Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal and Trait Measurements
2.2. Genotyping and Quality Control
2.3. Estimation of Genetic Parameters
2.4. Genome-Wide Association Mapping
2.5. Candidate Genes Identification and Pathway Enrichment Analysis
3. Results
3.1. Heritability
3.2. Genome-Wide Association Mapping
3.3. Pathway Enrichment Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Consent for Publication
Ethics Statements
References
- Fontanesi, L.; Schiavo, G.; Gallo, M.; Baiocco, C.; Galimberti, G.; Bovo, S.; Russo, V.; Buttazzoni, L. Genome-wide association study for ham weight loss at first salting in Italian Large White pigs: Towards the genetic dissection of a key trait for dry-cured ham production. Anim. Genet. 2017, 48, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Edizioni Qualivita Fondazione Qualivita. RAPPORTO 2019 ISMEA—QUALIVITA Sulle Produzioni Agroalimentari e Vitivinicole Italiane DOP, IGP e STG; Edizioni Qualivita Fondazione Qualivita: Siena, Italy, 2019; ISBN 978-88-96530-45-0. Available online: http://www.ismea.it/flex/cm/pages/ServeAttachment.php/L/IT/D/d%252F1%252Fc%252FD.5dc105037cf9be92b910/P/BLOB%3AID%3D10971/E/pdf (accessed on 29 January 2021).
- Bosi, P.; Russo, V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef] [Green Version]
- Lo Fiego, D.P.; Santoro, P.; Macchioni, P.; De Leonibus, E. Influence of genetic type, live weight at slaughter and carcass fatness on fatty acid composition of subcutaneous adipose tissue of raw ham in the heavy pig. Meat Sci. 2005, 69, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Consorzio del Prosciutto di Parma Prosciutto di Parma Denominazione di Origine Protetta—Disciplinare Generale e Dossier di cui All’articolo 4 del Regolamento (CEE) no 2081/92 del Consiglio del 14 Luglio 1992, Consorzio del Prosciutto di Parma. 1992. Available online: https://www.politicheagricole.it/flex/files/6/1/c/D.324fdfa38ad9aa3459c4/Disciplinare_Prosciutto_di_Parma_28.11.2013.pdf (accessed on 29 January 2021).
- MIPAAF Disciplinare di Produzione della Denominazione di Origine Protetta “Prosciutto di San Daniele”. Gazzetta Ufficiale della Repubblica Italiana, Supplemento Ordinario alla Gazzetta Ufficiale N. 77 del 2 Aprile 2007. Available online: https://www.politicheagricole.it/flex/cm/pages/ServeAttachment.php/L/IT/D/9%252F5%252F4%252FD.31d587cb9cb32c8e6f49/P/BLOB%3AID%3D3335/E/pdf (accessed on 29 January 2021).
- Bonfatti, V.; Carnier, P. Prediction of dry-cured ham weight loss and prospects of use in a pig breeding program. Animal 2020, 14, 1128–1138. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, F.; Schiavo, G.; Galimberti, G.; Bovo, S.; D’Andrea, M.; Gallo, M.; Buttazzoni, L.; Rothschild, M.F.; Fontanesi, L. Genome-wide association studies for seven production traits highlight genomic regions useful to dissect dry-cured ham quality and production traits in Duroc heavy pigs. Animal 2018, 12, 1777–1784. [Google Scholar] [CrossRef]
- Willson, H.E.; Rojas de Oliveira, H.; Schinckel, A.P.; Grossi, D.; Brito, L.F. Estimation of genetic parameters for pork quality, novel carcass, primal-cut and growth traits in Duroc pigs. Animals 2020, 10, 779. [Google Scholar] [CrossRef] [PubMed]
- Zappaterra, M.; Zambonelli, P.; Schivazappa, C.; Simoncini, N.; Virgili, R.; Stefanon, B.; Davoli, R. Investigating the features of PDO green hams during salting: Insights for new markers and genomic regions in commercial hybrid pigs. Animals 2021, 11, 68. [Google Scholar] [CrossRef]
- Dall’Olio, S.; Aboagye, G.; Nanni Costa, L.; Gallo, M.; Fontanesi, L. Effects of 17 performance, carcass and raw ham quality parameters on ham weight loss at first salting in heavy pigs, a meat quality indicator for the production of high quality dry-cured hams. Meat Sci. 2020, 162, 108012. [Google Scholar] [CrossRef]
