Unraveling the Relationship between Milk Yield and Quality at the Test Day with Rumination Time Recorded by a PLF Technology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farm Characteristic and Data Collection
2.2. Database Organization and Data Processing
2.3. Statistical Analysis
3. Results
3.1. General Dataset Information
3.2. Importance of Rumination Time Intervals
3.3. Mixed Model Analysis
4. Discussion
4.1. Time–Phenotype Meaning Assessment
4.2. Rumination Time and TD Milk Yield
4.3. Rumination Time and TD Milk Components
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gengler, N. Symposium review: Challenges and opportunities for evaluating and using the genetic potential of dairy cattle in the new era of sensor data from automation. J. Dairy Sci. 2019, 102, 5756–5763. [Google Scholar] [CrossRef] [PubMed]
- Moran, J. How the rumen works. In Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics; Landlinks Press: Collingwood, Australia, 2005; Chapter 5; pp. 41–49. ISBN 9780643099760. [Google Scholar]
- Adin, G.; Solomon, R.; Nikbachat, M.; Zenou, A.; Yosef, E.; Brosh, A.; Shabtay, A.; Mabjeesh, S.J.; Halachmi, I.; Miron, J. Effect of feeding cows in early lactation with diets differing in roughage-neutral detergent fiber content on intake behavior, rumination, and milk production. J. Dairy Sci. 2009, 92, 3364–3373. [Google Scholar] [CrossRef] [Green Version]
- Abeni, F.; Galli, A. Monitoring cow activity and rumination time for an early detection of heat stress in dairy cow. Int. J. Biometeorol. 2017, 61, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, S.S.; Norgaard, P.; Pedersen, C.; Jorgensen, R.J.; Mellau, L.S.B.; Enemark, J.D. The effect of subclinical hypo- calcaemia induced by Na2EDTA on the feed intake and chewing activity of dairy cows. Vet. Res. Commun. 2003, 27, 193–205. [Google Scholar] [CrossRef]
- Kaufman, E.I.; Asselstine, V.H.; LeBlanc, S.J.; Duffield, T.F.; DeVries, T.J. Association of rumination time and health status with milk yield and composition in early-lactation dairy cows. J. Dairy Sci. 2018, 101, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Heersche, G.; Ray, D.L.; Bewley, J.M.; Dolecheck, K.A.; Wadsworth, B.A.; Stone, A.E.; Chang, Y.M.; Silvia, W.J. Behavioral and physiological changes around estrus events identified using multiple automated monitoring technologies. J. Dairy Sci. 2015, 98, 8723–8731. [Google Scholar] [CrossRef]
- Moretti, R.; Biffani, S.; Tiezzi, F.; Maltecca, C.; Chessa, S.; Bozzi, R. Rumination time as a potential predictor of common diseases in high-productive Holstein dairy cows. J. Dairy Res. 2017, 84, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, N.T.; Peña, G.; Risco, C.; Barbosa, C.C.; Vieira-Neto, A.; Galvão, K.N. Utility of inline milk fat and protein ratio to diagnose subclinical ketosis and to assign propylene glycol treatment in lactating dairy cows. Can. Vet. J. 2015, 15, 56–58. [Google Scholar]
- Brandt, M.; Haeussermann, A.; Hartung, E. Invited review: Technical solutions for analysis of milk constituents and abnormal milk. J. Dairy Sci. 2010, 93, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Andreen, D.M.; Haan, M.M.; Dechow, C.D.; Harvatine, K.J. Relationships between milk fat and rumination time recorded by commercial rumination sensing systems. J. Dairy Sci. 2020, 103, 8094–8104. [Google Scholar] [CrossRef] [PubMed]
