Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimens
2.2. Limb Press
2.3. Surgical Treatment
2.3.1. Fabellotibial Suture Alone
2.3.2. Fabellotibial Suture with a Nonabsorbable Suture Anchor
2.3.3. Fabellotibial Suture with an Absorbable Suture Anchor
2.4. Mechanical Testing
2.4.1. Patellar Tendon Load
2.4.2. Measurement Procedure
2.5. Calculations
2.5.1. Distances
2.5.2. Angles
2.6. Statistical Analysis
3. Results
3.1. Distances
3.2. Angles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLaughlin, R.M. Surgical Diseases of the Feline Stifle Joint. Vet. Clin. Small Anim. Pract. 2002, 32, 963–982. [Google Scholar] [CrossRef]
- Slocum, B.; Devine, T. Cranial Tibial Wedge Osteotomy: A Technique for Eliminating Cranial Tibial Thrust in Cranial Cruciate Ligament Repair. J. Am. Vet. Med. Assoc. 1984, 184, 564–569. [Google Scholar] [PubMed]
- Umphlet, R.C. Feline Stifle Disease. Vet. Clin. N. Am. Small Anim. Pract. 1993, 23, 897–913. [Google Scholar] [CrossRef]
- Scavelli, T.D.; Schrader, S.C. Nonsurgical Management of Rupture of the Cranial Cruciate Ligament in 18 Cats. J. Am. Anim. Hosp. Assoc. 1987, 23, 337–340. [Google Scholar]
- Harasen, G.L.G. Feline Cranial Cruciate Rupture: 17 Cases and a Review of the Literature. Vet. Comp. Orthop. Traumatol. 2005, 18, 254. [Google Scholar] [CrossRef]
- Boge, G.S.; Engdahl, K.; Moldal, E.R.; Bergström, A. Cranial Cruciate Ligament Disease in Cats: An Epidemiological Retrospective Study of 50 Cats (2011–2016). J. Feline Med. Surg. 2020, 22, 277–284. [Google Scholar] [CrossRef]
- Reif, U.; Hulse, D.A.; Hauptman, J.G. Effect of Tibial Plateau Leveling on Stability of the Canine Cranial Cruciate-Deficient Stifle Joint: An in Vitro Study. Vet. Surg. 2002, 31, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, D.E.; Kowaleski, M.P.; Johnson, K.A.; Evans, R.B.; Boudrieau, R.J. Ex Vivo Biomechanical Evaluation of the Canine Cranial Cruciate Ligament-Deficient Stifle with Varying Angles of Stifle Joint Flexion and Axial Loads after Tibial Tuberosity Advancement. Vet. Surg. 2011, 40, 311–320. [Google Scholar] [CrossRef]
- Lafaver, S.; Miller, N.A.; Stubbs, W.P.; Taylor, R.A.; Boudrieau, R.J. Tibial Tuberosity Advancement for Stabilization of the Canine Cranial Cruciate Ligament-Deficient Stifle Joint: Surgical Technique, Early Results, and Complications in 101 Dogs. Vet. Surg. 2007, 36, 573–586. [Google Scholar] [CrossRef]
- Warzee, C.C.; Dejardin, L.M.; Arnoczky, S.P.; Perry, R.L. Effect of Tibial Plateau Leveling on Cranial and Caudal Tibial Thrusts in Canine Cranial Cruciate-Deficient Stifles: An in Vitro Experimental Study. Vet. Surg. 2001, 30, 278–286. [Google Scholar] [CrossRef]
- Miller, J.M.; Shires, P.K.; Lanz, O.I.; Martin, R.A.; Grant, J.W. Effect of 9 Mm Tibial Tuberosity Advancement on Cranial Tibial Translation in the Canine Cranial Cruciate Ligament-Deficient Stifle. Vet. Surg. 2007, 36, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mindner, J.K.; Bielecki, M.J.; Scharvogel, S.; Meiler, D. Tibial Plateau Levelling Osteotomy in Eleven Cats with Cranial Cruciate Ligament Rupture. Vet. Comp. Orthop. Traumatol. 