 77, 2044–2050. [Google Scholar] [CrossRef]
- Ngwabie, N.; Jeppsson, K.-H.; Nimmermark, S.; Swensson, C.; Gustafsson, G. Multi-location measurements of greenhouse gases and emission rates of methane and ammonia from a naturally-ventilated barn for dairy cows. Biosyst. Eng. 2009, 103, 68–77. [Google Scholar] [CrossRef]
- Fiedler, A.; Müuller, H.-J. Emissions of ammonia and methane from a livestock building natural cross ventilation. Meteorol. Z. 2011, 20, 59–65. [Google Scholar] [CrossRef]
- Herbut, P.; Angrecka, S.; Nawalany, G. Influence of wind on air movement in a free stall barn during the summer period. Ann. Anim. Sci. 2013, 13, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, T.; Hartung, E.; Brose, G. Greenhouse gas emissions from animal houses and manure stores. Nutr. Cycl. Agroecosyst. 2001, 60, 133–145. [Google Scholar] [CrossRef]
- Arcidiacono, C. Engineered Solutions for Animal Heat Stress Abatement in Livestock Buildings. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/4705 (accessed on 31 March 2021).
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Zetouni, L.; Difford, G.; Lassen, J.; Byskov, M.; Norberg, E.; Løvendahl, P. Is rumination time an indicator of methane production in dairy cows? J. Dairy Sci. 2018, 101, 11074–11085. [Google Scholar] [CrossRef] [Green Version]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [Green Version]
W1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Gas | Central SLs | Perimeter SLs | Corner SLs | Outdoor SL | ||||||||
Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | |
CO2 | 724 a | 124 | 5 | 597 b | 43 | 1.7 | 580 b | 33 | 43 | 524 c | 19 | 0.7 |
CH4 | 15 a | 6 | 0.2 | 8 b | 3 | 0.1 | 7 b | 3 | 3 | 5 c | 2 | 0.1 |
NH3 | 7.4 a | 2.4 | 0.1 | 3.4 b | 0.8 | 0.03 | 1.8 c | 0.6 | 0.8 | 0.8 d | 0.1 | 4 × 10−3 |
W2 | ||||||||||||
Gas | Central SLs | Perimeter SLs | Corner SLs | Outdoor SL | ||||||||
Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | |
CO2 | 741 a | 102 | 4 | 603 b | 33 | 1 | 588 c | 24 | 0.9 | 530 d | 12 | 0.5 |
CH4 | 12 a | 5 | 0.2 | 5 c | 3 | 0.1 | 6 b | 2 | 0.1 | 4 d | 2 | 0.1 |
NH3 | 7.8 a | 2.0 | 0.1 | 3.4 b | 0.6 | 0.02 | 1.8 c | 0.4 | 0.02 | 0.8 d | 0.2 | 0.01 |
Climatic Parameter | W1 | W2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | Indoor | Outdoor | |||||||||
Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | Mean | SD | SEM | |
Air temperature (°C) | 26.6 a | 5.9 | 0.2 | 25.5 a | 5.9 | 0.2 | 27.4 a | 4.8 | 0.2 | 26.4 a | 4.5 | 0.2 |
Air relative humidity (%) | 57.9 a | 19.3 | 0.7 | 47.3 a | 18.7 | 0.7 | 55.2 a | 16.4 | 0.6 | 44.3 a | 16.1 | 0.6 |
Airflow velocity (ms−1) | 0.76 a | 0.50 | 0.02 | 1.95 a | 1.55 | 0.06 | 0.68 a | 0.39 | 0.02 | 1.24 b | 0.59 | 0.02 |
W1 (15.06.16–21.06.16) | W2 (1.07.16–07.07.16) | ||||||
---|---|---|---|---|---|---|---|
Range | Mean | SD | SEM | Range | Mean | SD | SEM |
CO2 | CO2 | ||||||
v ≤ 0.5 | 743 a | 177 | 10 | v ≤ 0.5 | 778 a | 157 | 9 |
