A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Animals
2.3. Performance-Testing Database
2.4. DNA Extraction and SNP Genotyping
2.5. Statistical Analysis
3. Results and Discussion
3.1. Descriptive Statistics and Phenotypic Correlations
3.2. Environmental Factors
3.3. Associations between SNP, Milk Production Traits, and SCS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Lad, S.S.; Aparnathi, K.D.; Mehta, B.; Velpula, S. Goat Milk in Human Nutrition and Health—A Review. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1781–1792. [Google Scholar] [CrossRef] [Green Version]
- Sonu, K.S. Compositional and therapeutic signatures of goat milk: A review. Int. J. Chem. Stud. 2020, 8, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Kuchtík, J.; Králíčková, Š.; Zapletal, D.; Węglarzy, K.; Šustová, K.; Skrzyżala, I. Changes in physico-chemical characteristics, somatic cell count and fatty acid profile of Brown Short-haired goat milk during lactation. Anim. Sci. Pap. Rep. 2015, 33, 71–83. [Google Scholar]
- Králíčková, Š.; Kuchtík, J.; Filipčík, R.; Lužová, T.; Šustová, K. Effect of chosen factors on milk yield, basic composition and somatic cell count of organic milk of brown short-haired goats. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Türkmen, N.; Kanca, H.; Gursoy, A. Effects of Somatic Cell Count in Goat Milk on Some Physical, Chemical and Sensory Properties of Vanilla Ice Cream. Atatürk Üniversitesi Vet. Bil. Derg. 2018, 13, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Macías, D.; Morales-delaNuez, A.; Torres, A.; Hernández-Castellano, L.E.; Jiménez-Flores, R.; Castro, N.; Argüello, A. Effects of addition of somatic cells to caprine milk on cheese quality. Int. Dairy J. 2013, 29, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N.; Merin, U.; Shapiro, F.; Leitner, G. Subclinical mastitis in goats is associated with upregulation of nitric oxide-derived oxidative stress that causes reduction of milk antioxidative properties and impairment of its quality. J. Dairy Sci. 2014, 97, 3449–3455. [Google Scholar] [CrossRef] [PubMed]
- Scholtens, M.R.; Lopez-Villalobos, N.; Garrick, D.; Blair, H.; Lehnert, K.; Snell, R. Genetic parameters for total lactation yields of milk, fat, protein, and somatic cell score in New Zealand dairy goats. Anim. Sci. J. 2020, 91, e13310. [Google Scholar] [CrossRef]
- Wolber, M.R.; Hamann, H.; Herold, P. Continuous and extended milking in dairy goats 2. Communication: Genetic analysis of dairy traits. Züchtungskunde 2019, 91, 129–140. [Google Scholar]
- Nogueira, B.C.F.; Oliveira, H.R.; Souza, N.O.; Junqueira, V.S.; Rodrigues, M.T.; Silva, F.F.; Brito, L.F. Random regression models for genetic evaluation of milk yield in the second lactation of tropical dairy goats. Livest. Res. Rural Dev. 2020, 32, 26. [Google Scholar]
- Verma, M.; Dige, M.S.; Kaushik, R.; Gautam, D.; De, S.; Rout, P.K. Milk composition traits in Jamunapari goats: Genetic parameters and effect of CSN1S1 gene variants. Int. J. Dairy Technol. 2020, 73, 12–21. [Google Scholar] [CrossRef]