- Burfeind, O.; Schirmann, K.; von Keyserlingk, M.A.G.; Veira, D.M.; Weary, D.M.; Heuwieser, W. Technical note: Evaluation of a system for monitoring rumination in heifers and calves. J. Dairy Sci. 2011, 94, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, K.; von Keyserlingk, M.A.G.; Weary, D.M.; Veira, D.M.; Heuwieser, W. Technical note: Validation of a system for monitoring rumination in dairy cows. J. Dairy Sci. 2009, 92, 6052–6055. [Google Scholar] [CrossRef] [PubMed]
- Berton, K. Mumin: Multi-Model Inference. R Package Version 1.43.17. 2009. Available online: https://cran.r-project.org/package=MuMIn (accessed on 9 November 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 251–264. [Google Scholar] [CrossRef]
- Pahl, C.; Hartung, E.; Mahlkow-Nerge, K.; Haeussermann, A. Feeding characteristics and rumination time of dairy cows around estrus. J. Dairy Sci. 2015, 98, 148–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devries, T.J.; Beauchemin, K.A.; Dohme, F.; Schwartzkopf-Genswein, K.S. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J. Dairy Sci. 2009, 92, 5067–5078. [Google Scholar] [CrossRef] [Green Version]
- Byskov, M.V.; Nadeau, E.; Johansson, B.E.O.; Nørgaard, P. Variations in automatically recorded rumination time as explained by variations in intake of dietary fractions and milk production, and between-cow variation. J. Dairy Sci. 2015, 98, 3926–3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byskov, M.V.; Fogh, A.; Løvendahl, P. Genetic parameters of rumination time and feed efficiency traits in primiparous Holstein cows under research and commercial conditions. J. Dairy Sci. 2017, 100, 9635–9642. [Google Scholar] [CrossRef]
- Egger-Danner, C.; Cole, J.B.; Pryce, J.E.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; LeBlanc, S.J.; McBride, B.W.; Duffield, T.F.; DeVries, T.J. Association of rumination time with subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 5604–5618. [Google Scholar] [CrossRef] [Green Version]
- Danscher, A.M.; Li, S.; Andersen, P.H.; Khafipour, E.; Kristensen, N.B.; Plaizier, J.C. Indicators of induced subacute ruminal acidosis (SARA) in Danish Holstein cows. Acta Vet. Scand. 2015, 57, 39. [Google Scholar] [CrossRef] [Green Version]
- Stangaferro, M.L.; Wijma, R.; Caixeta, L.S.; Al-Abri, M.A.; Giordano, J.O. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part I. Metabolic and digestive disorders. J. Dairy Sci. 2016, 99, 7395–7410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, C.; DeVries, T.J. Short communication: Associations of feeding behavior and milk production in dairy cows. J. Dairy Sci. 2018, 101, 3367–3373. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clément, P.; Guatteo, R.; Delaby, L.; Rouillé, B.; Chanvallon, A.; Philipot, J.M.; Bareille, N. Short communication: Added value of rumination time for the prediction of dry matter intake in lactating dairy cows. J. Dairy Sci. 2014, 97, 6531–6535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NRC. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Rumination and its relationship to feeding and lying behavior in Holstein dairy cows. J. Dairy Sci. 2012, 95, 3212–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peiter, M.; Phillips, H.N.; Endres, M.I. Association between early postpartum rumination time and peak milk yield in dairy cows. J. Dairy Sci. 2021, 104, 5898–5908. [Google Scholar] [CrossRef]
