Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Performance Traits
2.3. Carcass and Meat Quality
- The pH was measured at 35 min and 48 h post mortem (p.m.) in LL muscle and pH at 24 h in semimemembranosus muscle (SM), using a portable pH-meter equipped with a temperature sensor (CP-411 pH-meter, Elmetron, Zabrze, Poland). pH 35 min and pH 24 h p.m. were measured in a cold room, on right half-carcasses.
- Electrical conductivity in LL muscle was determined at 24 h (EC24) in a cold room on the right halves using the LF-Star device (Ingenieurbüro Matthäus, Hamburg, Germany).
- Drip loss was determined by the method of Prange et al. [18]. 24 h, LL muscle samples weighing 50 g (cut out from the middle part of the 3 cm thick slices) were put into plastic bags and stored at 4 °C. Drip loss was defined as % loss in mass after 1 day (48 h) of storage.
- The measurement of color was performed on freshly cut LL muscle slices at 48 h, after 20 min blooming period at 4 °C. Color lightness (L*), redness (a*), yellowness (b*), chroma (C*) were determined by a HunterLab Mini Scan XE Plus 45/0 (HunterLab Inc., Reston, VA, USA), equipped with a standard illuminant D65 and 10° Standard Observer.
2.4. Shear Force
2.5. Proximate Analysis
2.6. Microbiological Determinations
2.7. Statistical Analysis
3. Results
3.1. Production Performance
3.2. Microbiological Tests of the Feeds and the Digestive Tract
3.3. Carcass and Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Gaggía, F.; Di Giola, D.; Baffoni, L.; Biavati, B. The role of protective and probiotic cultures in food and feed and their impact in food safety. Trends Food Sci. Tech. 2008, 22, 58–66. [Google Scholar] [CrossRef]
- Gaggía, F.; Mattarelli, P.; Biavati, B. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 2010, 141, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Dowarah, R.; Verma, A.K.; Agarwal, N. The use of Lactobacillus as an alternative of antibiotic growth promoters in pigs: A review. Anim. Nutr. 2017, 3, 1–6. [Google Scholar] [CrossRef]
- Hong, H.A.; Duc, I.H.; Cutting, S.M. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 2005, 29, 813–835. [Google Scholar] [CrossRef] [Green Version]
- Khatri, I.; Sharma, S.; Ramya, T.N.C.; Subramanian, S. Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics. PLoS ONE 2016, 11, e0156745. [Google Scholar] [CrossRef] [Green Version]
- Hosoi, T.; Ametani, A.; Kiuchi, K.; Kaminogawa, S. Improved growth and viability of lactobacilli in the presence of Bacillus subtillis (natto), catalase, or subtilisin. Can. J. Microbiol. 2000, 46, 892–897. [Google Scholar] [CrossRef]
- Kyriakis, S.C.; Tsiloyiannis, V.K.; Vlemmas, J.; Sarris, K.; Tsinas, A.C.; Alexopoulos, C.; Jansegers, L. The effect of probiotic LSP 122 on the control of post-weaning diarrhoea syndrome of piglets. Res. Vet. Sci. 1999, 67, 223–228. [Google Scholar] [CrossRef]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kritas, S.K.; Siochu, A.; Kyriakis, S.C. Field evaluation of the efficacy, of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores on the health status and performance of sows and their litters. J. Anim. Physiol. Anim. Nutr. 2004, 88, 381–392. [Google Scholar] [CrossRef]
- Alexopoulos, C.; Georgoulakis, I.E.; Tzivara, A.; Kyriakis, S.C.; Govaris, A. Field evaluation of the efficacy of a probiotic-containing Bacillus licheniformis and Bacillus subtilis spores, on the health status, performance and carcass quality of grower and finishing pigs. J. Anim. Physiol. Anim. Nutr. 2004, 51, 306–312. [Google Scholar]
- Chen, Y.J.; Son, K.S.; Min, B.J.; Cho, J.H.; Kwon, O.S.; Kim, I.H. Effects of dietary probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in growing pigs. Asian Australas. J. Anim. Sci. 2005, 18, 1464–1468. [Google Scholar] [CrossRef]
