Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Obe, G.; Pfeiffer, P.; Savage, J.; Johannes, C.; Goedecke, W.; Jeppesen, P.; Natarajan, A.; Martínez-López, W.; Folle, G.; Drets, M. Chromosomal aberrations: Formation, identification and distribution. Mutat. Res. Mol. Mech. Mutagen. 2002, 504, 17–36. [Google Scholar] [CrossRef]
- Da Silva, P.; Schumacher, B. DNA damage responses in ageing. Open Biol. 2019, 9, 190168. [Google Scholar] [CrossRef]
- Garagna, S.; Marziliano, N.; Zuccotti, M.; Searle, J.; Capanna, E.; Redi, C.A. Pericentromeric organization at the fusion point of mouse Robertsonian translocation chromosomes. Proc. Natl. Acad. Sci. USA 2001, 98, 171–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scriven, P.; Flinter, F.; Braude, P.R.; Ogilvie, C.M. Robertsonian translocations--reproductive risks and indications for preimplantation genetic diagnosis. Hum. Reprod. 2001, 16, 2267–2273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, O.M.; Nes, N.N.; Syed, M.; Fougner, J.A.; Norheim, K.; Smith, A.J. Chromosomal polymorphism in the blue fox (Alopex lagopus) and its effects on fertility. Hereditas 2008, 102, 159–164. [Google Scholar] [CrossRef]
- Mäkinen, A. The standard karyotype of the blue fox (Alopex lagopus L.): Committee for the standard karyotype of Alopex lagopus L. Hereditas 2008, 103, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A. The standard karyotype of the silver fox (Vulpes fulvus Desm.) Committee for the standard karyotype of Vulpes fulvus Desm. Hereditas 2008, 103, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Switonski, M.; Rogalska-Niznik, N.; Szczerbal, I.; Baer, M. Chromosome polymorphism and karyotype evolution of four canids: The dog, red fox, arctic fox and raccoon dog. Caryologia 2003, 56, 375–385. [Google Scholar] [CrossRef]
- Vujošević, M.; Blagojevic, J. B chromosomes in populations of mammals. Cytogenet. Genome Res. 2004, 106, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.P.; Sharbel, T.F.; Beukeboom, L.W. B-chromosome evolution. Philos. Trans. R. Soc. B Biol. Sci. 2000, 355, 163–178. [Google Scholar] [CrossRef]
- Mäkinen, A.; Gustavsson, I. A comparative chromosome-banding study in the silver fox, the blue fox, and their hybrids. Hereditas 2008, 97, 289–297. [Google Scholar] [CrossRef]
- Short, R.V. An Introduction to Mammalian Interspecific Hybrids. J. Hered. 1997, 88, 355–357. [Google Scholar] [CrossRef] [Green Version]
- Bugno-Poniewierska, M.; Pawlina, K.; Orszulak-Wolny, N.; Woźniak, B.; Wnuk, M.; Jakubczak, A.; Jeżewska-Witkowska, G. Cytogenetic Characterization of the Genome of Interspecies Hybrids (Alopex-Vulpes). Ann. Anim. Sci. 2015, 15, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Ishidate, M.; Miura, K.; Sofuni, T. Chromosome aberration assays in genetic toxicology testing in vitro. Mutat. Res. Mol. Mech. Mutagen. 1998, 404, 167–172. [Google Scholar] [CrossRef]
- Janssen, A.; Van Der Burg, M.; Szuhai, K.; Kops, G.J.P.L.; Medema, R.H. Chromosome Segregation Errors as a Cause of DNA Damage and Structural Chromosome Aberrations. Science 2011, 333, 1895–1898. [Google Scholar] [CrossRef]
- Wójcik, E.; Szostek, M. Assessment of genome stability in various breeds of cattle. PLoS ONE 2019, 14, e0217799. [Google Scholar] [CrossRef]