- Biffani, S.; Tiezzi, F.; Fresi, P.; Stella, A.; Minozzi, G. Genetic parameters of weeping teats in Italian Saanen and Alpine dairy goats and their relationship with milk production and somatic cell score. J. Dairy Sci. 2020, 103, 9167–9176. [Google Scholar] [CrossRef] [PubMed]
- Špehar, M.; Mulc, D.; Barać, Z.; Mioč, B.; Kasap, A. Estimation of genetic parameters for dairy traits using repeatability animal models based on test-day data for Alpine goat in Croatia. Mljekarstvo 2019, 69, 215–221. [Google Scholar] [CrossRef]
- Inostroza, M.G.P.; Landi, V.; González, F.J.N.; Jurado, J.M.L.; Bermejo, J.V.D.; Álvarez, J.F.; Martínez, M.D.A. Integrating Casein Complex SNPs Additive, Dominance and Epistatic Effects on Genetic Parameters and Breeding Values Estimation for Murciano-Granadina Goat Milk Yield and Components. Genes 2020, 11, 309. [Google Scholar] [CrossRef] [Green Version]
- Inostroza, M.G.P.; González, F.J.N.; Landi, V.; Jurado, J.M.L.; Bermejo, J.V.D.; Álvarez, J.F.; Martínez, M.D.A. Bayesian Analysis of the Association between Casein Complex Haplotype Variants and Milk Yield, Composition, and Curve Shape Parameters in Murciano-Granadina Goats. Animals 2020, 10, 1845. [Google Scholar] [CrossRef]
- Scholtens, M.; Jiang, A.; Smith, A.; Littlejohn, M.; Lehnert, K.; Snell, R., II; Lopez-Villalobos, N.; Garrick, D.; Blair, H. Genome-wide association studies of lactation yields of milk, fat, protein and somatic cell score in New Zealand dairy goats. J. Anim. Sci. Biotechnol. 2020, 11, 55. [Google Scholar] [CrossRef]
- Andres, A.C.; Djonov, V. The mammary gland vasculature revisited. J. Mammary Gland Biol. Neoplasia 2010, 15, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Rudolph, M.C.; Neville, M.C.; Anderson, S.M. Lipid synthesis in lactation: Diet and the fatty acid switch. J. Mammary Gland Biol. Neoplasia 2007, 12, 269–281. [Google Scholar] [CrossRef]
- Qu, Y.; Liu, Y.; Ma, L.; Sweeney, S.; Lan, X.; Chen, Z.; Li, Z.; Lei, C.; Chen, H. Novel SNPs of butyrophilin (BTN1A1) and milk fat globule epidermal growth factor (EGF) 8 (MFG-E8) are associated with milk traits in dairy goat. Mol. Biol. Rep. 2011, 38, 371–377. [Google Scholar] [CrossRef]
- Cecchinato, A.; Ribeca, C.; Chessa, S.; Cipolat-Gotet, C.; Maretto, F.; Casellas, J.; Bittante, G. Candidate gene association analysis for milk yield, composition, urea nitrogen and somatic cell scores in Brown Swiss cows. Animal 2014, 8, 1062–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crepaldi, P.; Nicoloso, L.; Coizet, B.; Milanesi, E.; Pagnacco, G.; Fresi, P.; Dimauro, C. Association of acetyl-coenzyme A carboxylase α, stearoyl-coenzyme A desaturase, and lipoprotein lipase genes with dairy traits in Alpine goats. J. Dairy Sci. 2013, 96, 1856–1864. [Google Scholar] [CrossRef]
- Bauman, D.E.; Mather, I.H.; Wall, R.J.; Lock, A.L. Major advances associated with the biosynthesis of milk. J. Dairy Sci. 2006, 89, 1235–1243. [Google Scholar] [CrossRef]
- Bernard, L.; Leroux, C.; Hayeds, H.; Gautier, M.; Chilliard, Y.; Martin, P. Characterization of the caprine stearoyl-CoA desaturase gene and its mRNA showing an unusually long 3′-UTR sequence arising from a single exon. Gene 2001, 281, 53–61. [Google Scholar] [CrossRef]