- Davis, M.E.; Parrot, T.; Brown, D.C.; de Rodas, B.Z.; Johnson, Z.B.; Maxwell, C.V.; Rehberger, T. Effect of a Bacillus-based direct-fed microbal feed supplement on growth performance and pen cleaning characteristic of growing-finishing pigs. J. Anim. Sci. 2008, 86, 1459–1467. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, B.; Li, T.; Kim, I.H. Effect of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. Rev. Bras. Zootec. 2016, 45, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.J.; Min, B.J.; Cho, J.H.; Kwon, O.S.; Son, K.S.; Kim, H.J.; Kim, I.H. Effects of dietary Bacillus-based probiotic on growth performance, nutrients digestibility, blood characteristics and fecal noxious gas content in finishing pigs. Asian Australas. J. Anim. Sci. 2006, 19, 587–592. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hoon, J.; Mun, H.-S.; Yang, C.-J. Evaluation of Lactobacillus and Bacillus-based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. Afr. J. Microbiol. Res. 2014, 8, 96–104. [Google Scholar]
- Baker, A.A.; Davis, E.; Spencer, J.D.; Moser, R.; Rehberger, T. The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J. Anim. Sci. 2013, 91, 3390–3399. [Google Scholar] [CrossRef]
- Cho, J.H.; Chen, Y.J.; Min, B.J.; Kim, H.J.; Shon, K.S.; Kwon, O.S.; Kim, J.D.; Kim, I.H. Effect of dietary Bacillus subtilis on growth performance, immunological cell change, fecal NH3-N concentration and carcass meat quality characteristics in finishing pigs. J. Anim. Sci. Technol. 2005, 138, 144–151. [Google Scholar]
- Tybirk, P.; Sloth, N.M.; Sønderby, T.B.; Kjeldsen, N. Danish Nutrient Requirement Standards, 22nd ed.; SEGES Pig Research Centre: Axelborg, Denmark, 2015. [Google Scholar]
- Prange, H.; Juggrt, L.; Scharner, E. Untersuchungen zur Muskel Fleischqualität beim Schwein. Arch. Exp. Vet. Med. 1977, 31, 235–248. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 20th ed.; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- ISO 4833-1:2013. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. Part 2: Colony Count at 30 °C by the Surface Plating Technique. Available online: https://www.iso.org/obp/ui/#iso:std:iso:4833:-1:ed-1:v1:en (accessed on 27 May 2021).
- ISO 21527-1:2008. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds. Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. Available online: https://www.iso.org/obp/ui/#iso:std:iso:21527:-1:ed-1:v1:en (accessed on 27 May 2021).
- ISO 21528-1:2017. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 1: Detection of Enterobacteriaceae. Available online: https://www.iso.org/obp/ui/#iso:std:iso:21528:-1:ed-2:v1:en (accessed on 27 May 2021).
- ISO/FDIS 6888-1. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphyllococci (Staphylococcus aureus and other species). Part 1: Method Using Baird-Parker Agar Medium. Available online: https://www.iso.org/standard/64947.html (accessed on 27 May 2021).
- ISO 6579-1:2017. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Available online: https://www.iso.org/obp/ui/#iso:std:iso:6579:-1:ed-1:v1:en (accessed on 27 May 2021).
- ISO 11290-1:2017. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. Available online: https://www.iso.org/obp/ui/#iso:std:iso:11290:-1:ed-2:v1:en (accessed on 27 May 2021).
- EN 15788:2009. Animal Feeding Stuffs—Isolation and Enumeration of Enterococcus (E. faecium) spp. Available online: https://standards.iteh.ai/catalog/standards/sist/ea7d2912-726d-4136-9511-68dc0c87f934/sist-en-15788-2009 (accessed on 27 May 2021).
- ISO 15214:1998. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15214:ed-1:v1:en (accessed on 27 May 2021).
- ISO 15213:2003. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Sulfite-Reducing Bacteria Growing under Anaerobic Conditions. Available online: https://www.iso.org/obp/ui/#iso:std:iso:15213:ed-1:v1:en (accessed on 27 May 2021).