- Čandek-Potokar, M.; Škrlep, M. Factors in pig production that impact the quality of dry-cured ham: A review. Animal 2012, 6, 327–338. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, Y.; Hou, L.; Ma, J.; Chen, C.; Ai, H.; Huang, L.; Ren, J. Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches. Genet. Sel. Evol. 2017, 49, 21. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Wang, Z.; Miar, Y.; Bruce, H.; Zhang, C.; Plastow, G. A genome-wide association study of meat colour in commercial crossbred pigs. Can. J. Anim. Sci. 2017, 97, 721–733. [Google Scholar]
- Bergamaschi, M.; Maltecca, C.; Fix, J.; Schwab, C.; Tiezzi, F. Genome-wide association study for carcass quality traits and growth in purebred and crossbred pigs1. J. Anim. Sci. 2020, 98. [Google Scholar] [CrossRef]
- Gao, G.; Gao, N.; Li, S.; Kuang, W.; Zhu, L.; Jiang, W.; Yu, W.; Guo, J.; Li, Z.; Yang, C.; et al. Genome-wide association study of meat quality traits in a three-way crossbred commercial pig population. Front. Genet. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.M.; Crooijmans, R.P.M.A.; Affara, N.A.; Amaral, A.J.; Archibald, A.L.; Beever, J.E.; Bendixen, C.; Churcher, C.; Clark, R.; Dehais, P.; et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 2009, 4, e6524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, Z.; Oyelami, F.O.; Sun, H.; Xu, Z.; Ma, P.; Wang, Q.; Pan, Y. Identification of genes related to intramuscular fat independent of backfat thickness in Duroc pigs using single-step genome-wide association. Anim. Genet. 2021, 52, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Legarra, A.; Aguilar, I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J. Dairy Sci. 2009, 92, 4648–4655. [Google Scholar] [CrossRef] [Green Version]
- Fabro, C.; Sgorlon, S.; Guiatti, D.; Stefanon, B.; Susmel, P. Productive response of Duroc × Large White and Commercial Hybrid x Large White crosses fed high and low protein diets. Ital. J. Anim. Sci. 2013, 12, e82. [Google Scholar] [CrossRef]
- Warr, A.; Affara, N.; Aken, B.; Beiki, H.; Bickhart, D.M.; Billis, K.; Chow, W.; Eory, L.; Finlayson, H.A.; Flicek, P.; et al. An improved pig reference genome sequence to enable pig genetics and genomics research. Gigascience 2020, 9. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf (accessed on 20 January 2020).
- Legarra, A.; Aguilar, I.; Misztal, I. A relationship matrix including full pedigree and genomic information. J. Dairy Sci. 2009, 92, 4656–4663. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- Christensen, O.F.; Lund, M.S. Genomic prediction when some animals are not genotyped. Genet. Sel. Evol. 2010, 42, 2. [Google Scholar] [CrossRef] [Green Version]
- Henderson, C.R. Best linear unbiased estimation and prediction under a selection model. Biometrics 1975, 31, 423–447. [Google Scholar] [CrossRef] [Green Version]
- VanRaden, P.M. Efficient methods to compute genomic predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef] [Green Version]
- Vitezica, Z.G.; Aguilar, I.; Misztal, I.; Legarra, A. Bias in genomic predictions for populations under selection. Genet. Res. 2011, 93, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-wide association mapping including phenotypes from relatives without genotypes. Genet. Res. 2012, 94, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Melo, T.P.; Takada, L.; Baldi, F.; Oliveira, H.N.; Dias, M.M.; Neves, H.H.R.; Schenkel, F.S.; Albuquerque, L.G.; Carvalheiro, R. Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations. BMC Genet. 2016, 17, 89. [Google Scholar] [CrossRef] [Green Version]
- Irano, N.; de Camargo, G.M.F.; Costa, R.B.; Terakado, A.P.N.; Magalhães, A.F.B.; Silva, R.M.d.O.; Dias, M.M.; Bignardi, A.B.; Baldi, F.; Carvalheiro, R.; et al. Genome-wide association study for indicator traits of sexual precocity in Nellore cattle. PLoS ONE 2016, 11, e0159502. [Google Scholar] [CrossRef]