- Lukusa, T.; Fryns, J. Human chromosome fragility. Biochim. Biophys. Acta Bioenerg. 2008, 1779, 3–16. [Google Scholar] [CrossRef]
- Debacker, K.; Kooy, R. Fragile sites and human disease. Hum. Mol. Genet. 2007, 16, R150–R158. [Google Scholar] [CrossRef] [Green Version]
- Durkin, S.G.; Glover, T.W. Chromosome Fragile Sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar] [CrossRef] [PubMed]
- Franchitto, A.; Pichierri, P. Understanding the molecular basis of common fragile sites instability: Role of the proteins involved in the recovery of stalled replication forks. Cell Cycle 2011, 10, 4039–4046. [Google Scholar] [CrossRef] [Green Version]
- Burrow, A.A.; Wang, Y.-H. DNA Instability at Chromosomal Fragile Sites in Cancer. Curr. Genom. 2010, 11, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Tuduri, S.; Crabbé, L.; Tourrière, H.; Coquelle, A.; Pasero, P. Does interference between replication and transcription contribute to genomic instability in cancer cells? Cell Cycle 2010, 9, 1886–1892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlotorynski, E.; Rahat, A.; Skaug, J.; Ben-Porat, N.; Ozeri, E.; Hershberg, R.; Levi, A.; Scherer, S.W.; Margalit, H.; Kerem, B. Molecular Basis for Expression of Common and Rare Fragile Sites. Mol. Cell. Biol. 2003, 23, 7143–7151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glover, T.W. Common fragile sites. Cancer Lett. 2006, 232, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; Yang, S.; Tran-Gyamfi, M.; Baggott, D.; Christensen, M.; Hamilton, A.; Crooijmans, R.; Groenen, M.; Lucas, S.; Ovcharenko, I.; et al. Comparative analysis of chicken chromosome 28 provides new clues to the evolutionary fragility of gene-rich vertebrate regions. Genome Res. 2007, 17, 1603–1613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Abdullah, M.; Babar, M.E.; Javed, K.; Nadeem, A. Expression and identification of folate-sensitive fragile sites in British Suffolk sheep (Ovis aries). J. Genet. 2008, 87, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, E.; Szostek, M.; Horoszewicz, E.; Kot, E.; Sebastian, S.; Smalec, E. Analysis of chromatin instability of somatic cells in sheep. Can. J. Anim. Sci. 2018, 98, 818–825. [Google Scholar] [CrossRef] [Green Version]
- Kuchta-Gładysz, M.; Wójcik, E.; Słonina, D.; Grzesiakowska, A.; Otwinowska-Mindur, A.; Szeleszczuk, O.; Niedbała, P. Determination of cytogenetic markers for biological monitoring in coypu (Myocastor coypu). Anim. Sci. J. 2020, 91, 13440. [Google Scholar] [CrossRef]
- Wójcik, E.; Sokół, A. Assessment of chromosome stability in boars. PLoS ONE 2020, 15, e0231928. [Google Scholar] [CrossRef]
- Iannuzzi, L.; Perucatti, A.; Di Meo, G.; Polimeno, F.; Ciotola, F.; Incarnato, D.; Peretti, V.; Jambrenghi, A.C.; Pecoraro, A.; Manniti, F.; et al. Chromosome fragility in two sheep flocks exposed to dioxins during pasturage. Mutagenesis 2004, 19, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, E.; Andraszek, K.; Smalec, E.; Knaga, S.; Witkowski, A. Identification of chromosome instability in Japanese quail (Coturnix japonica). Br. Poult. Sci. 2014, 55, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Schoket, B. DNA damage in humans exposed to environmental and dietary polycyclic aromatic hydrocarbons. Mutat. Res. Mol. Mech. Mutagen. 1999, 424, 143–153. [Google Scholar] [CrossRef]