v > 0.5 | 708 a | 164 | 9 | v > 0.5 | 705 b | 80 | 5 |
CH4 | CH4 | ||||||
v ≤ 0.5 | 17 a | 10 | 0.6 | v ≤ 0.5 | 15 a | 8 | 0.4 |
v > 0.5 | 13 b | 9 | 0.5 | v > 0.5 | 9 b | 4 | 0.2 |
NH3 | NH3 | ||||||
v ≤ 0.5 | 8.8 a | 2.4 | 0.1 | v ≤ 0.5 | 8.8 a | 2.2 | 0.1 |
v > 0.5 | 6.4 b | 2.0 | 0.1 | v > 0.5 | 6.6 b | 1.3 | 0.1 |
W1 (15.06.16–21.06.16). | W2 (1.07.16–07.07.16) | ||||||
---|---|---|---|---|---|---|---|
Range | Mean | SD | SEM | Range | Mean | SD | SEM |
CO2 | CO2 | ||||||
78 < THI < 84 | 1141 a | 234 | 33 | 78 < THI < 84 | 943 a | 169 | 20 |
72 < THI ≤ 78 | 843 b | 184 | 20 | 72 < THI ≤ 78 | 854 b | 160 | 16 |
68 ≤ THI ≤ 72 | 716 c | 81 | 8 | 68 ≤ THI ≤ 72 | 714 c | 58 | 5 |
THI < 68 | 656 d | 50 | 5 | THI < 68 | 675 c | 29 | 4 |
CH4 | CH4 | ||||||
78 < THI < 84 | 35 a | 13 | 2 | 78 < THI < 84 | 23 a | 10 | 1 |
72 < THI ≤ 78 | 18 b | 10 | 1 | 72 < THI ≤ 78 | 18 b | 9 | 0.9 |
68 ≤ THI ≤ 72 | 13 c | 5 | 0.5 | 68 ≤ THI ≤ 72 | 13 c | 5 | 0.5 |
THI < 68 | 12 c | 5 | 0.5 | THI < 68 | 9 d | 2 | 0.3 |
NH3 | NH3 | ||||||
72 < THI ≤ 78 | 9.3 a | 3.1 | 0.3 | 72 < THI ≤ 78 | 10.3 a | 2.1 | 0.2 |
68 ≤ THI ≤ 72 | 9.0 ab | 1.8 | 0.2 | 68 ≤ THI ≤ 72 | 8.5 b | 1.8 | 0.2 |
78 < THI < 84 | 8.3 ab | 3.4 | 0.5 | 78 < THI < 84 | 8.2 b | 2.4 | 0.3 |
THI < 68 | 8.2 b | 1.6 | 0.2 | THI < 68 | 8 b | 1 | 0.1 |
W1 (15.06.16–21.06.16) | W2 (1.07.16–07.07.16) | ||||||
---|---|---|---|---|---|---|---|
CBBM | Mean | SD | SEM | CBBM | Mean Value | SD | SEM |
CO2 | CO2 | ||||||
activity | 821 a | 206 | 17 | activity | 852 a | 168 | 12 |
cleaning | 735 b | 147 | 20 | cleaning | 775 b | 138 | 19 |
lying | 687 b | 105 | 10 | lying | 690 c | 50 | 5 |
CH4 | CH4 | ||||||
activity | 19 a | 12 | 1 | activity | 18 a | 9 | 0.6 |
cleaning | 15 b | 8 | 1 | cleaning | 18 a | 10 | 1 |
lying | 12 b | 5 | 0.5 | lying | 10 b | 4 | 0.4 |
NH3 | NH3 | ||||||
cleaning | 10.9 a | 1.9 | 0.3 | cleaning | 10.6 a | 1.4 | 0.2 |
activity | 8.8 b | 2.7 | 0.2 | activity | 9.0 b | 2.4 | 0.2 |
lying | 8.1 c | 1.6 | 0.2 | lying | 7.4 c | 0.8 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Urso, P.R.; Arcidiacono, C.; Valenti, F.; Cascone, G. Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate. Animals 2021, 11, 1400. https://doi.org/10.3390/ani11051400
D’Urso PR, Arcidiacono C, Valenti F, Cascone G. Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate. Animals. 2021; 11(5):1400. https://doi.org/10.3390/ani11051400
Chicago/Turabian StyleD’Urso, Provvidenza Rita, Claudia Arcidiacono, Francesca Valenti, and Giovanni Cascone. 2021. "Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate" Animals 11, no. 5: 1400. https://doi.org/10.3390/ani11051400
APA StyleD’Urso, P. R., Arcidiacono, C., Valenti, F., & Cascone, G. (2021). Assessing Influence Factors on Daily Ammonia and Greenhouse Gas Concentrations from an Open-Sided Cubicle Barn in Hot Mediterranean Climate. Animals, 11(5), 1400. https://doi.org/10.3390/ani11051400