- Hayes, B.J.; Bowman, P.J.; Chamberlain, A.C.; Verbyla, K.; Goddard, M.E. Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genet. Sel. Evol. 2009, 41, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, A.L.S.; Bosworth, B.; Waldbieser, G.; Misztal, I.; Tsuruta, S.; Lourenco, D.A.L. Development of genomic predictions for harvest and carcass weight in channel catfish. Genet. Sel. Evol. 2018, 50, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, R.M.O.; Evenhuis, J.P.; Vallejo, R.L.; Gao, G.; Martin, K.E.; Leeds, T.D.; Palti, Y.; Lourenco, D.A.L. Whole-genome mapping of quantitative trait loci and accuracy of genomic predictions for resistance to columnaris disease in two rainbow trout breeding populations. Genet. Sel. Evol. 2019, 51, 42. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, R.L.; Liu, S.; Gao, G.; Fragomeni, B.O.; Hernandez, A.G.; Leeds, T.D.; Parsons, J.E.; Martin, K.E.; Evenhuis, J.P.; Welch, T.J.; et al. Similar Genetic Architecture with Shared and Unique Quantitative Trait Loci for Bacterial Cold Water Disease Resistance in Two Rainbow Trout Breeding Populations. Front. Genet. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palombo, V.; Milanesi, M.; Sferra, G.; Capomaccio, S.; Sgorlon, S.; D’Andrea, M. PANEV: An R package for a pathway-based network visualization. BMC Bioinform. 2020, 21, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M. KEGG Bioinformatics Resource for Plant Genomics and Metabolomics. Methods Mol. Biol. 2016, 1374, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Fontanesi, L.; Schiavo, G.; Galimberti, G.; Calò, D.G.; Scotti, E.; Martelli, P.L.; Buttazzoni, L.; Casadio, R.; Russo, V. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genom. 2012, 13, 583. [Google Scholar] [CrossRef] [Green Version]
- Blaj, I.; Tetens, J.; Preuß, S.; Bennewitz, J.; Thaller, G. Genome-wide association studies and meta-analysis uncovers new candidate genes for growth and carcass traits in pigs. PLoS ONE 2018, 13, e0205576. [Google Scholar] [CrossRef]
- Do, D.N.; Strathe, A.B.; Ostersen, T.; Pant, S.D.; Kadarmideen, H.N. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Renaville, B.; Piasentier, E.; Fan, B.; Vitale, M.; Prandi, A.; Rothschild, M.F. Candidate gene markers involved in San Daniele ham quality. Meat Sci. 2010, 85, 441–445. [Google Scholar] [CrossRef]
- Stalder, K.J.; Rothschild, M.F.; Lonergan, S.M. Associations between two gene markers and indicator traits affecting fresh and dry-cured ham processing quality. Meat Sci. 2005, 69, 451–457. [Google Scholar] [CrossRef]
- Hao, X.; Plastow, G.; Zhang, C.; Xu, S.; Hu, Z.; Yang, T.; Wang, K.; Yang, H.; Yin, X.; Liu, S.; et al. Genome-wide association study identifies candidate genes for piglet splay leg syndrome in different populations. BMC Genet. 2017, 18. [Google Scholar] [CrossRef]
- Le, T.H.; Christensen, O.F.; Nielsen, B.; Sahana, G. Genome-wide association study for conformation traits in three Danish pig breeds. Genet. Sel. Evol. 2017, 49. [Google Scholar] [CrossRef]
- Fontanesi, L.; Scotti, E.; Speroni, C.; Buttazzoni, L.; Russo, V. A selective genotyping approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes associated with production and carcass traits in Italian heavy pigs. Ital. J. Anim. Sci. 2011, 10, e15. [Google Scholar] [CrossRef]
- Samorè, A.B.; Fontanesi, L. Genomic selection in pigs: State of the art and perspectives. Ital. J. Anim. Sci. 2016, 15, 211–232. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, UK, 1996; Volume 12, 438p. [Google Scholar]
