Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. Sperm Motility
2.3. Membrane Integrity
2.4. Acrosome Integrity
2.5. Quantification of Leukocytes
2.6. Mitochondrial Membrane Potential (ΔΨm)
2.7. TUNEL Assay
2.8. ROS Production
2.9. Total Antioxidant Status
2.10. Enzyme-Linked Immunosorbent Assay (ELISA)
2.11. Lipid Peroxidation
2.12. Protein Carbonyls
2.13. Data Normalization
2.14. Bacteriological Identification
2.15. Bacteriological Analysis (MALDI-TOF MS Biotyper)
2.16. Antibiotic Resistance Testing
2.17. Statistical Analysis
3. Results
3.1. Microbial Analysis
3.2. Analysis of the Qualitative Parameters of Semen
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Surai, P.F.; Fisinin, V.I. Vitagenes in Poultry Production: Part 1. Technological and Environmental Stresses. Worlds Poult. Sci. J. 2016, 72, 721–734. [Google Scholar] [CrossRef]
- Alkan, S.; Baran, A.; Özdaş, Ö.B.; Evecen, M. Morphological Defects in Turkey Semen. Turk. J. Vet. Anim. Sci. 2002, 26, 1087–1092. [Google Scholar]
- Jamieson, B.G.M. Reproductive Biology and Phylogeny of Birds, Part A: Phylogeny, Morphology, Hormones and Fertilization; CRC Press: Oxford, UK, 2011. [Google Scholar]
- Omprakash, A.V.; Venkatesh, G. Effect of Vaginal Douching and Different Semen Extenders on Bacterial Load and Fertility in Turkeys. Br. Poult. Sci. 2006, 47, 523–526. [Google Scholar] [CrossRef]
- Fraczek, M.; Kurpisz, M. Mechanisms of the Harmful Effects of Bacterial Semen Infection on Ejaculated Human Spermatozoa: Potential Inflammatory Markers in Semen. Folia Histochem. Cytobiol. 2015, 53, 201–217. [Google Scholar] [CrossRef]
- Tvrdá, E.; Belić, L.; Ďuračka, M.; Kováčik, A.; Kačániová, M.; Lukáč, N. The Presence of Bacterial Species in Bovine Semen and Their Impact on the Sperm Quality. Anim. Reprod. Sci. 2018, 194, e3. [Google Scholar] [CrossRef]
- Duracka, M.; Lukac, N.; Kacaniova, M.; Kantor, A.; Hleba, L.; Ondruska, L.; Tvrda, E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus Faecalis in Rabbit Semen. Molecules 2019, 24, 4239. [Google Scholar] [CrossRef] [Green Version]
- Ďuračka, M.; Tvrdá, E. The presence of bacterial species in boar semen and their impact on the sperm quality and oxidative balance. J. Anim. Sci. 2018, 96, 501. [Google Scholar] [CrossRef]
- Zhang, G.; Sunkara, L.T. Avian antimicrobial host defense peptides: From biology to therapeutic applications. Pharmaceuticals 2014, 7, 220–247. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.R.; Souillard, R.; Bertin, J. Avian diseases which affect egg production and quality. In Improving the Safety and Quality of Eggs and Egg Products, 1st ed.; Nys, Y., Bain, M., Van Immerseel, F., Eds.; Woodhead Publishing: Ambridge, UK, 2011; pp. 376–393. [Google Scholar]
- Moyle, T.; Drake, K.; Gole, V.; Chousalka, K.; Hazel, S. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Blake, D.P.; Knox, J.; Dehaeck, B.; Huntington, B.; Rathinam, T.; Ravipati, V.; Ayoade, S.; Gilbert, W.; Adebambo, A.O.; Jatau, I.D.; et al. Re-calculating the cost of coccidiosis in chickens. Vet. Res. 2020, 51, 115. [Google Scholar] [CrossRef] [PubMed]
