Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. In Situ Experiment
2.3. Collagen Content
2.4. Collagen Imaging
2.5. Statistics
3. Results
3.1. Muscle Area and Force Scaling
3.2. Collagen Quantitative and Qualitative Concentration
3.3. Fiber Area
4. Discussion
4.1. Muscle Function
4.2. Muscle Collagen Content
4.3. Effects of Selection on Fiber Size
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yost, J.K.; Kenney, P.B.; Slider, S.D.; Russell, R.W.; Killefer, J. Influence of selection for breast muscle mass on myosin isoform composition and metabolism of deep pectoralis muscles of male and female turkeys. Poult. Sci. 2002, 81, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Stover, K.K.; Weinreich, D.M.; Roberts, T.J.; Brainerd, E.L. Patterns of musculoskeletal growth and dimensional changes associated with selection and developmental plasticity in domestic and wild strain turkeys. Ecol. Evol. 2018, 8, 3229–3239. [Google Scholar] [CrossRef] [PubMed]
- Barbut, S.; Sosnicki, A.; Lonergan, S.; Knapp, T.; Ciobanu, D.; Gatcliffe, L.; Huff-Lonergan, E.; Wilson, E. Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Sci. 2008, 79, 46–63. [Google Scholar] [CrossRef] [PubMed]
- Dransfield, E.; Sosnicki, A. Relationship between muscle growth and poultry meat quality. Poult. Sci. 1999, 78, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Berri, C.; Debut, M.; Santé-Lhoutellier, V.; Arnould, C.; Boutten, B.; Sellier, N.; Baéza, E.; Jehl, N.; Jégo, Y.; Duclos, M.; et al. Variations in chicken breast meat quality: Implications of struggle and muscle glycogen content at death. Br. Poult. Sci. 2005, 46, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Julian, R.J. Production and growth related disorders and other metabolic diseases of poultry—A review. Vet. J. 2005, 169, 350–369. [Google Scholar] [CrossRef]
- Nestor, K.E.; Anderson, J.W.; Velleman, S.G. Genetic Variation in Pure Lines and Crosses of Large-Bodied Turkey Lines. 1. Body Weight, Walking Ability, and Body Measurements of Live Birds. Poult. Sci. 2001, 80, 1087–1092. [Google Scholar] [CrossRef]
- Abourachid, A. Mechanics of standing in birds: Functional explanation of lameness problems in giant Turkeys. Br. Poult. Sci. 1993, 34, 887–898. [Google Scholar] [CrossRef]
- Garner, J.; Falcone, C.; Wakenell, P.; Martin, M.; Mench, J. Reliability and validity of a modified gait scoring system and its use in assessing tibial dyschondroplasia in broilers. Br. Poult. Sci. 2002, 43, 355–363. [Google Scholar] [CrossRef]
- Kestin, S.C.; Knowles, T.G.; Tinch, A.E.; Gregory, N.G. Prevalence of leg weakness in broiler chickens and its relationship with genotype. Vet. Rec. 1992, 131, 190–194. [Google Scholar] [CrossRef]
- Stover, K.K.; Brainerd, E.L.; Roberts, T.J. Waddle and shuffle: Gait alterations associated with domestication in turkeys. J. Exp. Biol. 2018, 221, jeb180687. [Google Scholar] [CrossRef] [Green Version]
- Stover, K.; Brainerd, E.; Roberts, T. Supersize me: Extreme body mass in domestic turkeys influences locomotor mechanics. In Proceedings of the Integrative and Comparative Biology, West Palm Beach, FL, USA, 3–7 January 2015; p. E180. [Google Scholar]
- Holt, N.C.; Danos, N.; Roberts, T.J.; Azizi, E. Stuck in gear: Age-related loss of variable gearing in skeletal muscle. J. Exp. Biol. 2016, 219, 998–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnaqeeb, M.; Al Zaid, N.S.; Goldspink, G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J. Anat. 1984, 139, 677–689. [Google Scholar] [PubMed]
- Mero, A.A.; Hulmi, J.; Salmijärvi, H.; Katajavuori, M.; Haverinen, M.; Holviala, J.; Ridanpää, T.; Häkkinen, K.; Kovanen, V.; Ahtiainen, J.P.; et al. Resistance training induced increase in muscle fiber size in young and older men. Graefe’s Arch. Clin. Exp. Ophthalmol. 2012, 113, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Kuttappan, V.A.; Hargis, B.M.; Owens, C.M. White striping and woody breast myopathies in the modern poultry industry: A review. Poult. Sci. 2016, 95, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.W.; Nieberg, P.S.; Buhr, R.J.; Kelly, B.J.; Shultz, F.T. Turkey Muscle Growth and Focal Myopathy. Poult. Sci. 1990, 69, 1553–1562. [Google Scholar] [CrossRef]
