Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Sample Collection, Measurements, and Analyses
2.3. Measurements of Milk and Milk Components
2.4. Blood Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Lactation Performance
3.2. Serum Minerals and Vitamin D3 Metabolites
3.3. Blood Biochemistry
3.4. Antioxidant and Immune Functions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Wilkens, M.R.; Nelson, C.D.; Hernandez, L.L.; McArt, J.A. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J. Dairy Sci. 2020, 103, 2909–2927. [Google Scholar] [CrossRef]
- Jahani-Moghadam, M.; Yansari, A.T.; Chashnidel, Y.; Dirandeh, E.; Mahjoubi, E. Short- and long-term effects of postpartum oral bolus v. subcutaneous Ca supplements on blood metabolites and productivity of Holstein cows fed a prepartum anionic diet. Animals 2020, 14, 983–990. [Google Scholar] [CrossRef]
- Martinez, N.; Sinedino, L.; Bisinotto, R.; Daetz, R.; Lopera, C.; Risco, C.; Galvão, K.; Thatcher, W.; Santos, J. Effects of oral calcium supplementation on mineral and acid-base status, energy metabolites, and health of postpartum dairy cows. J. Dairy Sci. 2016, 99, 8397–8416. [Google Scholar] [CrossRef] [Green Version]
- Domino, A.R.; Korzec, H.C.; McArt, J. Field trial of 2 calcium supplements on early lactation health and production in multiparous Holstein cows. J. Dairy Sci. 2017, 100, 9681–9690. [Google Scholar] [CrossRef]
- Guo, J.; Jones, A.; Givens, D.; Lovegrove, J.; Kliem, K. Effect of dietary vitamin D3 and 25-hydroxyvitamin D3 supplementation on plasma and milk 25-hydroxyvitamin D3 concentration in dairy cows. J. Dairy Sci. 2018, 101, 3545–3553. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Rodney, R.; Block, E.; Hernandez, L.; Nelson, C.; Lean, I.; Santos, J. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Health and reproductive responses. J. Dairy Sci. 2018, 101, 2563–2578. [Google Scholar] [CrossRef] [Green Version]
- Martinez, N.; Rodney, R.; Block, E.; Hernandez, L.; Nelson, C.; Lean, I.; Santos, J. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Lactation performance and energy metabolism. J. Dairy Sci. 2018, 101, 2544–2562. [Google Scholar] [CrossRef] [Green Version]
- Mokhtari, Z.; Hekmatdoost, A.; Nourian, M. Antioxidant efficacy of vitamin D. J. Parathyr. Dis. 2017, 5, 2345–6558. [Google Scholar]
- Nelson, C.D.; Reinhardt, T.A.; Lippolis, J.D.; Sacco, R.E.; Nonnecke, B.J. Vitamin D Signaling in the Bovine Immune System: A Model for Understanding Human Vitamin D Requirements. Nutr. 2012, 4, 181–196. [Google Scholar] [CrossRef]
- National Research Council. Nutr. Requir. Dairy Cattle 2001. [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis; Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Wildman, E.E.; Jones, G.M.; Wagner, P.E.; Boman, R.L.; Troutt, H.; Lesch, T.N. A Dairy Cow Body Condition Scoring System and Its Relationship to Selected Production Characteristics. J. Dairy Sci. 1982, 65, 495–501. [Google Scholar] [CrossRef]
- Oetzel, G.; Miller, B. Effect of oral calcium bolus supplementation on early-lactation health and milk yield in commercial dairy herds. J. Dairy Sci. 2012, 95, 7051–7065. [Google Scholar] [CrossRef] [Green Version]