- Yahyaoui, M.H.; Vaiman, D.; Sánchez, A.; Folch, J.M. Mapping of the goat stearoyl coenzyme A desaturase gene to chromosome 26. Anim. Genet. 2003, 34, 474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Sun, J.; Li, Z.; Lan, X.; Zhang, C.; Qu, Y.; Liu, Y.; Fang, X.; Lei, C.; Chen, H. Novel SNPs in the caprine stearoyl-CoA desaturase (SCD) and decorin (DCN) genes that are associated with growth traits in Chine goat breeds. Mol. Biol. Rep. 2011, 38, 3121–3127. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Gao, X.-Y.; Shao, R.-Y.; Wang, Y.-H.; Fang, X.-T.; Chen, H. Stearoyl-Co A Desaturase (SCD) gene polymorphism in goat breeds. Biochem. Genet. 2010, 48, 822–828. [Google Scholar] [CrossRef]
- Crisa, A.; Marchitelli, C.; Pariset, L.; Gontarini, G.; Signarelli, F.; Napolitano, R.; Catillo, G.; Valentini, A.; Moili, B. Exploring polymorphisms and effects of candidate genes on milk fat quality in dairy sheep. J. Dairy Sci. 2010, 93, 3834–3845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidayati, C.; Sumantri, R.; Noor, R.; Priyanto, R.; Rahayu, S. Single nucleotide polymorphisms of lipoprotein lipase gene and its association with marbling quality in local sheeps. J. Indones. Trop. Anim. Agric. 2015, 40, 1–10. [Google Scholar] [CrossRef]
- Moioli, B.; Contarini, G.; Avalli, A.; Gatillo, G.; Orru, L.; De Matteis, G.; Masoero, G.; Napolitano, F. Short communication: Effect of stearoyl-coenzyme A desaturase polymorphism on fatty acid composition of milk. J. Dairy Sci. 2007, 90, 3553–3558. [Google Scholar] [CrossRef] [PubMed]
- Badaoui, B.; Serradilla, J.M.; Tomàs, A.; Urrutia, B.; Ares, J.L.; Carrizosa, J.; Sànchez, A.; Jordana, J.; Amills, M. Identification of two polymorphisms in the goat lipoprotein lipase gene and their association with milk production traits. J. Dairy Sci. 2007, 90, 3012–3017. [Google Scholar] [CrossRef]
- Kyselova, J.; Sztankoova, Z.; Svitakova, A.; Melcova, S.; Krejcova, M. Effect of single nucleotide polymorphisms of BTN1A1 gene on the milk production traits of Czech dairy goats. In Proceedings of the 34th International Society for Animal Genetics Conference—ISAG 34th, Xi’an, China, 27 July–1 August 2014. [Google Scholar]
- Rychtářová, J.; Sztankóová, Z.; Hofmannová, M.; Vostrý, L.; Milerski, M. Characterization of the new genetic variant in the caprine lipoprotein lipase gene. Small Rumin. Res. 2020, 182, 5–10. [Google Scholar] [CrossRef]
- Signorrelli, F.; Napolitano, F.; De Mateis, G.; Scatà, M.C.; Gennaro, C.; Tripaldi, C.; Moioli, B. Identification of novel single nucleotide polymorphisms in promotor III of the Acetyl-CoA carboxylase-α gene in goats affecting milk production traits. J. Hered. 2009, 100, 386–389. [Google Scholar]
- Sztankóová, Z.; Rychtářová, J.; Kyselová, J.; Czerneková, V. Simultaneous genotyping of 4 SNPs in promoter III of the ovine ACACA. Small. Rum. Res. 2016, 138, 25–30. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. Base SAS 9.4 Procedures Guide: Statistical Procedures, 2nd ed.; Statistical Analysis System Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Pulina, G.; Macciotta, N.; Nudda, A. Milk composition and feeding in the Italian dairy sheep. Ital. J. Anim. Sci. 2010, 4 (Suppl. 1), 5–14. [Google Scholar] [CrossRef] [Green Version]