- Wibisono, F.J.; Sumiarto, B.; Kusumastuti, T.I. Economic Losses Estimation of Pathogenic Escherichia coli Infection in Indonesian Poultry Farming. Bull. Anim. Sci. 2018, 42, 341–346. [Google Scholar] [CrossRef]
- Rashid, M.; Akbar, H.; Bakhsh, A.; Rashid, M.I.; Hassan, M.A.; Ullah, R.; Hussain, T.; Manzoor, S.; Yin, H. Assessing the prevalence and economic significance of coccidiosis individually and in combination with concurrent infections in Pakistani commercial poultry farms. Poult. Sci. 2019, 98, 1167–1175. [Google Scholar] [CrossRef]
- Landman, W.J.M.; van Eck, J.H.H. The incidence and economic impact of the Escherichia coli peritonitis syndrome in Dutch poultry farming. Avian Pathol. 2015, 44, 370–378. [Google Scholar] [CrossRef]
- Christensen, H.; Bachmeier, J.; Bisgaard, M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Kahn, L.H.; Bergeron, G.; Bourassa, M.W.; De Vegt, B.; Gill, J.; Gomes, F.; Malouin, F.; Opengart, K.; Ritter, G.D.; Singer, R.S.; et al. From farm management to bacteriophage therapy: Strategies to reduce antibiotic use in animal agriculture. Ann. N. Y. Acad. Sci. 2019, 1441, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Al Azad, M.A.R.; Rahman, M.M.; Amin, R.; Begum, M.I.A.; Fries, R.; Husna, A.; Khairalla, A.S.; Badruzzaman, A.T.M.; El Zowalaty, M.E.; Lampang, K.N.; et al. Susceptibility and Multidrug Resistance Patterns of Escherichia Coli Isolated from Cloacal Swabs of Live Broiler Chickens in Bangladesh. Pathogens 2019, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Wieser, A.; Schneider, L.; Jung, J.; Schubert, S. MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl. Microbiol. Biotechnol. 2012, 93, 965–974. [Google Scholar] [CrossRef]
- Masarikova, M.; Mrackova, M.; Sedlinska, M. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in identification of stallion semen bacterial contamination. J. Eq. Vet. Sci. 2014, 34, 833–836. [Google Scholar] [CrossRef]
- Slanina, T.; Miškeje, M.; Tirpák, F.; Błaszczyk, M.; Formicki, G.; Massányi, P. Caffeine Strongly Improves Motility Parameters of Turkey Spermatozoa with No Effect on Cell Viability. Acta Vet. Hung. 2018, 66, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Rui, B.R.; Angrimani, D.S.R.; Losano, J.D.A.; Bicudo, L.C.; Nichi, M.; Pereira, R.J.G. Validation of simple and cost-effective stains to assess acrosomal status, DNA damage and mitochondrial activity in rooster spermatozoa. Anim. Reprod. Sci. 2017, 187, 133–140. [Google Scholar] [CrossRef]
- Kuzelova, L.; Vasicek, J.; Chrenek, P. Influence of Macrophages on the Rooster Spermatozoa Quality. Reprod. Domest. Anim. 2015, 50, 580–586. [Google Scholar] [CrossRef]
- Kovacik, A.; Tirpak, F.; Tomka, M.; Miskeje, M.; Tvrda, E.; Arvay, J.; Andreji, J.; Slanina, T.; Gabor, M.; Hleba, L.; et al. Trace Elements Content in Semen and Their Interactions with Sperm Quality and RedOx Status in Freshwater Fish Cyprinus Carpio: A Correlation Study. J. Trace Elem. Med. Biol. 2018, 50, 399–407. [Google Scholar] [CrossRef]