- Van Wijk, H.J.; Arts, D.J.G.; Matthews, J.O.; Webster, M.; Ducro, B.J.; Knol, E.F. Genetic parameters for carcass composition and pork quality estimated in a commercial production chain. J. Anim. Sci. 2005, 83, 324–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miar, Y.; Plastow, G.S.; Moore, S.S.; Manafiazar, G.; Charagu, P.; Kemp, R.A.; Van Haandel, B.; Huisman, A.E.; Zhang, C.Y.; McKay, R.M.; et al. Genetic and phenotypic parameters for carcass and meat quality traits in commercial crossbred pigs. J. Anim. Sci. 2014, 92, 2869–2884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boysen, T.J.; Tetens, J.; Thaller, G. Detection of a quantitative trait locus for ham weight with polar overdominance near the ortholog of the callipyge locus in an experimental pig F2 population. J. Anim. Sci. 2010, 88, 3167–3172. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Oyamada, Y.; Atsuji, K.; Nade, T.; Sato, S.; Kobayashi, E.; Mitsuhashi, T.; Nirasawa, K.; Komatsuda, A.; Saito, Y.; et al. Quantitative trait loci analysis for growth and carcass traits in a Meishan × Duroc F2 resource population. J. Anim. Sci. 2003, 81, 2938–2949. [Google Scholar] [CrossRef]
- Yang, Q.; Wu, P.; Wang, K.; Chen, D.; Zhou, J.; Ma, J.; Li, M.; Xiao, W.; Jiang, A.; Jiang, Y.; et al. SNPs associated with body weight and backfat thickness in two pig breeds identified by a genome-wide association study. Genomics 2019, 111, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Milan, D.; Bidanel, J.-P.; Iannuccelli, N.; Riquet, J.; Amigues, Y.; Gruand, J.; Le Roy, P.; Renard, C.; Chevalet, C. Detection of quantitative trait loci for carcass composition traits in pigs. Genet. Sel. Evol. 2002, 34, 705–728. [Google Scholar] [CrossRef]
- Van Wijk, H.J.; Dibbits, B.; Baron, E.E.; Brings, A.D.; Harlizius, B.; Groenen, M.a.M.; Knol, E.F.; Bovenhuis, H. Identification of quantitative trait loci for carcass composition and pork quality traits in a commercial finishing cross. J. Anim. Sci. 2006, 84, 789–799. [Google Scholar] [CrossRef] [Green Version]
- Mohrmann, M.; Roehe, R.; Knap, P.W.; Looft, H.; Plastow, G.S.; Kalm, E. Quantitative trait loci associated with AutoFOM grading characteristics, carcass cuts and chemical body composition during growth of Sus scrofa. Anim. Genet. 2006, 37, 435–443. [Google Scholar] [CrossRef]
- Van Wijk, H.J.; Buschbell, H.; Dibbits, B.; Liefers, S.C.; Harlizius, B.; Heuven, H.C.M.; Knol, E.F.; Bovenhuis, H.; Groenen, M.a.M. Variance component analysis of quantitative trait loci for pork carcass composition and meat quality on SSC4 and SSC11. J. Anim. Sci. 2007, 85, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geldermann, H.; Müller, E.; Moser, G.; Reiner, G.; Bartenschlager, H.; Cepica, S.; Stratil, A.; Kuryl, J.; Moran, C.; Davoli, R.; et al. Genome-wide linkage and QTL mapping in porcine F2 families generated from Pietrain, Meishan and Wild Boar crosses. J. Anim. Breed. Genet. 2003, 120, 363–393. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, L.; Buttazzoni, L.; Scotti, E.; Russo, V. Confirmation of the association between a single nucleotide polymorphism in the porcine LDHA gene and average daily gain and correlated traits in Italian Large White pigs. Anim. Genet. 2012, 43, 649–650. [Google Scholar] [CrossRef] [PubMed]
- Cepica, S.; Stratil, A.; Kopecny, M.; Blazkova, P.; Schröffel, J.; Davoli, R.; Fontanesi, L.; Reiner, G.; Bartenschlager, H.; Moser, G.; et al. Linkage and QTL mapping for Sus scrofa chromosome 4. J. Anim. Breed. Genet. 2003, 120, 28–37. [Google Scholar] [CrossRef]
- Yue, G.; Stratil, A.; Cepica, S.; Schröffel, J.; Schröffelova, D.; Fontanesi, L.; Cagnazzo, M.; Moser, G.; Bartenschlager, H.; Reiner, G.; et al. Linkage and QTL mapping for Sus scrofa chromosome 7. J. Anim. Breed. Genet. 2003, 120, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.-P.; Riquet, J.; Iannuccelli, N.; Gogué, J.; Billon, Y.; Demeure, O.; Caritez, J.-C.; Burgaud, G.; Fève, K.; Bonnet, M.; et al. Effects of quantitative trait loci on chromosomes 1, 2, 4, and 7 on growth, carcass, and meat quality traits in backcross Meishan × Large White pigs. J. Anim. Sci. 2006, 84, 526–537. [Google Scholar] [CrossRef]