- Ying, C.; Wang, H.T.; Hsu, J.T. Relationship of somatic cell count, physical, chemical and enzymatic properties to the bacterial standard plate count in dairy goat milk. Livest. Prod. Sci. 2002, 74, 63–77. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Kessel, J.; Ren, F.; Zeng, S. Effect of somatic cell count in goat milk on yield, sensory quality and fatty acid profile of semisoft cheese. J. Dairy Sci. 2010, 93, 1345–1354. [Google Scholar] [CrossRef] [Green Version]
- Jaeggi, J.J.; Govindasamy-Lucey, S.; Berger, Y.M.; Johnson, M.E.; McKusick, B.C.; Thomas, D.L.; Wendorff, W.L. Hard ewe’s milk cheese manufactured from milk of three different groups of somatic cell counts. J. Dairy Sci. 2003, 86, 3082–3089. [Google Scholar] [CrossRef]
- Goetsch, A.L.; Zeng, S.S.; Gipson, T.A. Factors affecting goat milk production and quality. Small Rumin. Res. 2011, 101, 55–63. [Google Scholar] [CrossRef]
- Vacca, G.M.; Stocco, G.; Dettori, M.L.; Pira, E.; Bittante, G.; Pazzola, M. Milk yield, quality, and coagulation properties of 6 breeds of goats: Environmental and individual variability. J. Dairy. Sci. 2018, 101, 7236–7247. [Google Scholar] [CrossRef]
- Ciappesoni, G.; Přibyl, J. Factors affecting goat milk yield and its composition. Czech J. Anim. Sci. 2004, 11, 465–473. [Google Scholar] [CrossRef] [Green Version]
- Idowu, S.T.; Adewumi, O.O. Genetic and non-genetic factors affecting yield and milk composition in goats. J. Adv. Dairy. Res. 2017, 5, 2. [Google Scholar] [CrossRef] [Green Version]
- Csanádi, J.; Fenyvessy, J.; Bohata, S. Somatic cell count of milk from different goat breeds. Acta Univ. Sapientiae Aliment. 2015, 845–854. [Google Scholar] [CrossRef] [Green Version]
- Bergonier, D.; de Cremoux, R.; Rupp, R.; Lagriffoul, G.; Berthelot, X. Mastitis of dairy small ruminants. Vet. Res. 2003, 34, 689–716. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.W.; Guo, M. Goat milk Products: Types of products, manufacturing technology, chemical composition, and marketing. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Eds.; Blackwell Publishing: Ames, IA, USA; Oxford, UK, 2006; p. 449. [Google Scholar]
- Malissiova, E.; Tzora, A.; Katsioulis, A.; Hatzinikou, M.; Tsakalof, A.; Arvanitoyannis, I.S.; Govaris, A.; Hadjichristodoulou, C. Relationship between production conditions and milk gross composition in ewe´s and goat´s organic and conventional farms in central Greece. Dairy Sci. Technol. 2015, 95, 437–450. [Google Scholar] [CrossRef] [Green Version]
- Kouřimská, L.; Legarová, V.; Panovská, Z.; Pánek, J. Quality of cow’s milk from organic and conventional farming. Czech J. Food Sci. 2014, 32, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Moioli, B.; Scata, M.C.; De Matteis, G.; Annicchiarico, G.; Catillo, G.; Napolitano, F. The ACACA gene is a potential candidate gene for fat content in sheep milk. Anim. Genet. 2013, 44, 601–603. [Google Scholar] [CrossRef]