- Weber, D.; Davies, M.J.; Grune, T. Determination of Protein Carbonyls in Plasma, Cell Extracts, Tissue Homogenates, Isolated Proteins: Focus on Sample Preparation and Derivatization Conditions. Redox Biol. 2015, 5, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Kačániová, M.; Terentjeva, M.; Štefániková, J.; Žiarovská, J.; Savitskaya, T.; Grinshpan, D.; Kowalczewski, P.Ł.; Vukovic, N.; Tvrdá, E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics 2020, 9, 765. [Google Scholar] [CrossRef]
- Triplett, M.D.; Parker, H.M.; McDaniel, C.D.; Kiess, A.S. Influence of 6 Different Intestinal Bacteria on Beltsville Small White Turkey Semen. Poult. Sci. 2016, 95, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K. Bacterial Flora of Poultry Semen and Their Antibiotic Sensitivity Pattern. Int. J. Appl. Pure Sci. Agric. 2015, 1, 39–41. [Google Scholar]
- Cole, K.; Donoghue, A.; Blore, P.; Donoghue, D. Isolation and Prevalence of Campylobacter in the Reproductive Tracts and Semen of Commercial Turkeys. Avian Dis. 2004, 48, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.; Brown, K.I. The Identification of Bacteria Contaminating Collected Semen and the Use of Antibiotics in Their Control. Poult. Sci. 1961, 40, 50–55. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Shafi, M.E.; Qattan, S.Y.A.; Batiha, G.E.; Khafaga, A.F.; Abdel-Moneim, A.M.E.; Alagawany, M. Probiotics in poultry feed: A comprehensive review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1835–1850. [Google Scholar] [CrossRef]
- Cottell, E.; Harrison, R.F.; McCaffrey, M.; Walsh, T.; Mallon, E.; Barry-Kinsella, C. Are Seminal Fluid Microorganisms of Significance or Merely Contaminants? Fertil. Steril. 2000, 74, 465–470. [Google Scholar] [CrossRef]
- Schulz, M.; Sánchez, R.; Soto, L.; Risopatrón, J.; Villegas, J. Effect of Escherichia Coli and Its Soluble Factors on Mitochondrial Membrane Potential, Phosphatidylserine Translocation, Viability, and Motility of Human Spermatozoa. Fertil. Steril. 2010, 94, 619–623. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Izuka, E.; Menuba, I.; Jegasothy, R.; Nwagha, U. Staphylococcal Infections and Infertility: Mechanisms and Management. Mol. Cell. Biochem. 2020, 474, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Haines, M.D.; Parker, H.M.; McDaniel, C.D.; Kiess, A.S. Impact of 6 Different Intestinal Bacteria on Broiler Breeder Sperm Motility in Vitro. Poult. Sci. 2013, 92, 2174–2181. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Mihara, T.; Okazaki, T.; Shitanaka, M.; Kushino, R.; Ikeda, C.; Negishi, H.; Liu, Z.; Richards, J.S.; Shimada, M. Toll-like Receptors (TLR) 2 and 4 on Human Sperm Recognize Bacterial Endotoxins and Mediate Apoptosis. Hum. Reprod. 