The Modulation of Functional Status of Bovine Spermatozoa by Progesterone
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Location
2.3. Semen Collection and Preparation
2.4. Study Design
2.4.1. Induction of Capacitation
2.4.2. Induction of Acrosome Reaction
2.5. CTC Fluorescence Assay
2.6. Statistical Analysis
3. Results
3.1. The Effect of PRG on Functional Status of Bull Spermatozoa during Capacitation
3.2. The Effect of PRG on Functional Status of Bull Spermatozoa during Acrosome Reaction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pons-Rejraji, H.; Bailey, J.L.; Leclerc, P. Modulation of bovine sperm signalling pathways: Correlation between intracellular parameters and sperm capacitation and acrosome exocytosis. Reprod. Fertil. Dev. 2009, 21, 511–524. [Google Scholar] [CrossRef]
- Simons, J.; Fauci, L. A model for the acrosome reaction in mammalian sperm. Bull. Math. Biol. 2018, 80, 2481–2501. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Jia, Y.P.; Duan, L.Y.; Li, K.M. Participation of the inositol 1,4,5-trisphosphate-gated calcium channel in the zona pellucida- and progesterone-induced acrosome reaction and calcium influx in human spermatozoa. Asian J. Androl. 2020, 22, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Baldi, E.; Luconi, M.; Muratori, M.; Marchiani, S.; Tamburrino, L.; Forti, G. Nongenomic activation of spermatozoa by steroid hormones: Facts and fictions. Mol. Cell. Endocrinol. 2009, 308, 39–46. [Google Scholar] [CrossRef]
- Gasparini, C.; Pilastro, A.; Evans, J.P. The role of female reproductive fluid in sperm competition. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20200077. [Google Scholar] [CrossRef]
- McPartlin, L.A.; Littell, J.; Mark, E.; Nelson, J.L.; Travis, A.J.; Bedford-Guaus, S.J. A defined medium supports changes consistent with capacitation in stallion sperm, as evidenced by increases in protein tyrosine phosphorylation and high rates of acrosomal exocytosis. Theriogenology 2008, 69, 639–650. [Google Scholar] [CrossRef]
- Sagare-Patil, V.; Galvankar, M.; Satiya, M.; Bhandari, B.; Gupta, S.K.; Modi, D. Differential concentration and time dependent effects of progesterone on kinase activity, hyperactivation and acrosome reaction in human spermatozoa. Int. J. Androl. 2012, 35, 633–644. [Google Scholar] [CrossRef] [PubMed]
- Ryu, D.-Y.; Kim, Y.-J.; Lee, J.-S.; Rahman, M.S.; Kwon, W.-S.; Yoon, S.-J.; Pang, M.-G. Capacitation and acrosome reaction differences of bovine, mouse and porcine spermatozoa in responsiveness to estrogenic compounds. J. Anim. Sci. Technol. 2014, 56, 26. [Google Scholar] [CrossRef] [Green Version]
- Lukoseviciute, K.; Zilinskas, H.; Januskauskas, A. The effect of oestradiol, progesterone and heparin on bovine spermatozoa function after thawing. Reprod. Domest. Anim. 2005, 40, 100–107. [Google Scholar] [CrossRef]
- Sajeevadathan, M.; Pettitt, M.J.; Buhr, M. Interaction of ouabain and progesterone on induction of bull sperm capacitation. Theriogenology 2018, 126, 191–198. [Google Scholar] [CrossRef]
- Lucoseviciute, K.; Zilinskas, H.; Januskauskas, A. Effect of exogenous progesterone on post-thaw capacitation and acrosome reaction of bovine spermatozoa. Reprod. Dom. Anim. 2004, 39, 154–161. [Google Scholar] [CrossRef]
- Nowicka-Bauer, K.; Szymczak-Cendlak, M. Structure and function of ion channels regulating sperm motility. Int. J. Mol. Sci. 2021, 22, 3259. [Google Scholar] [CrossRef] [PubMed]
- Rathi, R.; Colenbrander, B.; Stout, T.A.E.; Bevers, M.M.; Gadella, B.M. Progesterone induces acrosome reaction in stallion spermatozoa via a protein tyrosine kinase dependent pathway. Mol. Reprod. Dev. 2003, 64, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Itzhakov, D.; Nitzan, Y.; Breitbart, H. Protein kinase A inhibition induces EPAC-dependent acrosomal exocytosis in human sperm. Asian J. Androl. 2019, 21, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Finkelstein, M.; Etkovitz, N.; Breitbart, H. Ca2+ signaling in mammalian spermatozoa. Mol. Cell. Endocrinol. 2020, 516, 110953. [Google Scholar] [CrossRef]
- Wang, H.; McGoldrick, L.L.; Chung, J.J. A perspective on the control of mammalian fertilization by egg-activated ion channels in sperm: A tale of two channels. Biol. Reprod. 2021, 18, 46–66. [Google Scholar] [CrossRef]
- Marquez, B.; Suarez, S.S. Different signaling pathways in bovine sperm regulate capacitation and hyperactivation. Biol. Reprod. 2004, 70, 1626–1633. [Google Scholar] [CrossRef] [Green Version]
- Parrish, J.J. Bovine in vitro fertilization: In vitro oocyte maturation and sperm capacitation with heparin. Theriogenology 2014, 81, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Denisenko, V.Y.; Boytseva, E.N.; Kuzmina, T.I. Mobilization of Са2+ from intracellular stores of spermatozoa of Bos Taurus depending of their functional status. Tsitologiia 2015, 57, 233–239. [Google Scholar]