- Di Gerlando, R.; Mastrangelo, S.; Tortorici, L.; Tolone, M.; Sutera, A.M.; Sardina, M.T.; Portolano, B. Full-length sequencing and identification of novel polymorphisms in the ACACA gene of Valle del Belice sheep breed. J. Genet. 2017, 96, 591–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.-S.; Hu, S.-L.; Yu, K.; Wang, H.; Wang, W.; Loor, J.; Luo, J. Lipoprotein Lipase, Tissue Expression and Effects on Genes Related to Fatty Acid Synthesis in Goat Mammary Epithelial Cells. Int. J. Mol. Sci. 2014, 15, 22757–22771. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Wang, C.; Chang, Z.H.; Guo, B.L.; Li, R.; Yue, X.P.; Lan, X.Y.; Chen, H.; Lei, C.Z. AGPAT6 polymorphism and its association with milk traits of dairy goats. Genet. Mol. Res. 2011, 10, 2747–2756. [Google Scholar] [CrossRef]
- Ropka-Molik, K.; Knapik, J.; Pieszka, M.; Szmatola, T.; Piórkowska, K. Nutritional modification of SCD, ACACA and LPL gene expressions in different ovine tissues. Arch. Anim. Breed. 2017, 60, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Hao, Z.; Zhao, M.; Shen, J.; Ke, N.; Song, Y.; Qiao, L.; Lu, Y.; Hu, L.; Wu, X.; et al. MicroRNA-148a Regulates the Proliferation and Differentiation of Ovine Preadipocytes by Targeting PTEN. Animals 2021, 11, 820. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Vega, A.; Gutiérrez-Gil, B.; Arranz, J.J. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds. J. Dairy Sci. 2016, 99, 6381–6390. [Google Scholar] [CrossRef]
- Ardicli, S.; Soyudal, B.; Samli, H.; Dincel, D.; Balci, F. Effect of STAT1, OLR1, CSN1S1, CSN1S2, and DGAT1 genes on milk yield and composition traits of Holstein breed. R. Bras. Zootec. 2018, 47, e20170247. [Google Scholar] [CrossRef] [Green Version]
- Fontanesi, L.; Calo, D.G.; Galimberti, G.; Negrini, R.; Marino, R.; Nardone, A.; Ajmone-Marsan, P.; Russo, V. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Anim. Genet. 2014, 45, 576–580. [Google Scholar] [CrossRef]
- Fontanesi, L.; Scotti, E.; Samorè, A.B.; Bagnato, A.; Russo, V. Association of 20 candidate gene markers with milk production and composition traits in sires of Reggiana breed, a local dairy cattle population. Liv. Sci. 2015, 176, 14–21. [Google Scholar] [CrossRef]
- Mao, Y.J.; Chen, R.J.; Chang, L.L.; Chen, Y.; Ji, D.J.; Wu, X.X.; Shi, X.K.; Wu, H.T.; Zhang, M.R.; Yang, Z.P.; et al. Effects of SCD1- and DGAT1-genes on production traits of Chinese Holstein cows located in the Delta Region of Yangtze River. Liv. Sci. 2012, 145, 280–286. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Gao, Y.; Shi, L.; Li, Y.; Liang, W.; Sun, D. Determination of genetic associations between indels in 11 candidate genes and milk composition traits in Chinese Holstein population. BMC Genet. 2019, 20, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Liu, L.; Huo, J.; Li, L.; Miao, Y. Isolation, bioinformatic and tissue expression analysis of a novel water buffalo gene BTN1A1. Buffalo Bull. 2014, 33, 449–461. [Google Scholar]
Gene | GeneBank Access. No. | SNPs | Region | AA | Method | Reference |
---|---|---|---|---|---|---|
Acetyl-CoA carboxylase α (ACACA) | AJ292286 | g.1206C > T | 3′UTR | PEA a | [33] | |
AJ292286 | g.1255A > G | 5′UTR | PEA | |||
AJ292286 | g.1322T > C | 3′UTR | PEA | |||
Butyrophilin (BTN1A1) | NM001285618.1 | g.599A > G | Exon4 | Glu184/Lys | PCR-RFLP | [31] |