- Salfer, I.J.; Morelli, M.C.; Ying, Y.; Allen, M.S.; Harvatine, K.J. The effects of source and concentration of dietary fiber, starch, and fatty acids on the daily patterns of feed intake, rumination, and rumen pH in dairy cows. J. Dairy Sci. 2018, 101, 10911–10921. [Google Scholar] [CrossRef] [Green Version]
- Toledo-Alvarado, H.; Vazquez, A.I.; de los Campos, G.; Tempelman, R.J.; Gabai, G.; Cecchinato, A.; Bittante, G. Changes in milk characteristics and fatty acid profile during the estrous cycle in dairy cows. J. Dairy Sci. 2018, 101, 9135–9153. [Google Scholar] [CrossRef]
- Reith, S.; Hoy, S. Relationship between daily rumination time and estrus of dairy cows. J. Dairy Sci. 2012, 95, 6416–6420. [Google Scholar] [CrossRef]
- Alzahal, O.; Or-Rashid, M.M.; Greenwood, S.L.; McBride, B.W. Effect of subacute ruminal acidosis on milk fat concentration, yield and fatty acid profile of dairy cows receiving soybean oil. J. Dairy Res. 2010, 77, 376–384. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean ± SD | 1st Quartile | Median | 3rd Quartile |
---|---|---|---|---|
DIM (at the TD) | 163.16 ± 108.18 | 74.00 | 148.00 | 238.00 |
Rumination Time (min/day) | ||||
RT3 | 508.23 ± 88.88 | 455.33 | 511.00 | 564.67 |
RT7 | 508.56 ± 85.19 | 458.43 | 510.57 | 563.36 |
RT10 | 508.27 ± 84.01 | 457.45 | 508.80 | 560.40 |
TD milk production and composition records | ||||
Milk yield, kg/day | 35.33 ± 9.53 | 28.90 | 34.60 | 41.10 |
Protein, % | 3.48 ± 0.39 | 3.21 | 3.45 | 3.72 |
Protein, kg/day | 1.21 ± 0.28 | 1.02 | 1.21 | 1.39 |
Casein, % | 2.71 ± 0.32 | 2.49 | 2.69 | 2.91 |
Casein, kg/day | 0.94 ± 0.22 | 0.80 | 0.94 | 1.09 |
Fat, % | 4.08 ± 1.03 | 3.45 | 4.01 | 4.62 |
Fat, kg/day | 1.42 ± 0.48 | 1.11 | 1.35 | 1.64 |
Lactose, % | 4.88 ± 0.23 | 4.77 | 4.91 | 5.03 |
Lactose, kg/day | 1.73 ± 0.48 | 1.40 | 1.70 | 2.03 |
Variable | Farm | Mean ± SD | 1st Quartile | Median | 3rd Quartile |
---|---|---|---|---|---|
DIM (at the TD) | Farm-1 | 125.55 ± 91.50 | 53.75 | 107.00 | 177.00 |
Farm-2 | 196.17 ± 120.51 | 99.25 | 188.00 | 272.50 | |
Farm-3 | 168.47 ± 106.94 | 79.00 | 158.00 | 245.00 | |
Rumination Time (min/day) | |||||
RT3 | Farm-1 | 482.26 ± 81.30 | 434.92 | 490.33 | 535.75 |
Farm-2 | 617.34 ± 64.94 | 580.42 | 619.17 | 660.67 | |
Farm-3 | 491.74 ± 76.97 | 448.33 | 498.67 | 542.67 | |
RT7 | Farm-1 | 488.11 ± 76.39 | 449.75 | 496.00 | 539.00 |
Farm-2 | 617.65 ± 60.54 | 580.75 | 618.00 | 656.50 | |
Farm-3 | 490.17 ± 73.01 | 448.71 | 496.57 | 541.43 | |
RT10 | Farm-1 | 489.47 ± 74.09 | 452.38 | 499.60 | 538.70 |
Farm-2 | 618.02 ± 58.49 | 582.43 | 619.55 | 654.93 | |
Farm-3 | 489.17 ± 71.78 | 447.10 | 493.60 | 540.00 | |
TD milk production and composition records | |||||
Milk yield, kg/day | Farm-1 | 34.57 ± 7.86 | 29.40 | 34.45 | 39.70 |
Farm-2 | 36.42 ± 9.25 | 30.40 | 35.50 | 42.58 | |
Farm-3 | 35.34 ± 10.08 | 28.30 | 34.50 | 41.50 | |