- ISO 7932:2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Presumptive Bacillus Cereus—Colony-Count Technique at 30 degrees C. Available online: https://www.iso.org/standard/76664.html (accessed on 27 May 2021).
- ISO 7218:2007. Microbiology of Food and Animal Feeding Stuffs—General Requirements and Guidance for Microbiological Examinations. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7218:ed-3:v1:amd:1:v2:en (accessed on 27 May 2021).
- Rybarczyk, A.; Bogusławska-Wąs, E.; Łupkowska, A. Effect of EM® probiotic on gut microbiota, growth performance, carcass and meat quality of pigs. Livest. Sci. 2020, 241, 104206. [Google Scholar] [CrossRef]
- Pietraszek, P.; Walczak, P. Characteristic and applications of Bacillus strains isolated from soil. Polish J. Agron. 2014, 16, 37–44. [Google Scholar]
- Ronimus, R.S.; Parker, L.E.; Turner, N.; Poudel, S.; Rückert, A.; Morgan, H.W.A. RAPD-based comparison of thermophilic bacilli from milk powders. Int. J. Food Microbiol. 2003, 85, 45–61. [Google Scholar] [CrossRef]
- Pinchuk, I.V.; Bressollier, P.; Sorokulova, I.B.; Verneuil, B.; Urdaci, M.C. Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res. Microbiol. 2002, 153, 269–276. [Google Scholar] [CrossRef]
- Hansen, B.M.; Leser, T.D.; Hendriksen, N.B. Polymerase chain reaction assay for the detection of Bacillus cereus group cells. FEMS Microbiol. Lett. 2001, 202, 209–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission (EC). Council Regulation (EC) 183/2005 of the European Parliament and of the Council of 12 January 2005 laying down requirements for feed hygiene (Text with EEA relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32005R0183 (accessed on 27 May 2021).
- Kukier, E.; Goldsztejn, M.; Grenda, T.; Kwiatek, K.; Bocian, Ł. Microbiological quality of feed materials used between 2009 and 2012 in Poland. Bull. Vet. Inst. Pulawy 2013, 57, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Dibner, J.J.; Richards, J.D.; Knight, C.D. Microbial imprinting in gut development and health. J. Appl. Poult. Res. 2008, 17, 174–188. [Google Scholar] [CrossRef]
- Satora, M.; Magdziarz, M.; Rząsa, A.; Rypuła, K.; Płoneczka-Janeczko, K. Insight into the intestinal microbiome of farrowing sows following the administration of garlic (Allium sativum) extract and probiotic bacteria cultures under farming conditions. BMC Vet. Res. 2020, 16, 1–18. [Google Scholar] [CrossRef]