2011, 26, 2799–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.C.; Isobe, N.; Yoshimura, Y. Expression of Toll-like Receptors and Avian β-Defensins and Their Changes in Response to Bacterial Components in Chicken Sperm. Poult. Sci. 2011, 90, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Eldamnhoury, E.M.; Elatrash, G.A.; Rashwan, H.M.; El-Sakka, A.I. Association between Leukocytospermia and Semen Interleukin-6 and Tumor Necrosis Factor-Alpha in Infertile Men. Andrology 2018, 6, 775–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagan, S.; Khurana, N.; Chandra, S.; Abdel-Mageed, A.B.; Mondal, D.; Hellstrom, W.J.G.; Sikka, S.C. Differential Expression of Novel Biomarkers (TLR-2, TLR-4, COX-2, and Nrf-2) of Inflammation and Oxidative Stress in Semen of Leukocytospermia Patients. Andrology 2015, 3, 848–855. [Google Scholar] [CrossRef]
- Fraczek, M.; Hryhorowicz, M.; Gill, K.; Zarzycka, M.; Gaczarzewicz, D.; Jedrzejczak, P.; Bilinska, B.; Piasecka, M.; Kurpisz, M. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J. Reprod. Immunol. 2016, 118, 18–27. [Google Scholar] [CrossRef]
- Zhang, Q.F.; Zhang, Y.J.; Wang, S.; Wei, S.; Li, F.; Feng, K.J. The effect of screening and treatment of Ureaplasma urealyticum infection on semen parameters in asymptomatic leukocytospermia: A case–control study. BMC Urol. 2020, 20, 165. [Google Scholar] [CrossRef]
- Fichtner, T.; Kotarski, F.; Hermosilla, C.; Taubert, A.; Wrenzycki, C. Semen extender and seminal plasma alter the extent of neutrophil extracellular traps (NET) formation in cattle. Theriogenology 2021, 160, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Miró, J.; Catalán, J.; Marín, H.; Yánez-Ortiz, I.; Yeste, M. Specific Seminal Plasma Fractions Are Responsible for the Modulation of Sperm–PMN Binding in the Donkey. Animals 2021, 11, 1388. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Zambrano, F.; Schuppe, H.C.; Wagenlehner, F.; Taubert, A.; Ulrich, G.; Sánchez, R.; Hermosilla, C. Determination of leucocyte extracellular traps (ETs) in seminal fluid (ex vivo) in infertile patients-A pilot study. Andrologia 2019, 51, e13356. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, F.; Schulz, M.; Pilatz, A.; Wagenlehner, F.; Schuppe, H.C.; Conejeros, I.; Uribe, P.; Taubert, A.; Sánchez, R.; Hermosilla, C. Increase of leucocyte-derived extracellular traps (ETs) in semen samples from human acute epididymitis patients-a pilot study. J. Assist. Reprod. Genet. 2020, 37, 2223–2231. [Google Scholar] [CrossRef] [PubMed]
- Zeyad, A.; Hamad, M.; Amor, H.; Hammadeh, M.E. Relationships between bacteriospermia, DNA integrity, nuclear protamine alteration, sperm quality and ICSI outcome. Reprod Biol. 2018, 18, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Pagliuca, C.; Cariati, F.; Bagnulo, F.; Scaglione, E.; Carotenuto, C.; Farina, F.; D’Argenio, V.; Carraturo, F.; D’Aprile, P.; Vitiello, M.; et al. Microbiological Evaluation and Sperm DNA Fragmentation in Semen Samples of Patients Undergoing Fertility Investigation. Genes 2021, 12, 654. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Szumala-Kakol, A.; Jedrzejczak, P.; Kamieniczna, M.; Kurpisz, M. Bacteria Trigger Oxygen Radical Release and Sperm Lipid Peroxidation in in Vitro Model of Semen Inflammation. Fertil. Steril. 2007, 88, 1076–1085. [Google Scholar] [CrossRef]