Protein, kg/day | Farm-1 | 1.17 ± 0.24 | 1.01 | 1.17 | 1.33 |
Farm-2 | 1.24 ± 0.24 | 1.07 | 1.24 | 1.41 | |
Farm-3 | 1.22 ± 0.30 | 1.01 | 1.21 | 1.41 | |
Casein, kg/day | Farm-1 | 0.90 ± 0.19 | 0.78 | 0.91 | 1.03 |
Farm-2 | 0.96 ± 0.19 | 0.84 | 0.96 | 1.09 | |
Farm-3 | 0.95 ± 0.23 | 0.80 | 0.95 | 1.10 | |
Fat, kg/day | Farm-1 | 1.32 ± 0.31 | 1.11 | 1.31 | 1.53 |
Farm-2 | 1.47 ± 0.46 | 1.18 | 1.40 | 1.68 | |
Farm-3 | 1.44 ± 0.53 | 1.10 | 1.35 | 1.69 | |
Lactose, kg/day | Farm-1 | 1.71 ± 0.40 | 1.45 | 1.70 | 1.97 |
Farm-2 | 1.75 ± 0.46 | 1.43 | 1.73 | 2.05 | |
Farm-3 | 1.73 ± 0.51 | 1.37 | 1.69 | 2.05 |
Item | Farm | Cow | Parity | DIM | TD Date | Residual Error | Total |
---|---|---|---|---|---|---|---|
RT3 | 5227 (46.3%) | 2322 (20.6%) | 17 (0.2%) | 250 (2.2%) | 268 (2.4%) | 3203 (28.4%) | 11,287 |
RT7 | 5186 (49.2%) | 2201 (20.9%) | 12 (0.1%) | 377 (3.6%) | 262 (2.5%) | 2497 (23.7%) | 10,534 |
RT10 | 5440 (51.9%) | 2132 (20.3%) | 9 (0.1%) | 456 (4.4%) | 191 (1.8%) | 2258 (21.5%) | 10,486 |
RT3 | Farm-1 | 1925 (28.5%) | 61 (0.9%) | 396 (5.9%) | 427 (6.3%) | 3952 (58.5%) | 6761 |
RT7 | Farm-1 | 2086 (34.9%) | 18 (0.3%) | 423 (7.1%) | 498 (8.3%) | 2954 (49.4%) | 5978 |
RT10 | Farm-1 | 2054 (36.7%) | 26 (0.5%) | 583 (10.4%) | 340 (6.1%) | 2590 (46.3%) | 5593 |
RT3 | Farm-2 | 3452 (58.4%) | 598 (10.1%) | 285 (4.8%) | 172 (2.9%) | 1403 (23.7%) | 5911 |
RT7 | Farm-2 | 3299 (60.9%) | 730 (13.5%) | 108 (2.0%) | 220 (4.1%) | 1058 (19.5%) | 5415 |
RT10 | Farm-2 | 3370 (61.8%) | 881 (16.2%) | 0 (0.0%) | 228 (4.2%) | 973 (17.8%) | 5451 |
RT3 | Farm-3 | 2432 (39.2%) | 11 (0.2%) | 298 (4.8%) | 236 (3.8%) | 3234 (52.1%) | 6211 |
RT7 | Farm-3 | 2235 (40.6%) | 4 (0.1%) | 432 (7.9%) | 216 (3.9%) | 2618 (47.6%) | 5505 |
RT10 | Farm-3 | 2167 (41.1%) | 0 (0.0%) | 506 (9.6%) | 204 (3.9%) | 2402 (45.5%) | 5279 |
Item | RT3 | RT7 | RT10 |
---|---|---|---|
Milk yield, kg/day | 1.00 | 0.79 | 1.00 |
Protein, kg/day | 1.00 | 0.43 | 1.00 |
Protein, % | 0.35 | 0.52 | 1.00 |
Casein, kg/day | 1.00 | 0.49 | 1.00 |
Casein, % | 0.44 | 0.38 | 1.00 |
Fat, kg/day | 0.34 | 0.68 | 0.59 |
Fat, % | 1.00 | 0.96 | 1.00 |
Lactose, kg/day | 1.00 | 0.91 | 1.00 |
Lactose, % | 0.33 | 0.54 | 1.00 |
Item | RT10L | F | P | L | D |
---|---|---|---|---|---|
Milk yield (kg/day) | 2.76 × 10−44 *** | 1.72 × 10−3 ** | 1.13 × 10−48 *** | 9.23 × 10−186 *** | 1.29 × 10−26 *** |
Fat (%) | 3.73 × 10−17 *** | 3.88 × 10−15 *** | 2.13 × 10−04 *** | 9.49 × 10−22 *** | 9.40 × 10−187 *** |
Fat (kg/day) | 7.97 × 10−7 *** | 2.69 × 10−21 *** | 7.93 × 10−20 *** | 3.94 × 10−82 *** | 9.10 × 10−156 *** |
Protein (%) | 3.63 × 10−8 *** | 3.02 × 10−2 * | 4.19 × 10−20 *** | 6.20 × 10−219 *** | 1.83 × 10−111 *** |
Protein (kg/day) | 2.08 × 10−39 *** | 3.14 × 10−6 *** | 1.86 × 10−38 *** | 2.02 × 10−91 *** | 2.34 × 10−51 *** |
FPR | 1.28 × 10−10 *** | 1.91 × 10−12 *** | 8.91 × 10−1 | 8.31 × 10−52 *** | 1.45 × 10−174 *** |
Lactose (%) | 1.05 × 10−14 *** | 9.17 × 10−5 *** | 4.09 × 10−49 *** | 3.79 × 10−30 *** | 7.73 × 10−30 *** |
Lactose (kg/day) | 4.18 × 10−47 *** | 2.13 × 10−3 ** | 1.34 × 10−32 *** | 8.60 × 10−186 *** | 1.26 × 10−28 *** |
Casein (%) | 8.72 × 10−07 *** | 9.39 × 10−6 *** | 6.98 × 10−27 *** | 7.65 × 10−229 *** | 4.08 × 10−83 *** |