- Wu, B.Q.; Zhang, T.; Guo, L.Q.; Lin, J.F. Effect of Bacillus subtilis KD1 on broiler intestinal flora. Poult. Sci. 2011, 90, 2493–2499. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.K.; Zhou, K.F.; Hu, H.M.; Zhao, H.B.; Zhang, Y.; Ying, W. Effect of Bacillus subtilis natto on meat quality and skatole content in TOPIGS pigs. Asian Australas. J. Anim. Sci. 2016, 29, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Shen, C.J.; Jia, G.; Wang, K.N. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism. Genet. Mol. Res. 2013, 12, 1766–1776. [Google Scholar] [CrossRef] [PubMed]
Items | Rosta 20–50 kg Body Weight | Finisher 45–100 kg Body Weight |
---|---|---|
Ingredient (g/kg on a DM basis) | ||
Wheat grain | 116.0 | 116.0 |
Barley grain | 106.0 | 106.0 |
Triticale grain | 106.0 | 106.0 |
Wheat bran | - | 156.0 |
NaCl | 7.0 | 6.1 |
Complementary feed | 12.5 | 10.0 |
Other 1 | 652.5 | 499.9 |
Chemical composition | ||
Metabolizable energy (MJ/kg) | 11.80 | 11.60 |
Net energy (MJ/kg) | 9.74 | 9.51 |
Crude protein (g/kg) | 174.2 | 158.8 |
Total fibre (g/kg) | 38.0 | 46.6 |
Crude fat (g/kg) | 33.8 | 30.3 |
Calcium (g/kg) | 7.7 | 5.8 |
Total phosphorous (g/kg) | 6.0 | 4.5 |
Lysine (g/kg) | 12.6 | 9.8 |
Methionine (g/kg) | 3.9 | 2.8 |
Methionine + cysteine (g/kg) | 7.5 | 6.6 |
Threonine (g/kg) | 8.0 | 6.4 |
Tryptophan (g/kg) | 2.4 | 1.9 |
Isoleucine (g/kg) | 6.6 | 5.8 |
Valine (g/kg) | 7.9 | 7.2 |
Parameter | Control | BioPlus YC | p-Value |
---|---|---|---|
BW1 (kg) | 28.05 ± 1.01 | 33.15 ± 2.36 | 0.094 |
BW2 (kg) | 110.23 ± 0.68 | 112.00 ± 2.29 | 0.486 |
Mortality (%) | 4.19 a ± 0.28 | 2.83 b ± 0.68 | 0.010 |
Fattening period (days) | 92.80 a ± 2.03 | 77.25 b ± 4.41 | 0.019 |
ADG (kg/day) | 0.89 B ± 0.01 | 1.02 A ± 0.03 | 0.002 |
FCR (kg/kg) | 2.79 a ± 0.03 | 2.59 b ± 0.05 | 0.013 |
ADFI (kg/day) | 2.47 ± 0.04 | 2.48 ± 0.08 | 1.000 |
consumption of feed per produced fattener (kg) | 229.39 a ± 5.20 | 191.23 b ± 13.42 | 0.038 |
HCW (kg) | 83.90 ± 1.63 | 86.00 ± 1.81 | 0.421 |
Dressing yield (%) | 76,12 ± 1.50 | 76.79 ± 0.12 | 0.676 |
Microbiological Fractions (log10/g) | Control | Mixture BioPlus YC and Feed | BioPlus YC (Preparation) | p-Value |
---|---|---|---|---|
TBC | 4.9 a ± 0.37 | 5.4 a ± 0.58 | 1.1 b ± 0.17 | 0.029 |
TYMC | 1.3 ± 0.17 | 1.6 ± 0.59 | 1.3 ± 0.69 | 0.281 |
LAB | 5.4 a ± 0.28 | 3.4 a ± 0.48 | 1.9 b ± 0.29 | 0.049 |
Bacillus sp. | 3.5 a ± 0.39 | 2.5 a ± 0.40 | <2.0 b | 0.011 |
B. subtilis | <2.0 c | 5.1 b ± 0.58 | 8.9 a ± 0.39 | 0.028 |
B. licheniformis | <2.0 c | 4.89 b ± 0.27 | 9.6 a ± 0.36 | 0.021 |
Microbiological Fractions (log10/g) | Control | BioPlus YC | p-Value |
---|---|---|---|
Proximal colon mucosa | |||
TBC | 7.62 a ± 0.57 | 6.38 b ± 0.79 | 0.026 |
TYMC | 2.57 ± 0.96 | 2.25 ± 1.05 | 0.574 |
LAB | 4.00 b ± 0.80 | 5.70 a ± 0.81 | 0.039 |
TCE | 9.58 a ± 0.85 | 7.48 b ± 1.81 | 0.042 |
TCC | 6.47 a ± 1.52 | 3.18 b ± 0.72 | 0.011 |
STP | 4.63 ± 0.51 | 4.18 ± 0.37 | 0.115 |