- Šrám, R.J.; Binková, B.; Rössner, P.; Rubeš, J.; Topinka, J.; Dejmek, J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat. Res. Mol. Mech. Mutagen. 1999, 428, 203–215. [Google Scholar] [CrossRef]
- Wójcik, E.; Smalec, E. Assessment of chromosome instability in geese (Anser anser). Can. J. Anim. Sci. 2012, 92, 49–57. [Google Scholar] [CrossRef]
- Nicodemo, D.; Coppola, G.; Pauciullo, A.; Cosenza, G.; Ramunno, L.; Ciotola, F.; Peretti, V.; Di Meo, G.; Iannuzzi, L.; Rubes, J.; et al. Chromosomal expression and localization of aphidicolin-induced fragile sites in the standard karyotype of river buffalo (Bubalus bubalis). Cytogenet. Genome Res. 2008, 120, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Graphodatsky, A.; Yang, F.; O’Brien, P.C.M.; Serdukova, N.; Milne, B.S.; Trifonov, V.; Ferguson-Smith, M.A. A Comparative Chromosome Map of the Arctic Fox, Red Fox and Dog Defined by Chromosome Painting and High Resolution G-Banding. Chromosom. Res. 2000, 8, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Grzesiakowska, A.; Klott, A.; Kuchta-Gładysz, M.; Niedbała, P.; Otwinowska-Mindur, A.; Szeleszczuk, O. Evaluation of BrdU Influence on Sister Chromatid Exchange in Arctic and Silver Fox. Folia Biol. 2017, 65, 117–126. [Google Scholar] [CrossRef]
- Szczerbal, I.; Switonski, M. B chromosomes of the Chinese raccoon dog (Nyctereutes procyonoides procyonoides Gray) contain inactive NOR-like sequences. Caryologia 2003, 56, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Szczerbal, I.; Kaczmarek, M.; Switonski, M. Compound Mosaicism, Caused by B Chromosome Variability, in the Chinese Raccoon Dog (Nyctereutes procyonoides procyonoides). Folia Biol. 2005, 53, 155–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basheva, E.A.; Torgasheva, A.A.; Sakaeva, G.R.; Bidau, C.; Borodin, P.M. A- and B-chromosome pairing and recombination in male meiosis of the silver fox (Vulpes vulpes L., 1758, Carnivora, Canidae). Chromosom. Res. 2010, 18, 689–696. [Google Scholar] [CrossRef]
- Vanneste, E.; Voet, T.; Le Caignec, C.; Ampe, M.; Konings, P.; Melotte, C.; Debrock, S.; Amyere, M.; Vikkula, M.; Schuit, F.; et al. Chromosome instability is common in human cleavage-stage embryos. Nat. Med. 2009, 15, 577–583. [Google Scholar] [CrossRef]
- Alfarawati, S.; Fragouli, E.; Colls, P.; Wells, D. Embryos of Robertsonian Translocation Carriers Exhibit a Mitotic Interchromosomal Effect That Enhances Genetic Instability during Early Development. PLoS Genet. 2012, 8, e1003025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozubska-Sobocińska, A.; Danielak-Czech, B. Legitimacy of systematic karyotype evaluation of cattle qualified for reproduction. Med. Weter. 2017, 73, 451–455. [Google Scholar] [CrossRef] [Green Version]
- Christensen, K.; Pedersen, H. Variation in chromosome number in the blue fox (Alopex lagopus) and its effect on fertility. Hered. 2008, 97, 211–215. [Google Scholar] [CrossRef]
- Danielak-Czech, B.; Słota, E. Mutagen-induced chromosome instability in farm animals. J. Anim. Feed. Sci. 2004, 13, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, L. Cytogenetics in animal production. Ital. J. Anim. Sci. 2007, 6, 713–715. [Google Scholar] [CrossRef]
- Riggs, P.; Rønne, M. Fragile Sites in Domestic Animal Chromosomes: Molecular Insights and Challenges. Cytogenet. Genome Res. 2009, 126, 97–109. [Google Scholar] [CrossRef] [PubMed]
