Shape Analysis as an Additional Tool in Roe Deer (Capreolus capreolus) Management: A New Approach Based on the Relationship between Mandible Shape and Trophic Resources
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
- Category 1 = 0—0.02 animals/hectare, with lower food availability;
- Category 2 = 0.03—0.1 animals/hectare, with intermediate food availability;
- Category 3 = 0.11—0.13 animals/hectare, with higher food availability.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rohlf, F.J.; Marcus, L.F. A revolution morphometrics. Trends Ecol. Evol. 1993, 8, 129–132. [Google Scholar] [CrossRef]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. Geometric morphometrics: Ten years of progress following the ‘revolution’. Ital. J. Zool. 2004, 71, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer; Academic Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Webster, M.; Sheets, H.D. A practical introduction to landmark-based geometric morphometrics. Quant. Methods Paleobiol. 2010, 16, 163–188. [Google Scholar] [CrossRef] [Green Version]
- Bignon, O.; Baylac, M.; Vigne, J.D.; Eisenmann, V. Geometric morphometrics and the population diversity of Late Glacial horses in Western Europe (Equus caballus arcelini): Phylogeographic and anthropological implications. J. Archaeol. Sci. 2005, 32, 375–391. [Google Scholar] [CrossRef]
- O’Higgins, P.; Cobb, S.N.; Fitton, L.C.; Gröning, F.; Phillips, R.; Liu, J.; Fagan, M.J. Combining geometric morphometrics and functional simulation: An emerging toolkit for virtual functional analyses. J. Anat. 2011, 218, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Baab, K.L.; McNulty, K.P.; Rohlf, F.J. The shape of human evolution: A geometric morphometrics perspective. Evol. Anthropol. Issues News Rev. 2012, 21, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P.; Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: Analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 2012, 62, 591–610. [Google Scholar] [CrossRef] [PubMed]
- Ruane, S. Using geometric morphometrics for integrative taxonomy: An examination of head shapes of milk snakes (genus Lampropeltis). Zool. J. Linn. Soc. 2015, 174, 394–413. [Google Scholar] [CrossRef] [Green Version]
- Cassini, G.H.; Muñoz, N.A.; Vizcaino, S.F. Morphological integration of native south american ungulate mandibles. A tribute to D’Arcy Thompson in the centennial of “on growth and form”. Publ. Electrón. Asoc. Paleontol. Argent. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Tatsuta, H.; Takahashi, K.H.; Sakamaki, Y. Geometric morphometrics in entomology: Basics and applications. Entomol. Sci. 2018, 21, 164–184. [Google Scholar] [CrossRef] [Green Version]
- Gardere, M.L.; Dubuisson, J.Y.; Muller, S.; Savriama, Y. Geometric morphometrics of corolla shape in Campanula (Campanulaceae) from Cabo Verde archipelago. Bot. J. Linn. Soc. 2019, 191, 339–352. [Google Scholar] [CrossRef]
- Sénèque, E.; Lesimple, C.; Morisset, S.; Hausberger, M. Could posture reflect welfare state? A study using geometric morphometrics in riding school horses. PLoS ONE 2019, 14, e0211852. [Google Scholar] [CrossRef]
- Hewison, A.J.M.; Vincent, J.P.; Bideau, E.; Angibault, J.M.; Putman, R.J. Variation in cohort mandible size as an index of roe deer (Capreolus capreolus) densities and population trends. J. Zool. 1996, 239, 573–581. [Google Scholar] [CrossRef]