2016, 29, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Apelt, D.; Kowaleski, M.P.; Boudrieau, R.J. Effect of Tibial Tuberosity Advancement on Cranial Tibial Subluxation in Canine Cranial Cruciate-Deficient Stifle Joints: An in Vitro Experimental Study. Vet. Surg. 2007, 36, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Bilmont, A.; Retournard, M.; Asimus, E.; Palierne, S.; Autefage, A. Effect of Tibial Plateau Levelling Osteotomy on Cranial Tibial Subluxation in the Feline Cranial Cruciate Deficient Stifle Joint: An Ex Vivo Experimental Study. Vet. Comp. Orthop. Traumatol. 2018, 31, 273–278. [Google Scholar] [CrossRef]
- Perry, K.; Fitzpatrick, N. Tibial Tuberosity Advancement in Two Cats with Cranial Cruciate Ligament Deficiency. Vet. Comp. Orthop. Traumatol. 2010, 23, 196–202. [Google Scholar] [CrossRef]
- Kneifel, W.; Borak, D.; Bockstahler, B.; Schnabl-Feichter, E. Use of a Custom-Made Limb-Press Model to Assess Intra- and Extracapsular Techniques for Treating Cranial Cruciate Ligament Rupture in Cats. J. Feline Med. Surg. 2018, 20, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kowaleski, M.P.; Apelt, D.; Mattoon, J.S.; Litsky, A.S. The Effect of Tibial Plateau Leveling Osteotomy Position on Cranial Tibial Subluxation: An in Vitro Study. Vet. Surg. 2005, 34, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Lechner, B.; Handschuh, S.; Bockstahler, B.; Tichy, A.; Peham, C.; Schnabl-Feichter, E. Comparison of a Novel Extracapsular Suture Technique with a Standard Fabellotibial Suture Technique for Cranial Cruciate Ligament Repair Using a Custom-Made Limb-Press Model in Cats. J. Feline Med. Surg. 2020, 22, 1016–1024. [Google Scholar] [CrossRef]
- Schneider, M.; Seinige, C.; Pilling, E.; Rasse, M.; Loukota, R.; Stadlinger, B.; Mai, R.; Eckelt, U. Ultrasound-Aided Resorbable Osteosynthesis of Fractures of the Mandibular Condylar Base: An Experimental Study in Sheep. Br. J. Oral Maxillofac. Surg. 2012, 50, 528–532. [Google Scholar] [CrossRef]
- Heidenreich, D.; Langhoff, J.D.; Nuss, K.; Kluge, K.; Kämpf, K.; Zlinsky, K.; Hilbe, M.; Mayer, J.; von Rechenberg, B. The Use of BoneWelding® Technology in Spinal Surgery: An Experimental Study in Sheep. Eur. Spine J. 2011, 20, 1821–1836. [Google Scholar] [CrossRef] [Green Version]
- Langhoff, J.D.; Kuemmerle, J.M.; Mayer, J.; Weber, U.; Berra, M.; Mueller, J.M.; Kaestner, S.B.; Zlinszky, K.; Auer, J.A.; von Rechenberg, B. An Ultrasound Assisted Anchoring Technique (BoneWelding® Technology) for Fixation of Implants to Bone—A Histological Pilot Study in Sheep. Open Orthop. J. 2009, 11, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Pilling, E.; Meissner, H.; Jung, R.; Koch, R.; Loukota, R.; Mai, R.; Reitemeier, B.; Richter, G.; Stadlinger, B.; Stelnicki, E.; et al. An Experimental Study of the Biomechanical Stability of Ultrasound-Activated Pinned (SonicWeld Rx® + Resorb-X®) and Screwed Fixed (Resorb-X®) Resorbable Materials for Osteosynthesis in the Treatment of Simulated Craniosynostosis in Sheep. Br. J. Oral Maxillofac. Surg. 2007, 45, 451–456. [Google Scholar] [CrossRef]
- Warme, W.J.; Arciero, R.A.; Savoie, F.H.; Uhorchak, J.M.; Walton, M. Nonabsorbable Versus Absorbable Suture Anchors for Open Bankart Repair. Am. J. Sports Med. 1999, 27. [Google Scholar] [CrossRef]
- Burnham, R.R.; Kumar, J.; Pinzur, M.; Schiff, A. Initial Experience with a Bioresorbable Polymer Anchor. Cureus 2020. [Google Scholar] [CrossRef]