- Zinser, G.M.; Welsh, J. Accelerated Mammary Gland Development during Pregnancy and Delayed Postlactational Involution in Vitamin D3 Receptor Null Mice. Mol. Endocrinol. 2004, 18, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Poindexter, M.B.; Kweh, M.F.; Zimpel, R.; Zuniga, J.; Lopera, C.; Zenobi, M.G.; Jiang, Y.; Engstrom, M.; Celi, P.; Santos, J.E.; et al. Feeding supplemental 25-hydroxyvitamin D3 increases serum mineral concentrations and alters mammary immunity of lactating dairy cows. J. Dairy Sci. 2020, 103, 805–822. [Google Scholar] [CrossRef] [PubMed]
- Schröder, B.; Wilkens, M.R.; Ricken, G.E.; Leonhard-Marek, S.; Fraser, D.R.; Breves, G. Calcium transport in bovine rumen epithelium as affected by luminal Ca concentrations and Ca sources. Physiol. Rep. 2015, 3, e12615. [Google Scholar] [CrossRef] [PubMed]
- Wilkens, M.; Oberheide, I.; Schröder, B.; Azem, E.; Steinberg, W.; Breves, G. Influence of the combination of 25-hydroxyvitamin D3 and a diet negative in cation-anion difference on peripartal calcium homeostasis of dairy cows. J. Dairy Sci. 2012, 95, 151–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez, E.; Arís, A.; Bach, A. Associations between subclinical hypocalcemia and postparturient diseases in dairy cows. J. Dairy Sci. 2017, 100, 7427–7434. [Google Scholar] [CrossRef] [PubMed]
- Weiss, W.; Azem, E.; Steinberg, W.; Reinhardt, T. Effect of feeding 25-hydroxyvitamin D3 with a negative cation-anion difference diet on calcium and vitamin D status of periparturient cows and their calves. J. Dairy Sci. 2015, 98, 5588–5600. [Google Scholar] [CrossRef] [Green Version]
- Alimirzaei, M.; Alijoo, Y.; Dehghan-Banadaky, M.; Eslamizad, M. The effects of feeding high or low milk levels in early life on growth performance, fecal microbial count and metabolic and inflammatory status of Holstein female calves. Animals 2020, 14, 303–311. [Google Scholar] [CrossRef]
- Yang, J.; Tian, G.; Chen, D.; Zheng, P.; Yu, J.; Mao, X.; He, J.; Luo, Y.; Luo, J.; Huang, Z.; et al. Effects of dietary 25-hydroxyvitamin D3 supplementation on growth performance, immune function and antioxidative capacity in weaned piglets. Arch. Anim. Nutr. 2018, 73, 44–51. [Google Scholar] [CrossRef]
- Wiseman, H. Vitamin D is a membrane antioxidant Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 1993, 326, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.M.Y.; Chen, K.B.; Chao, P.L. Antioxidative Effect of Vitamin D3 on Zinc-Induced Oxidative Stress in CNS. Ann. N. Y. Acad. Sci. 2008, 1053, 319–329. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Defrance, T.; Vanbervliet, B.; Brière, F.; Durand, I.; Rousset, F.; Banchereau, J. Interleukin 10 and transforming growth factor beta cooperate to induce anti-CD40-activated naive human B cells to secrete immunoglobulin A. J. Exp. Med. 1992, 175, 671–682. [Google Scholar] [CrossRef] [PubMed]
- Heine, G.; Niesner, U.; Chang, H.-D.; Steinmeyer, A.; Zügel, U.; Zuberbier, T.; Radbruch, A.; Worm, M. 1,25-dihydroxyvitamin D3promotes IL-10 production in human B cells. Eur. J. Immunol. 2008, 38, 2210–2218. [Google Scholar] [CrossRef]