- Choi, I.; Steibel, J.P.; Bates, R.O.; Raney, N.E.; Rumph, J.M.; Ernst, C.W. Identification of Carcass and Meat Quality QTL in an F2 Duroc × Pietrain Pig Resource Population Using Different Least-Squares Analysis Models. Front. Genet. 2011, 2. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.-P.; Tribout, T.; Iannuccelli, N.; Bouffaud, M.; Servin, B.; Tenghe, A.; Dehais, P.; Muller, N.; Del Schneider, M.P.; Mercat, M.-J.; et al. A genome-wide association study of production traits in a commercial population of Large White pigs: Evidence of haplotypes affecting meat quality. Genet. Sel. Evol. 2014, 46, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefta, M.; Wolff, G.; Esser, K.A. Circadian rhythms, the molecular clock, and skeletal muscle. Curr. Top. Dev. Biol. 2011, 96, 231–271. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Liang, Y.; Yang, X.; Pang, J.; Zhong, Z.; Chen, X.; Yang, Y.; Zeng, K.; Kang, R.; Lei, Y.; et al. Transcriptomic profiling in muscle and adipose tissue identifies genes related to growth and lipid deposition. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Hiraiwa, H.; Sawazaki, T.; Suzuki, K.; Fujishima-Kanaya, N.; Toki, D.; Ito, Y.; Uenishi, H.; Hayashi, T.; Awata, T.; Yasue, H. Elucidation of correspondence between swine chromosome 4 and human chromosome 1 by assigning 27 genes to the ImpRH map, and development of microsatellites in the proximity of 14 genes. Cytogenet. Genome Res. 2003, 101, 84–89. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Kim, Y.-S.; Iqbal, A.; Kim, J.-J. A whole genome association study to detect additive and dominant single nucleotide polymorphisms for growth and carcass traits in Korean native cattle, Hanwoo. Asian-Australas. J. Anim. Sci. 2016, 30, 8–19. [Google Scholar] [CrossRef] [Green Version]
- Makina, S.O.; Muchadeyi, F.C.; van Marle-Köster, E.; Taylor, J.F.; Makgahlela, M.L.; Maiwashe, A. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genet. Sel. Evol. 2015, 47, 92. [Google Scholar] [CrossRef] [Green Version]
- Vanvanhossou, S.F.U.; Scheper, C.; Dossa, L.H.; Yin, T.; Brügemann, K.; König, S. A multi-breed GWAS for morphometric traits in four Beninese indigenous cattle breeds reveals loci associated with conformation, carcass and adaptive traits. BMC Genom. 2020, 21, 783. [Google Scholar] [CrossRef]
- Pourteymour, S.; Eckardt, K.; Holen, T.; Langleite, T.; Lee, S.; Jensen, J.; Birkeland, K.I.; Drevon, C.A.; Hjorth, M. Global mRNA sequencing of human skeletal muscle: Search for novel exercise-regulated myokines. Mol. Metab. 2017, 6, 352–365. [Google Scholar] [CrossRef]
- Martínez-Montes, Á.M.; Fernández, A.; Muñoz, M.; Noguera, J.L.; Folch, J.M.; Fernández, A.I. Using genome wide association studies to identify common QTL regions in three different genetic backgrounds based on Iberian pig breed. PLoS ONE 2018, 13, e0190184. [Google Scholar] [CrossRef] [PubMed]
- Mandal, C.C.; Ghosh Choudhury, G.; Ghosh-Choudhury, N. Phosphatidylinositol 3 kinase/Akt signal relay cooperates with smad in bone morphogenetic protein-2-induced colony stimulating factor-1 (CSF-1) expression and osteoclast differentiation. Endocrinology 2009, 150, 4989–4998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velez-Irizarry, D.; Casiro, S.; Daza, K.R.; Bates, R.O.; Raney, N.E.; Steibel, J.P.; Ernst, C.W. Genetic control of longissimus dorsi muscle gene expression variation and joint analysis with phenotypic quantitative trait loci in pigs. BMC Genom. 2019, 20, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, M.; Nakajima, I.; Arakawa, A.; Mikawa, S.; Matsumoto, T.; Uenishi, H.; Nakamura, Y.; Taniguchi, M. Differences in gene expression profiles for subcutaneous adipose, liver, and skeletal muscle tissues between Meishan and Landrace pigs with different backfat thicknesses. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- He, H.; Liu, X.; Gu, Y.; Liu, Y. A novel 18-bp deletion mutation of the AMPD1 gene affects carcass traits in Qinchuan cattle. Mol. Biol. Rep. 2010, 37, 3945–3949. [Google Scholar] [CrossRef]
- Wang, L.; Mo, X.; Xu, Y.; Zuo, B.; Lei, M.; Li, F.; Jiang, S.; Deng, C.; Xiong, Y. Molecular characterization and expression patterns of AMP deaminase1 (AMPD1) in porcine skeletal muscle. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2008, 151, 159–166. [Google Scholar] [CrossRef]