- Rui, B.R.; Shibuya, F.Y.; Kawaoku, A.J.T.; Losano, J.D.A.; Angrimani, D.S.R.; Dalmazzo, A.; Nichi, M.; Pereira, R.J.G. Impact of Induced Levels of Specific Free Radicals and Malondialdehyde on Chicken Semen Quality and Fertility. Theriogenology 2017, 90, 11–19. [Google Scholar] [CrossRef]
- Aitken, R.J.; Drevet, J.R. The Importance of Oxidative Stress in Determining the Functionality of Mammalian Spermatozoa: A Two-Edged Sword. Antioxidants 2020, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.H.; Lillehoj, H.S. Immunity, immunomodulation, and antibiotic alternatives to maximize the genetic potential of poultry for growth and disease response. Anim. Feed Sci. Technol. 2019, 250, 41–50. [Google Scholar] [CrossRef]
- Słowińska, M.; Nynca, J.; Arnold, G.J.; Fröhlich, T.; Jankowski, J.; Kozłowski, K.; Mostek, A.; Ciereszko, A. Proteomic Identification of Turkey (Meleagris Gallopavo) Seminal Plasma Proteins. Poult. Sci. 2017, 96, 3422–3435. [Google Scholar] [CrossRef]
- Brown, K.L.; Poon, G.F.T.; Birkenhead, D.; Pena, O.N.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host Defense Peptide LL-37 Selectively Reduces Proinflammatory Macrophage Responses. J. Immunol. 2011, 186, 5497–5505. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-Y.G.; Mookherjee, N. Multiple Immune-Modulatory Functions of Cathelicidin Host Defense Peptides. Front. Immunol. 2012, 3, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horvatić, A.; Guillemin, N.; Kaab, H.; McKeegan, D.; O’Reilly, E.; Bain, M.; Kuleš, J.; Eckersall, P.D. Quantitative Proteomics Using Tandem Mass Tags in Relation to the Acute Phase Protein Response in Chicken Challenged with Escherichia Coli Lipopolysaccharide Endotoxin. J. Proteom. 2019, 192, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Kurpisz, M. Cytokines in the Male Reproductive Tract and Their Role in Infertility Disorders. J. Reprod. Immunol. 2015, 108, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Kurkowska, W.; Bogacz, A.; Janiszewska, M.; Gabryś, E.; Tiszler, M.; Bellanti, F.; Kasperczyk, S.; Machoń-Grecka, A.; Dobrakowski, M.; Kasperczyk, A. Oxidative Stress is Associated with Reduced Sperm Motility in Normal Semen. Am. J. Mens Health. 2020, 14, 1557988320939731. [Google Scholar] [CrossRef]
- Cavaillon, J.M. Exotoxins and Endotoxins: Inducers of Inflammatory Cytokines. Toxicon 2018, 149, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Fraczek, M.; Szumala-Kakol, A.; Dworacki, G.; Sanocka, D.; Kurpisz, M. In Vitro Reconstruction of Inflammatory Reaction in Human Semen: Effect on Sperm DNA Fragmentation. J. Reprod. Immunol. 2013, 100, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Martínez, P.; Proverbio, F.; Camejo, M. Sperm Lipid Peroxidation and Pro-Inflammatory Cytokines. Asian J. Androl. 2007, 9, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Escadafal, C.; Incardona, S.; Fernandez-Carballo, B.L.; Dittrich, S. The good and the bad: Using C reactive protein to distinguish bacterial from non-bacterial infection among febrile patients in low-resource settings. BMJ Glob. Health. 2020, 5, e002396. [Google Scholar] [CrossRef]