- Kishi, E.N.; Hulse, D.; Raske, M.; Saunders, W.B.; Beale, B.S. Extra-Articular Stabilization of the Canine Cranial Cruciate Ligament Injury Using Arthrex Corkscrew and FASTak Anchors. Open J. Vet. Med. 2013, 3, 156–160. [Google Scholar] [CrossRef] [Green Version]
- Hulse, D.; Saunders, B.; Beale, B.; Kowaleski, M. Extra-Articular Stabilization of the Cranial Cruciate Deficient Stifle with Anchor Systems. Tierärztliche Prax. Ausg. K Kleintiere Heimtiere 2011, 39, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Raske, M.; Hulse, D. SwiveLock Bone Anchor Stabilization of the Cranial Cruciate Ligament Deficient Stifle in Dogs: Clinical Outcome. Open J. Vet. Med. 2013, 3, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, S.J.; Weber, U.; von Rechenberg, B.; Mayer, J. Enhancing the Mechanical Integrity of the Implant-Bone Interface with BoneWelding® Technology: Determination of Quasi-Static Interfacial Strength and Fatigue Resistance. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 13–20. [Google Scholar] [CrossRef]
- Oberle, K. Real Time Degradation Study of Fiji Anchor According to ASTM F 1635-11—Investigation Point 5 (52 Weeks); VetWedling AG: Sansstad, Switzerland, 2017. [Google Scholar]
- Lyu, S.P.; Schley, J.; Loy, B.; Lind, D.; Hobot, C.; Sparer, R.; Untereker, D. Kinetics and Time-Temperature Equivalence of Polymer Degradation. Biomacromolecules 2007, 8. [Google Scholar] [CrossRef]
- Wagner, M.; Schmoelz, W.; Stofferin, H.; Arora, R. Biomechanical in Vitro Comparison of Suture Anchors for Thumb UCL Repair. Arch. Orthop. Trauma Surg. 2018, 138, 435–442. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, R.J.; Knudsen, C.S.; Holmes, M.A.; Langley-Hobbs, S.J.; Ecvs, D. Quasi-Isometric Points for the Technique of Lateral Suture Placement in the Feline Stifle Joint. Vet. Surg. 2014. [Google Scholar] [CrossRef]
- De Sousa, R.; Sutcliffe, M.; Rousset, N.; Holmes, M.; Langley-Hobbs, S.J. Treatment of Cranial Cruciate Ligament Rupture in the Feline Stifle: Biomechanical Comparison of a Standard Fabella-Tibial Suture and Lateral Sutures Placed between Quasiisometric Points. Vet. Comp. Orthop. Traumatol. 2015, 28, 401–408. [Google Scholar] [CrossRef]
- Fischer, C.; Cherres, M.; Grevel, V.; Oechtering, G.; Böttcher, P. Effects of Attachment Sites and Joint Angle at the Time of Lateral Suture Fixation on Tension in the Suture for Stabilization of the Cranial Cruciate Ligament Deficient Stifle in Dogs. Vet. Surg. 2010, 39, 334–342. [Google Scholar] [CrossRef]
- Schnabl, E.; Reese, S.; Lorinson, K.; Lorinson, D. Measurement of the Tibial Plateau Angle in Cats with and without Cranial Cruciate Ligament Rupture. Vet. Comp. Orthop. Traumatol. 2009, 22, 83–86. [Google Scholar] [CrossRef]
- Mai, R.; Lauer, G.; Pilling, E.; Jung, R.; Leonhardt, H.; Proff, P.; Stadlinger, B.; Pradel, W.; Eckelt, U.; Fanghänel, J.; et al. Bone Welding—A Histological Evaluation in the Jaw. Ann. Anat. 2007, 189, 350–355. [Google Scholar] [CrossRef]
- Slocum, B.; Devine, T. Cranial Tibial Thrust: A Primary Force in the Canine Stifle. J. Am. Vet. Med. Assoc. 1983, 183, 456–459. [Google Scholar] [PubMed]
- Slocum, B.; Slocum, T.D. Tibial Plateau Leveling Osteotomy for Repair of Cranial Cruciate Ligament Rupture in the Canine. Vet. Clin. N. Am. Small Anim. Pract. 1993, 23, 777–795. [Google Scholar] [CrossRef]