- Breitbart, H.; Finkelstein, M. Actin cytoskeleton and sperm function, Biochem. Biophys. Res. Commun. 2018, 506, 372–377. [Google Scholar] [CrossRef]
- Chiarante, N.; Alonso, C.A.I.; Plaza, J.; Lottero-Leconte, R.; Arroyo-Salvo, C.; Yaneff, A.; Osycka-Salut, C.E.; Davio, C.; Miragaya, M.; Perez-Martinez, S. Cyclic AMP efflux through MRP4 regulates actin dynamics signalling pathway and sperm motility in bovines. Sci. Rep. 2020, 10, 15619. [Google Scholar] [CrossRef]
- Stovall, D.W.; Shabanowitz, R.B. The effects of prolactin on human sperm capacitation and acrosome reaction. Fertil. Steril. 1991, 56, 960–966. [Google Scholar] [CrossRef]
- Espino, J.; Mediero, M.; Lozano, G.M.; Bejarano, I.; Ortiz, A.; Guez, A.B. Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients. Reprod. Biol. Endocrinol. 2009, 7, 11. [Google Scholar] [CrossRef] [Green Version]
- Hewitson, L.; Haavisto, A.; Simerly, C.; Jones, J.; Schatten, G. Microtubule organization and chromatin configurations in hamster oocytes during fertilization and parthenogenetic activation, and after insemination with human sperm. Biol. Reprod. 1997, 57, 967–975. [Google Scholar] [CrossRef] [Green Version]
- Alonso, C.A.I.; Osycka-Salut, C.E.; Castellano, L.; Cesari, A.; Di Siervi, N.; Mutto, A.; Johannisson, A.; Morrell, J.M.; Davio, C.; Perez-Martinez, S. Extracellular cAMP activates molecular signalling pathways associated with sperm capacitation in bovines. Mol. Hum. Reprod. 2017, 23, 521–534. [Google Scholar] [CrossRef]
- Fraser, L.R. Sperm capacitation and the acrosome reaction. Hum. Reprod. 1998, 13, 9–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megnagi, B.; Finkelstein, M.; Shabtay, O.; Breitbart, H. The role and importance of cofilin in human sperm capacitation and the acrosome reaction. Cell Tissue Res. 2015, 362, 665–675. [Google Scholar] [CrossRef] [PubMed]
- Shabtay, O.; Breitbart, H. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization. Dev. Biol. 2016, 415, 64–74. [Google Scholar] [CrossRef]
- Gomez-Conde, E.; Romero-Pastrana, F.; Vargas-Meji, M.A.; Delgado, N.M.; Reyes, R. Arrangement of b tubulin in bull spermatozoa during nuclei decondensation. Arch. Androl. 2004, 50, 367–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naresh, S.; Atreja, S.K. Actin polymerization: An event regulated by tyrosine phosphorylation during buffalo sperm capacitation. Reprod. Dom. Anim. 2015, 50, 1047–1053. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.L.; do Amaral, V.C.; Gabrielli, V.; Montt Guevara, M.M.; Mannella, P.; Baracat, E.C.; Soares, J.M., Jr.; Simoncini, T. Prolactin promotes breast cancer cell migration through actin cytoskeleton remodeling. Front. Endocrinol. 2015, 6, 186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houdebine, L.M. The possible involvement of tubulin in transduction of the prolactin signal. Reprod. Nutr. Devel. 1990, 30, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lishko, P.V.; Botchkina, I.L.; Kirichok, Y. Progesterone activates the principal Ca2+ channel of human sperm. Nature 2011, 471, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Tamburrino, L.; Marchiani, S.; Minetti, F.; Forti, G.; Muratori, M.; Baldi, E. The CatSper calcium channel in human sperm: Relation with motility and involvement in progesterone-induced acrosome reaction. Hum. Reprod. 2014, 29, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Cormier, N.; Bailey, J.L. A differential mechanism is involved during heparin- and cryopreservation-induced capacitation of bovine spermatozoa. Biol. Reprod. 2003, 69, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Albarracin, J.L.; Morato, R.; Rojas, C.; Mogas, T. Effects of vitrification in open pulled straws on the cytology of in vitro matured prepubertal and adult bovine oocytes. Theriogenology 2005, 63, 890–901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denisenko, V.; Chistyakova, I.; Volkova, N.; Volkova, L.; Iolchiev, B.; Kuzmina, T. The Modulation of Functional Status of Bovine Spermatozoa by Progesterone. Animals 2021, 11, 1788. https://doi.org/10.3390/ani11061788
Denisenko V, Chistyakova I, Volkova N, Volkova L, Iolchiev B, Kuzmina T. The Modulation of Functional Status of Bovine Spermatozoa by Progesterone. Animals. 2021; 11(6):1788. https://doi.org/10.3390/ani11061788
Chicago/Turabian StyleDenisenko, Vitaly, Irena Chistyakova, Natalia Volkova, Ludmila Volkova, Baylar Iolchiev, and Tatyana Kuzmina. 2021. "The Modulation of Functional Status of Bovine Spermatozoa by Progesterone" Animals 11, no. 6: 1788. https://doi.org/10.3390/ani11061788
APA StyleDenisenko, V., Chistyakova, I., Volkova, N., Volkova, L., Iolchiev, B., & Kuzmina, T. (2021). The Modulation of Functional Status of Bovine Spermatozoa by Progesterone. Animals, 11(6), 1788. https://doi.org/10.3390/ani11061788