- Pettorelli, N.; Gaillard, J.M.; van Laere, G.; Duncan, P.; Kjellander, P.; Liberg, O.; Delorme, D.; Maillard, D. Variations in adult body mass in roe deer: The effects of population density at birth and of habitat quality. Proc. R. Soc. Lond. Ser. 2002, 269, 747–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riga, F.; Genghini, M.; Cascone, C.; Di Luzio, P. Impatto Degli Ungulati Sulle Colture Agricole e Forestali: Proposta per Linee Guida Nazionali; Manuali e linee guida ISPRA 68/2011; ISPRA: Rome, Italy, 2011. [Google Scholar]
- Burbaiteė, L.; Csányi, S. Roe deer population and harvest changes in Europe. Est. J. Ecol. 2009, 58. [Google Scholar] [CrossRef]
- Carnevali, L.; Pedrotti, L.; Riga, F.; Toso, S. Banca dati ungulati: Status, distribuzione, consistenza, gestione e prelievo venatorio delle popolazioni di ungulati in Italia: Rapporto 2001–2005. Biol. Cons. Fauna. 2009, 117, 1–168. [Google Scholar]
- Blagojević, M.; Milošević-Zlatanović, S. Sexual shape dimorphism in Serbian roe deer (Capreolus capreolus L.). Mamm. Biol. 2011, 76, 735–740. [Google Scholar] [CrossRef]
- Lovari, S.; Serrao, G.; Mori, E. Woodland features determining home range size of roe deer. Behav. Process. 2017, 140, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Balčiauskas, L.; Varanauskas, R.; Bukelskis, E. Impact of selective hunting on the trophy size of roe deer: Baltic example. North West J. Zool. 2017, 13, 118–127. [Google Scholar]
- De Marinis, A.M.; Chirichella, R.; Bottero, E.; Apollonio, M. Ecological conditions experienced by offspring during pregnancy and early post-natal life determine mandible size in roe deer. PLoS ONE 2019, 14, e0222150. [Google Scholar] [CrossRef]
- De Felice, E.; Pacioni, C.; Tardella, F.M.; Dall’Aglio, C.; Palladino, A.; Scocco, P. A Novel Method for Increasing the Numerousness of Biometrical Parameters Useful for Wildlife Management: Roe Deer Mandible as Bone Model. Animals 2020, 10, 465. [Google Scholar] [CrossRef] [Green Version]
- Fontana, R.; Lanzi, A. Caprioli in Pianura. Indagine nelle province di Modena e Reggio Emilia. Consorzio di gestione del Parco fluviale del Secchia, Coll. Progett. Secchia 2008, 1, 118. [Google Scholar]
- Pėtelis, K.; Brazaitis, G. Morphometric data on the field ecotype roe deer in Southwest Lithuania. Acta Zool. Litu. 2003, 13, 61–64. [Google Scholar] [CrossRef]
- Blant, M.; Gaillard, J.M. Use of biometric body variables as indicators of roe deer (Capreolus capreolus) population density changes. Game Wildl. Sci. 2004, 21, 21–40. [Google Scholar]
- Pelliccioni, E.R.; Scremin, M.; Toso, S. Early body development of roe deer Capreolus capreolus in a sub-Mediterranean ecosystem. Wildl. Biol. 2004, 10, 107–113. [Google Scholar] [CrossRef]
- De Felice, E.; Mercati, F.; Pacioni, C.; Catorci, A.; Tardella, F.M.; Brusaferro, A.; Scocco, P. Relation between biometric parameters and autumn-winter food availability in a roe deer (Capreolus capreolus) population in central Italy. Eur. Zool. J. 2020, 87, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps. 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Catorci, A.; Biondi, E.; Casavecchia, S.; Pesaresi, S.; Vitanzi, A.; Foglia, M.; Galassi, S.; Pinzi, M.; Angelini, E.; Bianchelli, M. The Map of the vegetation and elements of the vegetable landscape of the Marche (scale 1:50,000) for the design and management of the regional ecological network. Fitosociologia 2007, 44, 115–118. [Google Scholar]
- Rohlf, F.J.; Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 1990, 39, 40–59. [Google Scholar] [CrossRef] [Green Version]