Casein (kg/day) | 2.20 × 10−39 *** | 7.94 × 10−9 *** | 7.57 × 10−34 *** | 2.37 × 10−86 *** | 9.94 × 10−46 *** |
SFA (%) | 6.85 × 10−7 *** | 8.50 × 10−7 *** | 1.73 × 10−4 *** | 3.57 × 10−95 *** | 0.00 *** |
UFA (%) | 1.42 × 10−10 *** | 8.84 × 10−2 . | 3.53 × 10−2 * | 3.86 × 10−104 *** | 4.50 × 10−296 *** |
MUFA (%) | 1.80 × 10−6 *** | 2.97 × 10−1 | 1.25 × 10−7 *** | 2.53 × 10−59 *** | 0.00 *** |
PUFA (%) | 7.47 × 10−2 . | 8.01 × 10−4 *** | 2.82 × 10−1 | 3.72 × 10−9 *** | 3.99 × 10−194 *** |
Item | Low RT10 Mean ± SE (95% CI) | Medium RT10 Mean ± SE (95% CI) | High RT10 Mean ± SE (95% CI) |
---|---|---|---|
Milk yield (kg/day) | 31.99 a ± 0.38 (31.24–32.75) | 35.80 b ± 0.36 (35.10–36.50) | 38.29 c ± 0.35 (37.60–39.98) |
Fat content (%) | 4.30 c ± 0.04 (4.21–4.38) | 4.07 b ± 0.04 (3.99–4.15) | 3.88 a ± 0.04 (3.81–3.95) |
Fat yield (kg/day) | 1.36 a ± 0.02 (1.33–1.40) | 1.44 b ± 0.02 (1.40–1.48) | 1.47 b ± 0.02 (1.44–1.50) |
Protein content (%) | 3.48 c ± 0.02 (3.44–3.51) | 3.43 b ± 0.02 (3.40–3.46) | 3.38 a ± 0.01 (3.35–3.41) |
Protein yield (kg/day) | 1.10 a ± 0.01 (1.07–1.12) | 1.22 b ± 0.01 (1.20–1.24) | 1.28 c ± 0.01 (1.26–1.30) |
Fat to protein ratio | 1.24 c ± 0.01 (1.22–1.26) | 1.19 b ± 0.01 (1.17–1.21) | 1.15 a ± 0.01 (1.13–1.17) |
Lactose content (%) | 4.81 a ± 0.01 (4.79–4.83) | 4.86 b ± 0.01 (4.84–4.88) | 4.90 c ± 0.01 (4.88–4.91) |
Lactose yield (kg/day) | 1.54 a ± 0.02 (1.50–1.58) | 1.74 b ± 0.02 (1.71–1.78) | 1.88 c ± 0.02 (1.84–1.91) |
Casein content (%) | 2.69 b ± 0.01 (2.67–2.72) | 2.66 b ± 0.01 (2.64–2.69) | 2.62 a ± 0.01 (2.60–2.65) |
Casein yield (kg/day) | 0.85 a ± 0.01 (0.83–0.87) | 0.94 b ± 0.01 (0.93–0.96) | 0.99 c ± 0.01 (0.98–1.01) |
SFA (% of fat) | 65.41 a ± 0.18 (65.04–65.77) | 66.03 b ± 0.16 (65.71–66.35) | 66.48 c ± 0.15 (66.18–66.78) |
UFA (% of fat) | 31.44 c ± 0.21 (31.03–31.85) | 30.51 b ± 0.18 (30.15–30.87) | 29.83 a ± 0.17 (29.50–30.17) |
MUFA (% of fat) | 26.08 c ± 0.2 (25.69–26.47) | 25.38 b ± 0.17 (25.03–25.72) | 24.91 a ± 0.16 (24.59–25.23) |
PUFA (% of fat) | 3.96 a ± 0.03 (3.90–4.03) | 3.99 a ± 0.03 (3.92–4.06) | 4.05 a ± 0.03 (3.99–4.11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marino, R.; Petrera, F.; Speroni, M.; Rutigliano, T.; Galli, A.; Abeni, F. Unraveling the Relationship between Milk Yield and Quality at the Test Day with Rumination Time Recorded by a PLF Technology. Animals 2021, 11, 1583. https://doi.org/10.3390/ani11061583
Marino R, Petrera F, Speroni M, Rutigliano T, Galli A, Abeni F. Unraveling the Relationship between Milk Yield and Quality at the Test Day with Rumination Time Recorded by a PLF Technology. Animals. 2021; 11(6):1583. https://doi.org/10.3390/ani11061583
Chicago/Turabian StyleMarino, Rosanna, Francesca Petrera, Marisanna Speroni, Teresa Rutigliano, Andrea Galli, and Fabio Abeni. 2021. "Unraveling the Relationship between Milk Yield and Quality at the Test Day with Rumination Time Recorded by a PLF Technology" Animals 11, no. 6: 1583. https://doi.org/10.3390/ani11061583
APA StyleMarino, R., Petrera, F., Speroni, M., Rutigliano, T., Galli, A., & Abeni, F. (2021). Unraveling the Relationship between Milk Yield and Quality at the Test Day with Rumination Time Recorded by a PLF Technology. Animals, 11(6), 1583. https://doi.org/10.3390/ani11061583