- Kang, H.-C.; Kim, H.-S.; Lee, J.-B.; Yoo, C.-K.; Choi, T.-J.; Lim, H.-T. Analysis of the relationship between the end weight trait and the gene ADGRL2 in purebred landrace pigs using a Genome-wide association study. Korean J. Agric. Sci. 2018, 45, 238–247. [Google Scholar] [CrossRef]
- Hong, J.-K.; Lee, J.-B.; Ramayo-Caldas, Y.; Kim, S.-D.; Cho, E.-S.; Kim, Y.-S.; Cho, K.-H.; Lee, D.-H.; Park, H.-B. Single-step genome-wide association study for social genetic effects and direct genetic effects on growth in Landrace pigs. Sci. Rep. 2020, 10, 14958. [Google Scholar] [CrossRef]
- Fabbri, M.C.; Zappaterra, M.; Davoli, R.; Zambonelli, P. Genome-wide association study identifies markers associated with carcass and meat quality traits in Italian Large White pigs. Anim. Genet. 2020, 51, 950–952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, Y.; Wang, L.; Liu, X.; Yan, H.; Gao, H.; Hou, X.; Zhang, Y.; Guo, H.; Yue, J.; et al. Genomic variants associated with the number and diameter of muscle fibers in pigs as revealed by a genome-wide association study. Animal 2020, 14, 475–481. [Google Scholar] [CrossRef]
- Zhu, M.; Zheng, R.; Guo, Y.; Zhang, Y.; Zuo, B. NDRG4 promotes myogenesis via Akt/CREB activation. Oncotarget 2017, 8, 101720–101734. [Google Scholar] [CrossRef]
- Brunner, R.M.; Srikanchai, T.; Murani, E.; Wimmers, K.; Ponsuksili, S. Genes with expression levels correlating to drip loss prove association of their polymorphism with water holding capacity of pork. Mol. Biol. Rep. 2012, 39, 97–107. [Google Scholar] [CrossRef]
- Berdeaux, R.; Stewart, R. cAMP signaling in skeletal muscle adaptation: Hypertrophy, metabolism, and regeneration. Am. J. Physiol. Endocrinol. Metab. 2012, 303, E1–E17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, W.; Zhang, H.L.; Liu, Y.; Lu, B.C.; Liu, X.; Li, Q.; Cao, Y. Investigation of the association of two candidate genes (H-FABP and PSMC1) with growth and carcass traits in Qinchuan beef cattle from China. Genet. Mol. Res. 2014, 13, 1876–1884. [Google Scholar] [CrossRef]
- Sato, S.; Ohnishi, C.; Uemoto, Y.; Kobayashi, E. Haplotype analysis within quantitative trait locus affecting intramuscular fat content on porcine chromosome 7. Czech J. Anim. Sci. 2011, 56, 521–528. [Google Scholar] [CrossRef] [Green Version]
- Ding, R.; Yang, M.; Quan, J.; Li, S.; Zhuang, Z.; Zhou, S.; Zheng, E.; Hong, L.; Li, Z.; Cai, G.; et al. Single-locus and multi-locus genome-wide association studies for intramuscular fat in Duroc pigs. Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Seabury, C.M.; Oldeschulte, D.L.; Saatchi, M.; Beever, J.E.; Decker, J.E.; Halley, Y.A.; Bhattarai, E.K.; Molaei, M.; Freetly, H.C.; Hansen, S.L.; et al. Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genom. 2017, 18, 386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zappaterra, M.; Gioiosa, S.; Chillemi, G.; Zambonelli, P.; Davoli, R. Muscle transcriptome analysis identifies genes involved in ciliogenesis and the molecular cascade associated with intramuscular fat content in Large White heavy pigs. PLoS ONE 2020, 15, e0233372. [Google Scholar] [CrossRef] [PubMed]
Trait * (Units) | Number of Animals with Record | Mean | SD | Min. | Max. |
---|---|---|---|---|---|
UTW (Kg) | 1810 | 16.69 | 1.50 | 11.60 | 22.70 |
TTW (Kg) | 1202 | 14.56 | 1.26 | 10.55 | 18.39 |
Trait * | h2 | σ2a | σ2f | |||
---|---|---|---|---|---|---|
UTW | 0.57 | (±0.06) | 1.10 | (±0.16) | 1.91 | (±0.09) |
TTW | 0.56 | (±0.08) | 0.71 | (±0.13) | 1.26 | (±0.07) |
Trait * | Chromosome | Average Window Position (bp) | Var (%) ** |
---|---|---|---|
UTW | 1 | 174,878,065 | 1.8 |
4 | 109,960,856 | 1.0 | |
6 | 130,886,072 | 3.7 | |
7 | 111,515,733 | 1.2 | |
8 | 85,700,162 | 1.0 | |
9 | 211,402.7 | 1.3 | |
11 | 25,964,018 | 1.6 | |
13 | 180,176,231 | 1.0 | |