- Rohlf, F.J. Geometric morphometrics and phylogeny. Syst. Assoc. Spec. Vol. 2002, 64, 175–193. [Google Scholar]
- Bookstein, F.L. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 567–585. [Google Scholar] [CrossRef] [Green Version]
- Zannèse, A.; Morellet, N.; Targhetta, C.; Coulon, A.; Fuser, S.; Hewison, A.M.; Ramanzin, M. Spatial structure of roe deer populations: Towards defining management units at a landscape scale. J. Appl. Ecol. 2006, 43, 1087–1097. [Google Scholar] [CrossRef]
- Maublanc, M.L.; Bideau, E.; Launay, C.; Monthuir, B.; Gerard, J.F. Indicators of ecological change (IEC) as efficient tools for managing roe deer populations: A case study. Eur. J. Wildl. Res. 2016, 62, 189–197. [Google Scholar] [CrossRef]
- Suttie, J.M.; Mitchell, B. Jaw length and hind foot length as measures of skeletal development of red deer (Cervus elaphus). J. Zool. 1983, 200, 431–434. [Google Scholar] [CrossRef]
- Wustinger, J.; Galli, J.; Rozpędek, W. An osteometric study on recent roe deer (Capreolus capreolus L., 1758). Folia Morphol. 2005, 64, 97–100. [Google Scholar]
- Raia, P.; Carotenuto, F.; Meloro, C.; Piras, P.; Pushkina, D. The shape of contention: Adaptation, history, and contingency in ungulate mandibles. Evol. Int. J. Org. Evol. 2010, 64, 1489–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azorit, C.; Jiménez-Tenorio, M.; Casinos, A.; Lopez Montoya, A.J.; Lopez-Fuster, M.J.; Rocha Barbosa, O. Searching for indicators of age, sex and population in European mouflon mandibles. Hystrix 2020, 31, 48–57. [Google Scholar] [CrossRef]
- Morellet, N.; Gaillard, J.M.; Hewison, A.M.; Ballon, P.; Boscardin, Y.; Duncan, P.; Klein, F.; Maillard, D. Indicators of ecological change: New tools for managing populations of large herbivores. J. Appl. Ecol. 2007, 44, 634–643. [Google Scholar] [CrossRef]
- Høye, T.T.; Forchhammer, M.C. Early developed section of the jaw as an index of prenatal growth conditions in adult roe deer Capreolus capreolus. Wildl. Biol. 2006, 12, 71–76. [Google Scholar] [CrossRef]
- Hanzal, V.; Janiszewski, P.; Tajchman, K.; Košinová, K. The correlation between mandibular length versus body mass and age in the European roe deer (Capreolus capreolus L.). Appl. Ecol. Environ. Res. 2017, 15, 1623–1632. [Google Scholar] [CrossRef]
- Hofmann, R.R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 1989, 78, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Duncan, P.; Tixier, H.; Hofmann, R.R.; Lechner-Doll, M. Feeding Strategies and the Physiology of Digestion in Roe Deer. The European Roe Deer: The Biology of Success; Scandinavian University Press: Oslo, Norway, 1998; pp. 91–116. [Google Scholar]
- Vitanzi, A.; Brusaferro, A.; Nardi, C.; Sparvoli, D.; Catorci, A. Approccio geosinfitosociologia alla definizione della carrying capacity potenziale degli ecosistemi forestali dell’Appennino centrale nei confronti del capriolo (Capreolus capreolus L.) [Geosyn Phytosociological approach to the definition of potential carrying capacity of central Apennines forest ecosystems in relation to the roe deer (Capreolus capreolus L.)]. Inf. Bot. Ital. 2010, 42, 443–449. [Google Scholar]
Dorsal Side | 0–11 Months Old (N = 26) | 8–11 Months Old (N = 14) | 0–8 Months Old (N = 12) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | df | MS | F | p | SS | df | MS | F | p | SS | df | MS | F | p | ||
RW1 | BG | 0.001 | 2 | 0.000 | 0.588 | 0.563 | 0.001 | 2 | 0.000 | 0.530 | 0.603 | 0.002 | 2 | 0.001 | 5.737 | 0.025 |
WG | 0.012 | 23 | 0.001 | 0.005 | 11 | 0.000 | 0.002 | 9 | 0.000 | |||||||