- Leisegang, K.; Bouic, P.J.D.; Henkel, R.R. Metabolic Syndrome Is Associated with Increased Seminal Inflammatory Cytokines and Reproductive Dysfunction in a Case-Controlled Male Cohort. Am. J. Reprod. Immunol. 2016, 76, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Benrabia, I.; Hamdi, T.M.; Shehata, A.A.; Neubauer, H.; Wareth, G. Methicillin-Resistant Staphylococcus Aureus (MRSA) in Poultry Species in Algeria: Long-Term Study on Prevalence and Antimicrobial Resistance. Vet Sci. 2020, 7, 54. [Google Scholar] [CrossRef]
- Schulze, M.; Nitsche-Melkus, E.; Hensel, B.; Jung, M.; Jakop, U. Antibiotics and Their Alternatives in Artificial Breeding in Livestock. Anim. Reprod. Sci. 2020, 220, 106284. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, F.; Javadi, M.; Karami, A.A.; Gholaminejad, F.; Kavianpour, M.; Haghighian, H.K. Curcumin Nanomicelle Improves Semen Parameters, Oxidative Stress, Inflammatory Biomarkers, and Reproductive Hormones in Infertile Men: A Randomized Clinical Trial. Phytother. Res. 2018, 32, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, K.; Emery, D.; Straub, D.; Lee, C. Percoll Process Can Improve Semen Quality and Fertility in Turkey Breeders. Anim. Biosci. 1999, 12, 702–707. [Google Scholar] [CrossRef]
- Long, J.A.; Kulkarni, G. An effective method for improving the fertility of glycerol-exposed poultry semen. Poult. Sci. 2004, 83, 1593–1601. [Google Scholar] [CrossRef]
Isolate | Antibiotic | S | I | R |
---|---|---|---|---|
Bacillus cereus | C | ND | ND | ND |
LZD | ND | ND | ND | |
TGC | ND | ND | ND | |
Bacillus subtilis | C | ND | ND | ND |
LZD | ND | ND | ND | |
TGC | ND | ND | ND | |
Citrobacter braakii | ETP | 100% | 0% | 0% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Empedobacter brevis | ETP | ND | ND | ND |
FEP | ND | ND | ND | |
NOR | ND | ND | ND | |
Enterococcus faecium | IMP | 0% | 0% | 100% |
LZD | 100% | 0% | 0% | |
TGC | 100% | 0% | 0% | |
Escherichia coli | ETP | 0% | 0% | 100% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Klebsiella pneumoniae | ETP | 0% | 0% | 100% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Morganella morganii | ETP | 0% | 0% | 100% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Myroides odoratimimus | C | ND | ND | ND |
LZD | ND | ND | ND | |
TGC | ND | ND | ND | |
Proteus hauseri | ETP | 100% | 0% | 0% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Proteus mirabilis | ETP | 100% | 0% | 0% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Proteus penneri | ETP | 100% | 0% | 0% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Proteus vulgaris | ETP | 100% | 0% | 0% |
FEP | 100% | 0% | 0% | |
NOR | 100% | 0% | 0% | |
Staphylococcus chromogenes | C | 0% | 0% | 100% |
LZD | 100% | 0% | 0% | |
TGC | 0% | 0% | 100% | |