Lipoprotein lipase (LPL) | KP261023 | g.103G > A | signal peptide | Gly/Arg | PEA | [32] |
KP261023 | g.185G > T | intron I | PEA | [32] | ||
KP261023 | g.257C > T | intron I | PEA | [32] | ||
KP261023 | g.300G > A | intron I | PEA | [32] | ||
DQ370053 | G50C | signal peptide | Ser36/Thr | PEA | [30] | |
Stearoyl-coenzyme A desaturase (SCD) | AF422168.1 | EX3_15G > A | Exon3 | Val109/Met | PEA | [25] |
AF422168.1 | EX3_68A > G | Exon3 | Arg/Arg | PEA | [25] | |
AF422168.1 | IVS3+46C > T | Intron3 | PEA | Present work | ||
AF422168.1 | IVS3+55A > G | Intron3 | PEA | [25] | ||
AF422168.1 | IVS3+105A > G | Intron3 | data | PEA | Present work |
Gene | Gene Bank Access. No. | SNPs | Genotypes | N | Frequency | Allele | Frequency | χ2 | Nmilk | Nscc |
---|---|---|---|---|---|---|---|---|---|---|
Acetyl-CoA carboxylase α (ACACA) | AJ292286 | g.1206C > T | CC | 181 | 0.522 | C | 0.72 | 2.754 | 3675 | 490 |
CT | 82 | 0.401 | 1885 | 288 | ||||||
TT | 22 | 0.077 | T | 0.28 | 479 | 64 | ||||
Acetyl-CoA carboxylase α (ACACA) | AJ292286 | g.1322T > C | CT | 19 | 0.067 | C | 0.03 | 0.237 | 410 | 49 |
TT | 266 | 0.933 | T | 0.97 | 5629 | 793 | ||||
Butyrophilin (BTN1A1) | NM001285618.1 | g.599A > G | AA | 7 | 0.023 | A | 0.15 | 0.019 | 140 | 14 |
AG | 76 | 0.249 | 1553 | 199 | ||||||
GG | 222 | 0.728 | G | 0.85 | 4559 | 636 | ||||
Lipoprotein lipase (LPL) | KP261023 | g.103G > A | GG | 265 | 0.892 | G | 0.94 | 0.360 | 3851 | 494 |
GA | 30 | 0.101 | 361 | 48 | ||||||
AA | 2 | 0.007 | A | 0.06 | 42 | 12 | ||||
Lipoprotein lipase (LPL) | KP261023 | g.185G > T | GG | 210 | 0.707 | G | 0.85 | 0.365 | 2793 | 352 |
GT | 82 | 0.276 | 1414 | 202 | ||||||
TT | 5 | 0.017 | T | 0.15 | 47 | 0 | ||||
Lipoprotein lipase (LPL) | KP261023 | g.257C > T | TT | 11 | 0.037 | T | 0.22 | 0.444 | 140 | 15 |
CT | 109 | 0.367 | 1669 | 241 | ||||||
CC | 177 | 0.596 | C | 0.78 | 2445 | 298 | ||||
Lipoprotein lipase (LPL) | KP261023 | g.300G > A | GG | 219 | 0.737 | G | 0.86 | 0.257 | 3285 | 453 |
GA | 70 | 0.236 | 888 | 95 | ||||||
AA | 8 | 0.027 | A | 0.14 | 81 | 6 | ||||
CC | 3 | 0.010 | C | 0.12 | 0.221 | 88 | 9 | |||
Lipoprotein lipase (LPL) | DQ370053 | G50C | CG | 68 | 0.224 | 1410 | 210 | |||
GG | 232 | 0.766 | G | 0.88 | 4752 | 631 | ||||
Stearoyl-coenzyme A desaturase (SCD) | AF422168 | EX3_15G > A | AA | 182 | 0.591 | A | 0.76 | 0.791 | 3808 | 512 |
AG | 103 | 0.334 | 2049 | 262 | ||||||
GG | 23 | 0.075 | G | 0.24 | 524 | 83 | ||||
Stearoyl-coenzyme A desaturase (SCD) | AF422168 | EX3_68A > G | AA | 256 | 0.831 | A | 0.91 | 0.051 | 5393 | 691 |
AG | 50 | 0.162 | 948 | 158 | ||||||
GG | 2 | 0.006 | G | 0.09 | 40 | 8 | ||||
Stearoyl-coenzyme A desaturase (SCD) | AF422168 | CC | 234 | 0.760 | C | 0.86 | 2.823 | 4851 | 665 | |
IVS3+46 C > T | CT | 62 | 0.201 | 1333 | 172 | |||||
TT | 12 | 0.039 | T | 0.14 | 197 | 20 | ||||
Stearoyl-coenzyme A desaturase (SCD) | AF422168 | AA | 23 | 0.075 | A | 0.15 | 15.899 ** | 524 | 83 | |
IVS3+55A > G | AG | 48 | 0.156 | 899 | 142 | |||||
GG | 237 | 0.769 | G | 0.85 | 4958 | 632 | ||||
Stearoyl-coenzyme A desaturase (SCD) | AF422168 | IVS3+105A > G | AA | 25 | 0.081 | A | 0.25 | 0.770 | 546 | 86 |
AG | 107 | 0.347 | 2127 | 283 | ||||||