Total | 0.012 | 25 | 0.006 | 13 | 0.004 | 11 | ||||||||||
RW2 | BG | 0.001 | 2 | 0.000 | 1.720 | 0.201 | 0.001 | 2 | 0.001 | 3.627 | 0.062 | 0.000 | 2 | 0.000 | 0.216 | 0.810 |
WG | 0.004 | 23 | 0.000 | 0.002 | 11 | 0.000 | 0.001 | 9 | 0.000 | |||||||
Total | 0.004 | 25 | 0.003 | 13 | 0.001 | 11 | ||||||||||
RW3 | BG | 0.000 | 2 | 0.000 | 0.336 | 0.718 | 0.000 | 2 | 0.000 | 0.597 | 0.567 | 0.000 | 2 | 0.000 | 0.460 | 0.646 |
WG | 0.003 | 23 | 0.000 | 0.001 | 11 | 0.000 | 0.002 | 9 | 0.000 | |||||||
Total | 0.004 | 25 | 0.001 | 13 | 0.002 | 11 | ||||||||||
RW4 | BG | 0.000 | 2 | 0.000 | 0.583 | 0.566 | 0.000 | 2 | 0.000 | 0.469 | 0.637 | 0.000 | 2 | 0.000 | 0.207 | 0.816 |
WG | 0.001 | 23 | 0.000 | 0.001 | 11 | 0.000 | 0.001 | 9 | 0.000 | |||||||
Total | 0.001 | 25 | 0.001 | 13 | 0.001 | 11 |
Lateral Side | 0–11 Months Old (N = 26) | 8–11 Months Old (N = 14) | 0–8 Months Old (N = 12) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SS | df | MS | F | Sig. | SS | df | MS | F | Sig. | SS | df | MS | F | Sig. | ||
RW1 | BG | 0.002 | 2 | 0.001 | 0.895 | 0.121 | 0.002 | 2 | 0.001 | 1.506 | 0.264 | 0.000 | 2 | 0.000 | 691 | 0.526 |
WG | 0.011 | 23 | 0.000 | 0.008 | 11 | 0.001 | 0.001 | 9 | 0.000 | |||||||
Total | 0.013 | 25 | 0.011 | 13 | 0.002 | 11 | ||||||||||
RW2 | BG | 0.000 | 2 | 0.000 | 2.321 | 0.611 | 0.000 | 2 | 0.000 | 0.853 | 0.452 | 0.000 | 2 | 0.000 | 0.120 | 0.889 |
WG | 0.005 | 23 | 0.000 | 0.002 | 11 | 0.000 | 0.003 | 9 | 0.000 | |||||||
Total | 0.005 | 25 | 0.003 | 13 | 0.003 | 11 | ||||||||||
RW3 | BG | 0.000 | 2 | 0.000 | 0.503 | 0.434 | 0.000 | 2 | 0.000 | 1.112 | 0.363 | 0.000 | 2 | 0.000 | 0.144 | 0.867 |
WG | 0.003 | 23 | 0.000 | 0.001 | 11 | 0.000 | 0.001 | 9 | 0.000 | |||||||
Total | 0.003 | 25 | 0.001 | 13 | 0.001 | 11 | ||||||||||
RW4 | BG | 0.000 | 2 | 0.000 | 0.910 | 0.417 | 0.000 | 2 | 0.000 | 0.241 | 0.790 | 0.000 | 2 | 0.000 | 0.639 | 0.550 |
WG | 0.002 | 23 | 0.000 | 0.001 | 11 | 0.000 | 0.001 | 9 | 0.000 | |||||||
Total | 0.002 | 25 | 0.001 | 13 | 0.001 | 11 |
COD | N | Subset for Alpha = 0.05 | |
---|---|---|---|
1 | 2 | ||
3 | 3 | −0.0108 | |
2 | 4 | 0.0154 | 0.0154 |
1 | 5 | 0.0209 | |
p | 0.053 | 0.836 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacioni, C.; Mercati, F.; Catorci, A.; Brusaferro, A.; Strubbe, D.; Scocco, P. Shape Analysis as an Additional Tool in Roe Deer (Capreolus capreolus) Management: A New Approach Based on the Relationship between Mandible Shape and Trophic Resources. Animals 2021, 11, 1611. https://doi.org/10.3390/ani11061611
Pacioni C, Mercati F, Catorci A, Brusaferro A, Strubbe D, Scocco P. Shape Analysis as an Additional Tool in Roe Deer (Capreolus capreolus) Management: A New Approach Based on the Relationship between Mandible Shape and Trophic Resources. Animals. 2021; 11(6):1611. https://doi.org/10.3390/ani11061611
Chicago/Turabian StylePacioni, Cesare, Francesca Mercati, Andrea Catorci, Andrea Brusaferro, Diederik Strubbe, and Paola Scocco. 2021. "Shape Analysis as an Additional Tool in Roe Deer (Capreolus capreolus) Management: A New Approach Based on the Relationship between Mandible Shape and Trophic Resources" Animals 11, no. 6: 1611. https://doi.org/10.3390/ani11061611
APA StylePacioni, C., Mercati, F., Catorci, A., Brusaferro, A., Strubbe, D., & Scocco, P. (2021). Shape Analysis as an Additional Tool in Roe Deer (Capreolus capreolus) Management: A New Approach Based on the Relationship between Mandible Shape and Trophic Resources. Animals, 11(6), 1611. https://doi.org/10.3390/ani11061611