Staphylococcus lentus | C | 0% | 0% | 100% |
LZD | 0% | 0% | 100% | |
TGC | 0% | 0% | 100% | |
Streptococcus alactolyticus | C | 50% | 0% | 50% |
LZD | 0% | 0% | 100% | |
TGC | 0% | 0% | 100% | |
Vagococcus fluvialis | ETP | 0% | 0% | 100% |
FEP | 100% | 0% | 0% | |
NOR | 0% | 0% | 100% |
Parameter | Value (Mean ± S.D.) |
---|---|
Sperm motility (%) | 61.61 ± 3.01 |
Membrane integrity (%) | 84.10 ± 1.56 |
Acrosome integrity (%) | 90.77 ± 0.83 |
Mitochondrial membrane potential (green/red ratio) | 0.69 ± 0.02 |
DNA fragmentation (%) | 7.64 ± 0.36 |
Necrotic cells (%) | 3.99 ± 0.29 |
Concentration of leukocytes (×106/mL) | 4.42 ± 1.29 |
Reactive oxygen species (ROS) production (RLU/s/106 cells) | 4.10 ± 0.41 |
Total antioxidant capacity (μmol Trolox equivalent/g prot) | 13.34 ± 1.07 |
Protein oxidation (nmol PC/mg prot) | 2.67 ± 0.56 |
Lipid peroxidation (µmol MDA/g prot) | 0.75 ± 0.09 |
C-reactive protein (mg/g prot) | 0.79 ± 0.05 |
Interleukin-6 (pg/mg prot) | 242.70 ± 11.45 |
Interleukin-1 (pg/mg prot) | 0.09 ± 0.01 |
Cathelicidin concentration (pg/mg prot) | 0.99 ± 0.19 |
Defensin concentration (µg/mg prot) | 0.26 ± 0.04 |
Bacterial colonies (log CFU/mL) | 14.00 ± 1.22 |
MOT | MI | AI | ΔΨm | DNA | NC | LEU | ROS | TAC | PC | MDA | CRP | IL-1 | IL-6 | CATH | DEF | CFU | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MOT | 1 | 0.665 *** | 0.518 ** | 0.604 *** | −0.544 ** | −0.527 ** | −0.787 *** | −0.758 *** | 0.466 ** | −0.543 ** | −0.617 *** | −0.467 ** | −0.614 *** | −0.557 *** | 0.625 *** | 0.706 *** | −0.754 *** |
MI | 1 | 0.383 * | 0.583 ** | −0.170 | −0.527 ** | −0.680 *** | −0.529 ** | 0.470 * | −0.456 * | −0.644 *** | −0.176 | −0.304 | −0.309 | 0.541 ** | 0.626 *** | −0.467 * | |
AI | 1 | 0.208 | −0.430 * | −0.396 * | −0.505 ** | −0.469 * | 0.390 * | −0.427 * | −0.528 ** | −0.252 | −0.414 * | −0.427 * | 0.313 | 0.348 * | −0.609 ** | ||
ΔΨm | 1 | −0.636 *** | −0.633 *** | −0.646 *** | −0.559 *** | 0.345 * | −0.412 * | −0.585 *** | −0.349 * | −0.377 * | −0.384 * | 0.307 | 0.477 * | −0.480 ** | |||
DNA | 1 | 0.592 *** | 0.498 ** | 0.535 ** | −0.360 * | 0.355 * | 0.539 ** | 0.358 * | 0.349 * | 0.362 * | −0.405 * | −0.380 * | 0.565 *** | ||||
NC | 1 | 0.487 ** | 0.490 ** | −0.306 | 0.424 * | 0.423 * | 0.372 * | 0.611 *** | 0.696 *** | −0.313 | −0.452 * | 0.439 * | |||||
LEU | 1 | 0.668 *** | −0.446 * | 0.424 * | 0.624 *** | 0.409 * | 0.503 ** | 0.509 ** | −0.485 ** | −0.504 ** | 0.683 *** | ||||||
ROS | 1 | −0.620 *** | 0.484 * | 0.467 * | 0.485 * | 0.448 * | 0.542 ** | −0.458 ** | −0.464 ** | 0.668 *** | |||||||
TAC | 1 | −0.391 * | −0.338 * | −0.112 | −0.296 | −0.325 | 0.690 *** | 0.545 *** | −0.409 * | ||||||||
PC | 1 | 0.646 *** | 0.035 | 0.253 | 0.304 | −0.132 | −0.154 | 0.658 *** | |||||||||
MDA | 1 | 0.512 ** | 0.388 * | 0.435 * | −0.389 * | −0.370 * | 0.553 ** | ||||||||||
CRP | 1 | 0.516 ** | 0.566 ** | −0.403 * | −0.377 * | 0.681 *** | |||||||||||
IL-1 | 1 | 0.779 **** | −0.356 * | −0.388 * | 0.559 *** | ||||||||||||
IL-6 | 1 | −0.324 * | −0.365 * | 0.513 ** | |||||||||||||