- Baba, Y.; Kurosaki, T. Impact of Ca2+ signaling on B cell function. Trends Immunol. 2011, 32, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Baeke, F.; Korf, H.; Overbergh, L.; van Etten, E.; Verstuyf, A.; Gysemans, C.; Mathieu, C. Human T lymphocytes are direct targets of 1,25-dihydroxyvitamin D3 in the immune system. J. Steroid Biochem. Mol. Biol. 2010, 121, 221–227. [Google Scholar] [CrossRef]
- Palmer, M.T.; Lee, Y.K.; Maynard, C.L.; Oliver, J.R.; Bikle, D.D.; Jetten, A.M.; Weaver, C.T. Lineage-specific Effects of 1,25-Dihydroxyvitamin D3 on the Development of Effector CD4 T Cells. J. Biol. Chem. 2011, 286, 997–1004. [Google Scholar] [CrossRef] [Green Version]
- Nonnecke, B.; McGill, J.; Ridpath, J.; Sacco, R.; Lippolis, J.; Reinhardt, T. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J. Dairy Sci. 2014, 97, 5566–5579. [Google Scholar] [CrossRef] [Green Version]
Item | Prepartum | Postpartum |
---|---|---|
Ingredient, % of DM | ||
Corn silage | 57.9 | 29.0 |
Alfalfa hay | — | 24.5 |
Wheat straw | 10.8 | 3.5 |
Chinese wildrye | 9.7 | — |
Steam-flaked corn | 4.8 | 19.8 |
Soybean meal | 11.3 | 16.3 |
Whole cottonseed | 3.2 | 3.6 |
Calcium bicarbonate | 1.1 | 1.5 |
Sodium bicarbonate | — | 0.5 |
Magnesium oxide | 0.5 | 0.5 |
Salt | 0.3 | 0.3 |
Vitamin–mineral mix 1 | 0.3 | 0.5 |
Nutrient composition, % of DM | ||
NEL, Mcal/kg | 1.57 | 1.64 |
DM | 49.3 | 50.4 |
CP | 13.8 | 18 |
NDF | 44.5 | 33.6 |
EE | 3.2 | 3.5 |
Starch | 22.6 | 25.9 |
Ca | 0.58 | 0.92 |
P | 0.32 | 0.35 |
Mg | 0.31 | 0.35 |
Items | Treatment 1 | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
Control | Ca + VitD | 25D | Ca + 25D | VD 2 | Ca | VD × Ca | ||
DMI 3, kg/d | 16.5 | 17.4 | 17.0 | 17.8 | 0.534 | 0.334 | 0.119 | 0.891 |
BCS | 2.87 | 2.90 | 2.92 | 2.94 | 0.058 | 0.374 | 0.678 | 0.953 |
Milk Yield, kg/d | 21.3 | 21.6 | 22.3 | 23.1 | 0.711 | 0.060 | 0.413 | 0.683 |
3.5% FCM, kg/d | 25.4 | 26.2 | 27.1 | 28.3 | 0.946 | 0.050 | 0.298 | 0.833 |
ECM, kg/d | 25.1 | 26.1 | 27.3 | 28.5 | 0.914 | 0.014 | 0.251 | 0.880 |
FE(ECM/DMI) | 1.59 | 1.61 | 1.63 | 1.66 | 0.114 | 0.608 | 0.499 | 0.354 |
Milk composition | ||||||||
Fat | 4.74 | 4.85 | 4.87 | 4.88 | 0.092 | 0.429 | 0.511 | 0.581 |
True protein | 3.23 | 3.36 | 3.53 | 3.58 | 0.065 | <0.001 | 0.164 | 0.608 |
Lactose | 4.56 | 4.60 | 4.58 | 4.57 | 0.045 | 0.770 | 0.785 | 0.572 |
Yield, kg/d | ||||||||
Fat | 1.00 | 1.04 | 1.08 | 1.13 | 0.041 | 0.056 | 0.272 | 0.917 |
True protein | 0.68 | 0.72 | 0.79 | 0.82 | 0.028 | <0.001 | 0.193 | 0.956 |
Lactose | 0.97 | 1.00 | 1.02 | 1.06 | 0.035 | 0.118 | 0.337 | 0.767 |
SCS | 4.17 | 4.03 | 3.98 | 3.89 | 0.126 | 0.191 | 0.375 | 0.853 |
Items | Treatment 1 | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
Control | Ca + VitD | 25D | 25D + Ca | VD 2 | Ca | VD × Ca | ||
Within 48 h | ||||||||
Ionized Ca, mM | 0.95 | 1.18 | 1.09 | 1.22 | 0.078 | 0.351 | 0.025 | 0.485 |
Total Ca, mM | 1.90 | 2.17 | 2.02 | 2.20 | 0.045 | 0.114 | <0.001 | 0.251 |
Total P, mM | 1.55 | 1.62 | 1.64 | 1.66 | 0.058 | 0.240 | 0.464 | 0.729 |