GG | 176 | 0.571 | G | 0.75 | 3708 | 488 |
Trait | N | Mean ± SD | Min | Max |
---|---|---|---|---|
Daily milk yield (L) | 8640 | 2.94 ± 1.004 | 0.8 | 6.4 |
Milk fat percentage (%) | 8640 | 3.06 ± 0.644 | 2.0 | 5.0 |
Milk protein percentage (%) | 8640 | 3.02 ± 0.324 | 2.2 | 4.2 |
SCC 1 | 857 | 1353.52 ± 1608.240 | 19.0 | 9625.0 |
SCS 2 | 857 | 5.87 ± 1.694 | 0.60 | 9.59 |
Trait | DMY | PP | FP |
---|---|---|---|
PP | −0.205 ** ± 0.98 | ||
FP | −0.154 ** ± 0.66 | 0.401 ** ± 0.61 | |
SS | −0.418 ** ± 1.54 | 0.154 ** ± 1.67 | 0.113 ** ± 1.68 |
Daily Milk Yield (L) | SCS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SNPs | SNP | SNP BC | Herd-Year | Month of Milking | Lactation Order | Breed | SNP | SNP BC | Herd-Year | Month of Milking | Lactation Order | Breed |
g.1206C > T | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
g.1322T > C | * | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
g.599A > G | ns | ns | ** | ** | ** | ns | * | ns | ** | ns | ns | ns |
g.103G > A | ns | ns | ** | ** | ** | * | ns | ns | ** | ns | ns | ns |
g.185G > T | ns | ns | ** | ** | ** | * | ns | ns | ** | ns | ns | ns |
g.257C > T | ns | ns | ** | ** | ** | * | ns | ns | ** | ns | ns | ns |
g.300G > A | ** | * | ** | ** | ** | * | ns | ns | ** | ns | ns | ns |
G50C | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
EX3_15G > A | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
EX3_68A > G | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
IVS3+46 C > T | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
IVS3+55A > G | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
IVS3+105A > G | ns | ns | ** | ** | ** | ns | ns | ns | ** | ns | ns | ns |
Protein (%) | Fat (%) | |||||||||||
g.1206C > T | ns | ns | ** | ** | ** | * | ns | ns | ** | ** | ** | ** |
g.1322T > C | * | ns | ** | ** | ** | * | ns | ns | ** | ** | ** | ** |
g.599A > G | ** | ns | ** | ** | ** | * | ** | ns | ** | ** | ** | ** |
g.103G > A | ns | ns | ** | ** | ** | ** | ns | ns | ** | ** | ** | ** |
g.185G > T | ** | ** | ** | ** | ** | * | * | ns | ** | ** | ** | ** |
g.257C > T | * | ns | ** | ** | ** | * | ns | ns | ** | ** | * | ** |
g.300G > A | ns | ns | ** | ** | ** | ** | ** | * | ** | ** | * | ** |
G50C | ns | ns | ** | ** | ** | * | ** | ** | ** | ** | * | ** |
EX3_15G > A | ns | ns | ** | ** | ** | * | ** | * | ** | ** | * | ** |
EX3_68A > G | ns | ns | ** | ** | ** | * | ** | * | ** | ** | ** | ** |
IVS3+46C > T | * | ns | ** | ** | ** | * | ** | ns | ** | ** | * | ** |
IVS3+55A > G | ns | ns | ** | ** | ** | * | ns | ns | ** | ** | ** | ** |
IVS3+105A > G | ns | ns | ** | ** | ** | * | ** | ns | ** | ** | * | ** |
SNPs | Genotype | DMY | PP | FP | SCS |
---|---|---|---|---|---|
ACACA g.1206C > T | CC | 2.50 ± 0.112 | 3.16 ± 0.037 | 3.23 ± 0.060 | 6.25 ± 0.461 |
CT | 2.55 ± 0.110 | 3.14 ± 0.036 | 3.20 ± 0.059 | 6.24 ± 0.448 | |
TT | 2.50 ± 0.139 | 3.15 ± 0.043 | 3.16 ± 0.072 | 7.16 ± 0.660 | |
ACACA g.1322T > C | CT | 2.75 ± 0.135 a | 3.09 ± 0.043 a | 3.19 ± 0.071 | 6.04 ± 0.725 |
TT | 2.52 ± 0.105 a | 3.15 ± 0.035 a | 3.21 ± 0.058 | 6.36 ± 0.413 | |
BTN1A1 g.599A > G | AA | 2.74 ± 0.177 | 3.13 ± 0.051 | 3.09 ± 0.088 | 7.07 ± 1.087 |