CATH | 1 | 0.829 **** | −0.474 ** | ||||||||||||||
DEF | 1 | −0.523 ** | |||||||||||||||
CFU | 1 |
Groups | Excellent (MOT > 70%) | Good (MOT > 50%) | Low (MOT < 50%) |
---|---|---|---|
(n = 22) | (n = 20) | (n = 18) | |
Sperm motility | 77.09 ± 1.02 | 61.50 ± 1.55 ****A | 33.50 ± 3.95 ****B; ****C |
Membrane integrity | 91.55 ± 2.80 | 82.36 ± 1.58 **A | 74.50 ± 4.20 ****B; *C |
Acrosome integrity | 93.00 ± 2.72 | 91.29 ± 3.93 | 85.50 ± 2.27 **B; *C |
ΔΨm | 0.78 ± 0.07 | 0.68 ± 0.08 **A | 0.59 ± 0.06 ***B |
DNA damage | 6.55 ± 0.50 | 7.78 ± 0.50 | 9.30 ± 0.66 *B |
Necrotic cells | 2.97 ± 0.38 | 4.16 ± 0.38 | 5.45 ± 0.58 **B |
Leukocytes | 0.82 ± 0.43 | 5.17 ± 1.43 ****A | 9.25 ± 0.79 ****B; ****C |
ROS production | 2.66 ± 0.36 | 3.85 ± 0.54 | 7.34 ± 0.52 ****B; ***C |
TAC | 16.43 ± 2.44 | 13.03 ± 0.81 | 8.41 ± 1.18 *B |
Protein oxidation | 1.53 ± 0.46 | 1.88 ± 0.46 | 6.77 ± 1.92 ***B; **C |
LPO | 0.48 ± 0.08 | 0.72 ± 0.08 | 1.33 ± 0.29 ***B; *C |
CRP | 0.71 ± 0.04 | 0.78 ± 0.04 | 0.98 ± 0.21 |
IL-6 | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.14 ± 0.02 ***B; **C |
IL-1 | 105.50 ± 11.21 | 187.60 ± 17.21 | 622.90 ± 64.00 ***B; ***C |
CATH | 1.96 ± 0.36 | 0.55 ± 0.12 ****A | 0.24 ± 0.04 ****B |
DEF | 0.49 ± 0.05 | 0.13 ± 0.01 ****A | 0.10 ± 0.01 ****B |
Bacterial colonies | 8.85 ± 2.11 | 14.19 ± 2.10 *EA | 23.03 ± 4.08 ****B; **C |
Bacterial species (sample positivity) | B. subtilis (27%) | B. cereus (50%) | B. cereus (45%) |
E. brevis (37%) | B. subtilis (50%) | B. subtilis (56%) | |
M. odoratimimus (37%) | M. morganii (30%) | C. braaki (34%) | |
S. chromogenes (27%) | M. odoratimimus (30%) | E. coli (67%) | |
S. alactolyticus (45%) | P. hauseri (40%) | E. faecium (56%) | |
M. morganii (45%) | P. penneri (34%) | K. pneumoniae (45%) | |
P. vulgaris (40%) | P. hauseri (23%) | ||
S. chromogenes (30%) | P. mirabilis (23%) | ||
P. penneri (50%) | |||
P. vulgaris (45%) | |||
S. chromogenes (56%) | |||
S. lentus (45%) | |||
V. fluvialis (45%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lenický, M.; Slanina, T.; Kačániová, M.; Galovičová, L.; Petrovičová, M.; Ďuračka, M.; Benko, F.; Kováč, J.; Tvrdá, E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals 2021, 11, 1771. https://doi.org/10.3390/ani11061771
Lenický M, Slanina T, Kačániová M, Galovičová L, Petrovičová M, Ďuračka M, Benko F, Kováč J, Tvrdá E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals. 2021; 11(6):1771. https://doi.org/10.3390/ani11061771
Chicago/Turabian StyleLenický, Michal, Tomáš Slanina, Miroslava Kačániová, Lucia Galovičová, Michaela Petrovičová, Michal Ďuračka, Filip Benko, Ján Kováč, and Eva Tvrdá. 2021. "Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen" Animals 11, no. 6: 1771. https://doi.org/10.3390/ani11061771
APA StyleLenický, M., Slanina, T., Kačániová, M., Galovičová, L., Petrovičová, M., Ďuračka, M., Benko, F., Kováč, J., & Tvrdá, E. (2021). Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals, 11(6), 1771. https://doi.org/10.3390/ani11061771