Total Mg, mM | 1.01 | 0.99 | 1.01 | 1.00 | 0.022 | 0.799 | 0.513 | 0.867 |
25-hydroxyvitamin D3, ng/mL | 54.5 | 48.9 | 130.2 | 128.4 | 4.114 | <0.001 | 0.373 | 0.651 |
Within 3 weeks | ||||||||
Ionized Ca, mM | 1.06 | 1.16 | 1.23 | 1.25 | 0.038 | <0.001 | 0.123 | 0.328 |
Total Ca, mM | 2.22 | 2.27 | 2.41 | 2.48 | 0.046 | <0.001 | 0.181 | 0.968 |
Total P, mM | 1.68 | 1.69 | 1.81 | 1.93 | 0.055 | 0.001 | 0.255 | 0.360 |
Total Mg, mM | 1.03 | 1.04 | 1.03 | 1.05 | 0.023 | 0.803 | 0.627 | 0.979 |
25-hydroxyvitamin D3, ng/mL | 42.8 | 49.8 | 150.2 | 157.1 | 4.740 | <0.001 | 0.143 | 0.991 |
Items | Treatment 1 | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
Control | Ca + VitD | 25D | Ca + 25D | VD 2 | Ca | VD × Ca | ||
Glucose, mM | 3.53 | 3.86 | 3.71 | 3.84 | 0.197 | 0.684 | 0.257 | 0.616 |
TP 3, g/L | 64.8 | 66.5 | 64.5 | 67.0 | 1.577 | 0.967 | 0.183 | 0.805 |
TG, mM | 0.24 | 0.26 | 0.24 | 0.26 | 0.011 | 0.857 | 0.128 | 0.966 |
Cholesterol, mM | 2.19 | 2.08 | 2.07 | 1.90 | 0.088 | 0.107 | 0.118 | 0.742 |
NEFA, mM | 0.49 | 0.43 | 0.41 | 0.39 | 0.038 | 0.138 | 0.302 | 0.528 |
BHB, mM | 0.72 | 0.70 | 0.70 | 0.67 | 0.039 | 0.613 | 0.469 | 0.895 |
ALT, U/L | 24.7 | 21.4 | 23.7 | 20.2 | 0.899 | 0.204 | <0.001 | 0.882 |
AST, U/L | 50.9 | 46.2 | 49.1 | 46.9 | 2.346 | 0.808 | 0.143 | 0.600 |
ALP, U/L | 33.0 | 34.8 | 37.1 | 39.4 | 1.718 | 0.014 | 0.238 | 0.883 |
Items | Treatment 1 | SEM | p Value | |||||
---|---|---|---|---|---|---|---|---|
Control | Ca + VitD | 25D | Ca + 25D | VD 2 | Ca | VD × Ca | ||
Antioxidant | ||||||||
CAT 3, U/mL | 55.3 | 56.8 | 56.6 | 58.3 | 2.194 | 0.463 | 0.513 | 0.965 |
T-SOD, U/ mL | 59.5 | 60.5 | 60.2 | 61.8 | 1.791 | 0.593 | 0.453 | 0.872 |
T-AOC, U/mL | 11.0 | 11.6 | 12.5 | 12.8 | 0.406 | <0.001 | 0.282 | 0.738 |
MDA, nmol/ mL | 3.31 | 3.13 | 2.77 | 2.60 | 0.192 | 0.007 | 0.377 | 0.951 |
Immunoglobulins | ||||||||
Ig A, g/L | 0.60 | 0.61 | 0.61 | 0.63 | 0.040 | 0.748 | 0.599 | 0.918 |
Ig G, g/L | 12.9 | 13.7 | 14.6 | 14.9 | 0.468 | 0.003 | 0.235 | 0.617 |
Ig M, g/L | 3.13 | 3.45 | 3.47 | 3.68 | 0.186 | 0.126 | 0.155 | 0.783 |
Cytokines | ||||||||
IL-6, pg/ mL | 139.9 | 129.2 | 121.2 | 125.0 | 5.101 | 0.015 | 0.658 | 0.241 |
TNF-α, pg/ mL | 73.0 | 64.9 | 63.0 | 62.1 | 2.014 | 0.004 | 0.051 | 0.134 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhang, Q.; Wang, L.; Zhang, C.; Li, Y.; Zhang, Y. Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows. Animals 2021, 11, 1576. https://doi.org/10.3390/ani11061576
Xu H, Zhang Q, Wang L, Zhang C, Li Y, Zhang Y. Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows. Animals. 2021; 11(6):1576. https://doi.org/10.3390/ani11061576
Chicago/Turabian StyleXu, Hongjian, Quanyu Zhang, Lihua Wang, Chengrui Zhang, Yang Li, and Yonggen Zhang. 2021. "Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows" Animals 11, no. 6: 1576. https://doi.org/10.3390/ani11061576
APA StyleXu, H., Zhang, Q., Wang, L., Zhang, C., Li, Y., & Zhang, Y. (2021). Effects of 25-Hydroxyvitamin D3 and Oral Calcium Bolus on Lactation Performance, Ca Homeostasis, and Health of Multiparous Dairy Cows. Animals, 11(6), 1576. https://doi.org/10.3390/ani11061576