- Danielak-Czech, B.; Babicz, M.; Rejduch, B.; Kozubska-Sobocińska, A. Cytogenetic and molecular analysis of chromosome instability in cattle with reproductive problems/Cytogenetyczna i molekularna analiza niestabilności chromosomów u bydła z problemam w rozrodzie. Ann. UMCS Sectio EE Zootech. 2013, 30, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Coyne, J.A.; Orr, H.A. Further Evidence against Meiotic-Drive Models of Hybrid Sterility. Evolution 1993, 47, 685. [Google Scholar] [CrossRef] [Green Version]
- Divina, P.; Storchová, R.; Gregorová, S.; Buckiová, D.; Kyselová, V.; Forejt, J. Genetic analysis of X-linked hybrid sterility in the house mouse. Mamm. Genome 2004, 15, 515–524. [Google Scholar] [CrossRef]
- Rieseberg, L.H. Polyploid evolution: Keeping the peace at genomic reunions. Curr. Biol. 2001, 11, R925–R928. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, E.; Smalec, E. Constitutive heterochromatin in chromosomes of duck hybrids and goose hybrids. Poult. Sci. 2017, 96, 18–26. [Google Scholar] [CrossRef] [PubMed]
Foxes | |||||
---|---|---|---|---|---|
Blue | Silver | Hybrid | |||
Chromosomes | |||||
A | B | A | B | A | B |
49 | 0 | 34 | 3 | 42 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 2 | 41 | 2 |
48 | 0 | 34 | 3 | 42 | 1 |
49 | 0 | 34 | 4 | 40 | 1 |
49 | 0 | 34 | 2 | 40 | 3 |
49 | 0 | 34 | 2 | 44 | 1 |
49 | 0 | 34 | 1 | 42 | 1 |
50 | 0 | 34 | 1 | 42 | 2 |
50 | 0 | 34 | 1 | 40 | 3 |
49 | 0 | 34 | 1 | 42 | 1 |
Sex | Foxes | ||
---|---|---|---|
Blue | Silver | Hybrid | |
Male | 4.80 a ± 0.14 | 3.42 a ± 0.28 | 4.28 a ± 0.26 |
Female | 4.41 a ± 0.52 | 3.49 a ± 0.30 | 3.95 a ± 0.19 |
Mean | 4.61 a ± 0.37 | 3.46 b ± 0.28 | 4.12 ab ± 0.22 |
Foxes | Damage (Number per Cell) | ||
---|---|---|---|
Gaps | Breaks | Deletions | |
Blue | 0.51 ab ± 0.17 | 3.9 1 a ± 1.09 | 0.19 b ± 0.13 |
Silver | 0.46 b ± 0.21 | 2.76 b ± 0.81 | 0.23 ab ± 0.13 |
Hybrid | 0.74 a ± 0.40 | 3.03 b ± 0.53 | 0.34 a ± 0.12 |
Foxes | Sex | Damage (Number per Cell) | ||
---|---|---|---|---|
Gaps | Breaks | Deletions | ||
Blue | Male | 0.54 a ± 0.16 | 4.10 a ± 0.45 | 0.16 a ± 0.04 |
Female | 0.47 a ± 0.18 | 3.72 a ± 1.52 | 0.22 a ± 0.18 | |
Silver | Male | 0.32 a ± 0.12 | 2.87 a ± 0.85 | 0.23 a ± 0.11 |
Female | 0.60 a ± 0.18 | 2.65 a ± 0.85 | 0.24 a ± 0.16 | |
Hybrid | Male | 0.89 a ± 0.47 | 3.10 a ± 0.39 | 0.29 a ± 0.07 |
Female | 0.58 a ± 0.27 | 2.97 a ± 0.68 | 0.40 a ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuchta-Gładysz, M.; Wójcik, E.; Grzesiakowska, A.; Rymuza, K.; Szeleszczuk, O. Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals 2021, 11, 1743. https://doi.org/10.3390/ani11061743
Kuchta-Gładysz M, Wójcik E, Grzesiakowska A, Rymuza K, Szeleszczuk O. Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals. 2021; 11(6):1743. https://doi.org/10.3390/ani11061743
Chicago/Turabian StyleKuchta-Gładysz, Marta, Ewa Wójcik, Anna Grzesiakowska, Katarzyna Rymuza, and Olga Szeleszczuk. 2021. "Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids" Animals 11, no. 6: 1743. https://doi.org/10.3390/ani11061743
APA StyleKuchta-Gładysz, M., Wójcik, E., Grzesiakowska, A., Rymuza, K., & Szeleszczuk, O. (2021). Chromosomal Instability at Fragile Sites in Blue Foxes, Silver Foxes, and Their Interspecific Hybrids. Animals, 11(6), 1743. https://doi.org/10.3390/ani11061743