15 | 17,747,406 | 2.6 | |
TTW | 1 | 196,026,548 | 1.2 |
4 | 109,932,435 | 3.0 | |
5 | 19,850,051 | 1.1 | |
6 | 19,867,435 | 1.5 | |
6 | 131,818,101 | 6.5 | |
7 | 111,483,950 | 2.2 | |
11 | 22,910,267 | 1.2 | |
15 | 17,747,406 | 1.4 |
Trait * | Chr | QTL Region (Mbps) | SNP | Candidate Genes (≤0.50 Mbps from SNP) |
---|---|---|---|---|
UTW | 1 | 174.09–176.24 | rs81349662, rs80948504, rs343652685, rs80782484, rs327453220, rs332492531, rs80819153, rs81271780, rs342853895 rs81236950, rs326407187, rs320846990, rs80818307 | PRPF39, MIS18BP1, FANCM, RPL10L, U6, SNORD127, FKBP3, TOGARAM1, ENSSSCG00000039829, ENSSSCG00000043072, ENSSSCG00000043544, ENSSSCG00000047027, ENSSSCG00000049486 |
UTW | 4 | 109.68–110.08 | rs80977079, rs80870756, rs80980343, rs81380241 | LRIF1, CD53, ENSSSCG00000006801, KCNA3, KCNA10, ENSSSCG00000006804, PROK1, SLC16A4, RBM15, KCNC4, SLC6A17, ALX3, STRIP1, AHCYL1, EPS8L3, GSTM3, GNAT2, GNAI3, GPR61, U6, DRAM2, ENSSSCG00000028425, CEPT1, AMPD2, ENSSSCG00000033730, CSF1, KCNA2, ENSSSCG00000037808, ENSSSCG00000040889, ENSSSCG00000041122, ENSSSCG00000042722, ENSSSCG00000043070, ENSSSCG00000043393, ENSSSCG00000046426, ENSSSCG00000049472, ENSSSCG00000051454, ENSSSCG00000051784 |
UTW | 6 | 130.11–131.38 | rs81391496, rs81391505, rs81391507, rs81391515, rs81391518, rs80900111, rs81391526, rs81335828, rs81327100, rs81391487, rs81391501, rs81391472, rs81391555, rs81274576, rs81222864, rs81257397, rs321214830 | TTLL7, ADGRL2, U6, PRKACB, ENSSSCG00000044932, ENSSSCG00000046121, ENSSSCG00000046184, ENSSSCG00000048726, ENSSSCG00000051159, ENSSSCG00000051341 |
UTW | 7 | 111.45–111.59 | rs80938538, rs80869539, rs80871598, rs80819115, rs80878413 | FOXN3, EFCAB11, TDP1, KCNK13, PSMC1, NRDE2, ENSSSCG00000041236 |
UTW | 8 | 85.70–85.70 | rs81402068 | INPP4B, IL15, ZNF330, RNF150, ENSSSCG00000041112, ENSSSCG00000041153, ENSSSCG00000041450, ENSSSCG00000044609 |
UTW | 9 | 0.07–0.38 | rs81411123, rs81411485, rs81338651, rs81407864, rs81409222, rs81409931, rs81310106, rs81412401, rs81270995, rs81223860 | TRIM66, DENND2B, ENSSSCG00000014569, NRIP3, ENSSSCG00000014575, TMEM9B, DENND5A, TMEM41B, ZNF143, SNORA23, IPO7, STK33, AKIP1, ENSSSCG00000036604, SNORA3A, ENSSSCG00000041869, ENSSSCG00000042439, ENSSSCG00000044344, ENSSSCG00000044464, ENSSSCG00000046669, ENSSSCG00000047065, ENSSSCG00000049636, ENSSSCG00000050234, ENSSSCG00000051028 |
UTW | 11 | 22.85–35.11 | rs81430421, rs80950281, rs81430434, rs80927521, rs80853848, rs81430439, rs81289163, rs81232833 | TSC22D1, ENSSSCG00000009425, ENSSSCG00000009426, ENOX1, SMIM2, SERP2, ENSSSCG00000041790, ENSSSCG00000042078, ENSSSCG00000042342, ENSSSCG00000043875, ENSSSCG00000044032, ENSSSCG00000046910, ENSSSCG00000046928, ENSSSCG00000047563, ENSSSCG00000049260, ENSSSCG00000049729, ENSSSCG00000051361, ENSSSCG00000051718 |
UTW | 13 | 180.18–180.18 | rs81284542 | NRIP1, USP25, ENSSSCG00000042337, ENSSSCG00000042532, ENSSSCG00000047968, ENSSSCG00000051574, ENSSSCG00000051785 |
UTW | 15 | 17.57–18.00 | rs81451598, rs81478999, rs81326202, rs81478982, rs81318409, rs81478797, rs81306466, rs81226590, rs81277838 | ACMSD, TMEM163, MGAT5, ENSSSCG00000040294, ENSSSCG00000041827, ENSSSCG00000043458, ENSSSCG00000045091, ENSSSCG00000046082, ENSSSCG00000047029, ENSSSCG00000048606, ENSSSCG00000051576 |
TTW | 1 | 195.00–196.54 | rs80904604, rs80795061, rs80956668, rs325632167, rs80968730, rs323807748, rs80862783, rs80841106 | GPHB5, ENSSSCG00000005121, TEK, IFT74, LRRC19, PLAA, RHOJ, SNORD22, PPP2R5E, ssc-mir-9832, KCNH5, U6, ENSSSCG00000044869, ENSSSCG00000051292 |
TTW | 4 | 109.58–110.25 | rs80953333, rs80977079, rs80945484, rs80870756, rs80980343, rs80826014, rs80926926, rs80882383, rs81380241, rs80960195 | CHI3L2, LRIF1, CD53, ENSSSCG00000006801, KCNA3, KCNA10, ENSSSCG00000006804, PROK1, SLC16A4, RBM15, KCNC4, SLC6A17, ALX3, STRIP1, AHCYL1, EPS8L3, GSTM3, GNAT2, GNAI3, GPR61, CYB561D1, ATXN7L2, SYPL2, PSMA5, SORT1, U6, DENND2D, DRAM2, ENSSSCG00000028425, CEPT1, AMPD2, ENSSSCG00000033730, AMIGO1, CSF1, KCNA2, ENSSSCG00000037808m ENSSSCG00000040889, ENSSSCG00000041122, ENSSSCG00000042722, ENSSSCG00000043070, ENSSSCG00000043393, ENSSSCG00000046426, ENSSSCG00000049472, ENSSSCG00000050471, ENSSSCG00000051040, ENSSSCG00000051454, ENSSSCG00000051784 |