- Carlson-Kuhta, P.; Trank, T.V.; Smith, J.L. Forms of Forward Quadrupedal Locomotion. II. A Comparison of Posture, Hindlimb Kinematics, and Motor Patterns for Upslope and Level Walking. J. Neurophysiol. 1998, 79. [Google Scholar] [CrossRef] [PubMed]
- Corbee, R.J.; Maas, H.; Doornenbal, A.; Hazewinkel, H.A.W. Forelimb and Hindlimb Ground Reaction Forces of Walking Cats: Assessment and Comparison with Walking Dogs. Vet. J. 2014, 202, 116–127. [Google Scholar] [CrossRef]
PBM 5 | Distance Calculation | Lower | Upper | Mean (mm) | SD 6 (mm) | p-Value |
---|---|---|---|---|---|---|
10% | Di 1 − DFW 2 | −0.1 | 0.4 | 0.1 | 0.4 | 0.29 |
Di 1 − DFT 3 | 0.5 | 1.6 | 0.8 | 0.2 | <0.01 | |
Di 1 − DWD 4 | −0.0 | 0.3 | 0.1 | 0.3 | 0.10 | |
20% | Di 1 − DFW 2 | −0.2 | 0.3 | 0.1 | 0.4 | 0.52 |
Di 1 − DFT 3 | 0.6 | 1.6 | 0.8 | 0.2 | <0.01 | |
Di 1 − DWD 4 | −0.1 | 0.4 | 0.2 | 0.4 | 0.18 | |
30% | Di 1 − DFW 2 | −0.2 | 0.3 | 0.0 | 0.4 | 0.75 |
Di 1 − DFT 3 | 0.6 | 1.7 | 0.8 | 0.2 | <0.01 | |
Di 1 − DWD 4 | −0.0 | 0.4 | 0.2 | 0.3 | 0.07 |
PBM 5 | Angle Calculation | Lower | Upper | Mean (mm) | SD 6 (mm) | p-Value |
---|---|---|---|---|---|---|
10% | αi 1 − αFW 2 | −7.7 | 2.3 | −2.7 | 7.9 | 0.26 |
αi 1 − αFT 3 | −4.6 | 0.1 | −2.2 | 3.6 | 0.06 | |
αi 1 − αWD 4 | −3.5 | 1.1 | −1.2 | 3.7 | 0.28 | |
20% | αi 1 − αFW 2 | −2.2 | 3.2 | 0.5 | 4.3 | 0.67 |
αi 1 − αFT 3 | −4.3 | 0.7 | −1.8 | 3.9 | 0.14 | |
αi 1 − αWD 4 | −4.4 | 1.4 | −1.5 | 4.5 | 0.27 | |
30% | αi 1 − αFW 2 | −5.3 | −0.1 | −2.7 | 4.2 | 0.05 |
αi 1 − αFT 3 | −4.8 | 0.1 | −2.4 | 3.8 | 0.06 | |
αi 1 − αWD 4 | −6.2 | −0.3 | −3.2 | 4.7 | 0.04 |
PBM 5 | Distance Calculation | Lower | Upper | Mean (mm) | SD 6 (mm) | p-Value |
---|---|---|---|---|---|---|
10% | βi 1 − βFW 2 | −6.6 | 13.2 | 3.3 | 15.5 | 0.48 |
βi 1 − βFT 3 | −4.6 | 0.1 | −2.2 | 3.6 | 0.06 | |
βi 1 − βWD 4 | −11.1 | 3.0 | −4.0 | 11.1 | 0.24 | |
20% | βi 1 − βFW 2 | −10.0 | 7.0 | −1.5 | 13.4 | 0.71 |
βi 1 − βFT 3 | −8.1 | 2.6 | −2.8 | 8.4 | 0.28 | |
βi 1 − βWD 4 | −4.6 | 0.8 | −1.9 | 4.2 | 0.15 | |
30% | βi 1 − βFW 2 | −8.2 | 11.7 | 1.8 | 15.7 | 0.71 |
βi 1 − βFT 3 | −6.0 | 6.1 | 0.1 | 9.5 | 0.98 | |
βi 1 − βWD 4 | −5.5 | 7.0 | 0.7 | 9.8 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koch, L.; Bockstahler, B.; Tichy, A.; Peham, C.; Schnabl-Feichter, E. Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study. Animals 2021, 11, 1695. https://doi.org/10.3390/ani11061695
Koch L, Bockstahler B, Tichy A, Peham C, Schnabl-Feichter E. Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study. Animals. 2021; 11(6):1695. https://doi.org/10.3390/ani11061695
Chicago/Turabian StyleKoch, Lydia, Barbara Bockstahler, Alexander Tichy, Christian Peham, and Eva Schnabl-Feichter. 2021. "Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study" Animals 11, no. 6: 1695. https://doi.org/10.3390/ani11061695
APA StyleKoch, L., Bockstahler, B., Tichy, A., Peham, C., & Schnabl-Feichter, E. (2021). Comparison of Extracapsular Stabilization Techniques Using an Ultrasonically Implanted Absorbable Bone Anchor (Weldix) after Cranial Cruciate Ligament Rupture in Cats—An In Vitro Study. Animals, 11(6), 1695. https://doi.org/10.3390/ani11061695