AG | 2.51 ± 0.108 | 3.17 ± 0.034 A | 3.24 ± 0.057 a | 7.04 ± 0.477 a | |
GG | 2.53 ± 0.106 | 3.12 ± 0.034 A | 3.17 ± 0.056 a | 6.08 ± 0.418 a | |
LPL g.103G > A | GG | 2.70 ± 0.119 | 3.13 ± 0.045 | 3.18 ± 0.071 A | 6.21 ± 0.588 |
GA | 3.07 ± 0.162 | 3.10 ± 0.056 | 3.33 ± 0.093 A,B | 5.92 ± 0.837 | |
AA | 3.07 ± 0.267 | 3.18 ± 0.082 | 2.90 ± 0.142 B | 5.99 ± 1.378 | |
LPL g.185G > T | GG | 2.67 ± 0.115 | 3.11 ± 0.047 | 3.14 ± 0.077 | 6.23 ± 0.622 |
GT | 2.72 ± 0.113 | 3.14 ± 0.045 | 3.18 ± 0.074 | 6.10 ± 0.632 | |
TT | Not est. | Not est. | Not est. | Not est. | |
LPL g.257C > T | TT | 2.81 ± 177 | 3.27 ± 0.062 A,B | 3.18 ± 0.107 | 6.67 ± 1.179 |
CT | 2.69 ± 0.112 | 3.15 ± 0.046 A | 3.20 ± 0.077 A | 6.07 ± 0.601 | |
CC | 2.69 ± 0.117 | 3.11 ± 0.047 B | 3.10 ± 0.079 A | 6.26 ± 0.658 | |
LPL g.300G > A | GG | 2.69 ± 0.111 | 3.13 ± 0.044 | 3.16 ± 0.074 | 6.22 ± 0.596 |
GA | 2.70 ± 0.124 | 3.15 ± 0.048 | 3.21 ± 0.081 | 5.94 ± 0.699 | |
AA | 2.80 ± 0.300 | 3.32 ± 0.091 | 3.08 ± 0.163 | 7.02 ± 1.854 | |
LPL G50C | CC | 2.61 ± 0.233 | 3.05 ± 0.066 | 2.70 ± 0.114 A,B | 6.24 ± 1.324 |
CG | 2.59 ± 0.116 | 3.13 ± 0.037 | 3.22 ± 0.061 B | 6.53 ± 0.508 | |
GG | 2.51 ± 0.105 | 3.15 ± 0.034 | 3.19 ± 0.06 A | 6.33 ± 0.418 | |
SCD EX3_15G > A | AA | 2.52 ± 0.105 | 3.15 ± 0.034 | 3.21 ± 0.057 A | 6.33 ± 0.415 |
AG | 2.53 ± 0.110 | 3.13 ± 0.035 | 3.14 ± 0.059 A | 6.30 ± 0.494 | |
GG | 2.38±0.130 | 3.16 ± 0.040 | 3.24 ± 0.068 | 7.00 ± 0.679 | |
SCD EX3_68A > G | AA | 2.51 ± 0.104 | 3.15 ± 0.034 | 3.21 ± 0.056 A | 6.36 ± 0.414 |
AG | 2.53 ± 0.120 | 3.13 ± 0.038 | 3.14 ± 0.062 B | 6.36 ± 0.592 | |
GG | 2.18 ± 0.277 | 3.20 ± 0.078 | 3.55 ± 0.136 A,B | 6.62 ± 1.738 | |
SCD IVS3+46C > T | CC | 2.52 ± 103 | 3.15 ± 0.034 A | 3.21 ± 0.056 A | 6.33 ± 0.412 |
CT | 2.52 ± 0.112 | 3.15 ± 0.038 B | 3.15 ± 0.060 A | 6.59 ± 0.519 | |
TT | 2.43 ± 0.157 | 3.05 ± 0.047 A,B | 3.15 ± 0.081 | 7.00 ± 0.916 | |
SCD IVS3+55A > G | AA | 2.35 ± 0.134 | 3.17 ± 0.040 | 3.26 ± 0.067 | 6.92 ± 0.693 |
AG | 2.50 ± 0.125 | 3.14 ± 0.038 | 3.18 ± 0.064 | 6.10±0.609 | |
GG | 2.52 ± 0.107 | 3.15 ± 0.034 | 3.20 ± 0.056 | 6.34 ± 0.410 | |
SCD IVS3+105A > G | AA | 2.33 ± 0.128 | 3.16 ± 0.040 | 3.27 ± 0.067 A | 6.64 ± 0.665 |
AG | 2.51 ± 0.110 | 3.14 ± 0.035 | 3.16 ± 0.059 A | 6.16 ± 0.493 | |
GG | 2.54 ± 0.105 | 3.15 ± 0.034 | 3.21 ± 0.057 | 6.38 ± 0.416 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brzáková, M.; Rychtářová, J.; Čítek, J.; Sztankóová, Z. A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds. Animals 2021, 11, 1796. https://doi.org/10.3390/ani11061796
Brzáková M, Rychtářová J, Čítek J, Sztankóová Z. A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds. Animals. 2021; 11(6):1796. https://doi.org/10.3390/ani11061796
Chicago/Turabian StyleBrzáková, Michaela, Jana Rychtářová, Jindřich Čítek, and Zuzana Sztankóová. 2021. "A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds" Animals 11, no. 6: 1796. https://doi.org/10.3390/ani11061796
APA StyleBrzáková, M., Rychtářová, J., Čítek, J., & Sztankóová, Z. (2021). A Candidate Gene Association Study for Economically Important Traits in Czech Dairy Goat Breeds. Animals, 11(6), 1796. https://doi.org/10.3390/ani11061796