TTW | 5 | 19.82–19.88 | rs80818243, rs80800107 | HNRNPA1, NFE2, COPZ1, ENSSSCG00000000291, ZNF385A, ITGA5, NCKAP1L, ENSSSCG00000000296, PDE1B, PPP1R1A, TESPA1, ENSSSCG00000000312, MIR148B, U6, SMUG1, GTSF1, ENSSSCG00000033014, ENSSSCG00000033458, ENSSSCG00000034158, NEUROD4, ENSSSCG00000036953, ENSSSCG00000037462, OR10A7, CBX5, ENSSSCG00000040626, ENSSSCG00000041361, ENSSSCG00000044790, ENSSSCG00000047339, ENSSSCG00000048196, ENSSSCG00000048965, ENSSSCG00000049332, ENSSSCG00000050900, ENSSSCG00000050921, ENSSSCG00000051005 |
TTW | 6 | 19.73–20.04 | rs81391898, rs81391786, rs334905777, rs81391709, rs81252955, rs81218446, rs81344881 | CNOT1, GINS3, CCDC113, CSNK2A2, CFAP20, MMP15, USB1, ZNF319, TEPP, ENSSSCG00000002811, KIFC3, KATNB1, ADGRG3, ADGRG1, DRC7, PLLP, CCL22, ENSSSCG00000018402, SNORA50A, U6, NDRG4, CCL17, ENSSSCG00000024759, COQ9, POLR2C, ADGRG5, SETD6, PRSS54, CCDC102A, DOK4, CIAPIN1, GOT2, ENSSSCG00000037660, SLC38A7, ENSSSCG00000041797, ENSSSCG00000043194, ENSSSCG00000045991, ENSSSCG00000048393, ENSSSCG00000051066 |
TTW | 6 | 130.11–134.84 | rs80930038, rs81391472, rs81391496, rs81391501, rs81391505, rs81391507, rs81327100, rs81274576, rs81335828, rs81222864, rs321214830, rs80900111, rs81391518, rs81391515, rs81257397, rs81391526, rs81391555, rs338651373, rs325952161, rs81391813, rs81278099, rs81340135, rs81347953, rs81306200 | TTLL7, ADGRL2, ADGRL4, IFI44, DNAJB4, NEXN, FUBP1, U6, IFI44L, GIPC2, PTGFR, PRKACB, ENSSSCG00000044932, ENSSSCG00000046121, ENSSSCG00000046184, ENSSSCG00000048726, ENSSSCG00000050806, ENSSSCG00000051159, ENSSSCG00000051341 |
TTW | 7 | 111.36–111.66 | rs80938538, rs80812481, rs80826832, rs80793518, rs80869539, rs80871598, rs80898146, rs80819115, rs326024106, rs80878413 | FOXN3, EFCAB11, TDP1, KCNK13, PSMC1, NRDE2, CALM1, ENSSSCG00000041236, ENSSSCG00000046875, ENSSSCG00000051310 |
TTW | 11 | 22.85–22.97 | rs81430421, rs81430434, rs80853848, rs81430439, rs81289163 | TSC22D1, ENSSSCG00000009425, ENSSSCG00000009426, ENOX1, SMIM2, SERP2, ENSSSCG00000041790, ENSSSCG00000042078, ENSSSCG00000042342, ENSSSCG00000044032, ENSSSCG00000046910, ENSSSCG00000046928, ENSSSCG00000047563, ENSSSCG00000049260, ENSSSCG00000049729, ENSSSCG00000051361 |
TTW | 15 | 17.57–18.00 | rs81451598, rs81478999, rs81326202, rs81478982, rs81318409, rs81478797, rs81306466, rs81226590, rs81277838 | ACMSD, TMEM163, MGAT5, ENSSSCG00000040294, ENSSSCG00000041827, ENSSSCG00000043458, ENSSSCG00000045091 ENSSSCG00000046082, ENSSSCG00000047029, ENSSSCG00000048606, ENSSSCG00000051576 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palombo, V.; D’Andrea, M.; Licastro, D.; Dal Monego, S.; Sgorlon, S.; Sandri, M.; Stefanon, B. Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production. Animals 2021, 11, 1612. https://doi.org/10.3390/ani11061612
Palombo V, D’Andrea M, Licastro D, Dal Monego S, Sgorlon S, Sandri M, Stefanon B. Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production. Animals. 2021; 11(6):1612. https://doi.org/10.3390/ani11061612
Chicago/Turabian StylePalombo, Valentino, Mariasilvia D’Andrea, Danilo Licastro, Simeone Dal Monego, Sandy Sgorlon, Misa Sandri, and Bruno Stefanon. 2021. "Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production" Animals 11, no. 6: 1612. https://doi.org/10.3390/ani11061612
APA StylePalombo, V., D’Andrea, M., Licastro, D., Dal Monego, S., Sgorlon, S., Sandri, M., & Stefanon, B. (2021). Single-Step Genome Wide Association Study Identifies QTL Signals for Untrimmed and Trimmed Thigh Weight in Italian Crossbred Pigs for Dry-Cured Ham Production. Animals, 11(6), 1612. https://doi.org/10.3390/ani11061612