CL | 5.95 a ± 1.33 | 4.18 b ± 1.41 | 0.011 |
Bacillus sp. | 3.3 a ± 0.64 | 1.02 b ± 1.52 | 0.011 |
B. subtilis | <2.0 b | 4.03 a ± 0.61 | 0.000 |
B. licheniformis | <2.0 b | 3.74 a ± 0.72 | 0.000 |
Digestive tract of proximal colon | |||
TBC | 7.79 a ± 0.64 | 6.54 b ± 0.81 | 0.000 |
TYMC | 2.82 ± 1.13 | 2.36 ± 1.15 | 0.349 |
LAB | 4.03 b ± 0.94 | 5.89 a ± 0.76 | 0.000 |
TCE | 9.99 a ± 0.37 | 7.73 b ± 1.81 | 0.000 |
TCC | 7.05 a ± 1.21 | 3.35 b ± 0.62 | 0.028 |
STP | 4.93 ± 0.56 | 4.21 ± 0.43 | 0.359 |
CL | 6.37 a ± 1.16 | 4.48 b ± 0.94 | 0.000 |
Bacillus sp. | 4.16 a ± 0.74 | 2.15 b ± 1.54 | 0.005 |
B. subtilis | <2.0 b | 2.95 a ± 1.23 | 0.002 |
B. licheniformis | <2.0 b | 2.29 a ± 0.72 | 0.018 |
Traits | Control | BioPlus YC | p-Value |
---|---|---|---|
HCW (kg) | 89.05 ± 0.43 | 89.06 ± 0.38 | 0.990 |
Lean meat in carcass (%) | 56.65 ± 0.32 | 56.58 ± 0.32 | 0.879 |
Lean meat in ham (%) | 59.54 ± 0.33 | 59.87 ± 0.30 | 0.467 |
Lean meat in loin (%) | 53.06 ± 0.46 | 53.45 ± 0.41 | 0.535 |
Lean meat in shoulder (%) | 57.28 ± 0.26 | 57.38 ± 0.23 | 0.777 |
Lean meat in belly (%) | 52.15 ± 0.40 | 52.76 ± 0.33 | 0.241 |
Traits | Control | BioPlus YC | p-Value |
---|---|---|---|
pH35 min | 6.58 ± 0.02 | 6.56 ± 0.02 | 0.564 |
pH24 SM | 5.98 ± 0.05 | 5.92 ± 0.03 | 0.232 |
pH48 | 5.72 ± 0.04 | 5.65 ± 0.02 | 0.074 |
Drip loss (%) | 2.49 ± 0.18 | 2.69 ± 0.17 | 0.602 |
EC24 (mS/cm) | 3.94 ± 0.22 | 4.22 ± 0.19 | 0.463 |
L* | 56.96 ± 0.54 | 57.62 ± 0.44 | 0.206 |
a* | 5.47 ± 0.11 | 5.35 ± 0.13 | 0.553 |
b* | 13.86 ± 0.15 | 14.14 ± 0.14 | 0.187 |
C* | 14.94 ± 0.10 | 15.12 ± 0.15 | 0.229 |
Shear force, kg | 4.09 ± 0.13 | 4.06 ± 0.07 | 0.906 |
Dry matter (%) | 25.53 ± 0.16 | 25.29 ± 0.12 | 0.216 |
Total protein (%) | 20.96 ± 0.09 | 20.76 ± 0.10 | 0.158 |
Intramuscular fat (%) | 2.57 ± 0.13 | 2.49 ± 0.12 | 0.678 |
Ash (%) | 1.18 ± 0.02 | 1.21 ± 0.02 | 0.158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rybarczyk, A.; Bogusławska-Wąs, E.; Dłubała, A. Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals 2021, 11, 1581. https://doi.org/10.3390/ani11061581
Rybarczyk A, Bogusławska-Wąs E, Dłubała A. Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals. 2021; 11(6):1581. https://doi.org/10.3390/ani11061581
Chicago/Turabian StyleRybarczyk, Artur, Elżbieta Bogusławska-Wąs, and Alicja Dłubała. 2021. "Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs" Animals 11, no. 6: 1581. https://doi.org/10.3390/ani11061581
APA StyleRybarczyk, A., Bogusławska-Wąs, E., & Dłubała, A. (2021). Effect of BioPlus YC Probiotic Supplementation on Gut Microbiota, Production Performance, Carcass and Meat Quality of Pigs. Animals, 11(6), 1581. https://doi.org/10.3390/ani11061581