- Owens, C.M.; Hirschler, E.M.; Kee, M.; Martinez-Dawson, R.; Sams, A.R. The characterization and incidence of pale, soft, exudative turkey meat in a commercial plant. Poult. Sci. 2000, 79, 553–558. [Google Scholar] [CrossRef]
- Sosnicki, A.A.; Wilson, B.W. Pathology of turkey skeletal muscle: Implications for the poultry industry. Food Struct. 1991, 10, 5. [Google Scholar]
- Purslow, P.P. Intramuscular connective tissue and its role in meat quality. Meat Sci. 2005, 70, 435–447. [Google Scholar] [CrossRef]
- Koskinen, S.O.A.; Wang, W.; Ahtikoski, A.M.; Kjær, M.; Han, X.Y.; Komulainen, J.; Kovanen, V.; Takala, T.E.S. Acute exercise induced changes in rat skeletal muscle mRNAs and proteins regulating type IV collagen content. Am. J. Physiol. Integr. Comp. Physiol. 2001, 280, R1292–R1300. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.M.; Azizi, E.; Roberts, T. Structural Determinants of Muscle Gearing During Dynamic Contractions. Integr. Comp. Biol. 2018, 58, 207–218. [Google Scholar] [CrossRef]
- Nelson, F.E.; Gabaldón, A.M.; Roberts, T.J. Force–velocity properties of two avian hindlimb muscles. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2004, 137, 711–721. [Google Scholar] [CrossRef]
- Gabaldón, A.M.; Nelson, F.E.; Roberts, T.J. Relative shortening velocity in locomotor muscles: Turkey ankle extensors operate at low V/Vmax. Am. J. Physiol. Integr. Comp. Physiol. 2008, 294, R200–R210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabaldón, A.M.; Nelson, F.E.; Roberts, T.J. Mechanical function of two ankle extensors in wild turkeys: Shifts from energy production to energy absorption during incline versus decline running. J. Exp. Biol. 2004, 207, 2277–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azizi, E.; Brainerd, E.L.; Roberts, T.J. Variable gearing in pennate muscles. Proc. Natl. Acad. Sci. USA 2008, 105, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Konow, N.; Azizi, E.; Roberts, T.J. Muscle power attenuation by tendon during energy dissipation. Proc. R. Soc. B: Biol. Sci. 2011. [Google Scholar] [CrossRef] [Green Version]
- Roberts, T.J. Muscular Force in Running Turkeys: The Economy of Minimizing Work. Science 1997, 275, 1113–1115. [Google Scholar] [CrossRef] [PubMed]
- Mendez, J.; Keys, A. Density and composition of mammalian muscle. Metab. Clin. Exp. 1960, 9, 184–188. [Google Scholar]
- Konow, N.; Roberts, T.J. The series elastic shock absorber: Tendon elasticity modulates energy dissipation by muscle during burst deceleration. Proc. R. Soc. B: Biol. Sci. 2015, 282, 20142800. [Google Scholar] [CrossRef] [Green Version]
- Biewener, A. Scaling body support in mammals: Limb posture and muscle mechanics. Science 1989, 245, 45–48. [Google Scholar] [CrossRef]
- Neuman, R.E.; Logan, M.A. The determination of collagen and elastin in tissues. J. Biol. Chem. 1950, 186, 549–556. [Google Scholar] [CrossRef]
- Feiner, G. Meat Products Handbook: Practical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Eyre, D.R.; Koob, T.J.; Van Ness, K.P. Quantitation of hydroxypyridinium crosslinks in collagen by high-performance liquid chromatography. Anal. Biochem. 1984, 137, 380–388. [Google Scholar] [CrossRef]
- Sleboda, D.A.; Stover, K.K.; Roberts, T.J. Diversity of extracellular matrix morphology in vertebrate skeletal muscle. J. Morphol. 2020, 281, 160–169. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.K. Capillarity and diffusion distances in skeletal muscles in birds. J. Comp. Physiol. B 1990, 160, 583–591. [Google Scholar] [CrossRef]
- Patak, A.; Baldwin, J. Structural and metabolic characterization of the muscles used to power running in the emu (dromaius novaehollandiae), a giant flightless bird. J. Exp. Biol. 1993, 175, 233–249. [Google Scholar] [CrossRef]
- Seow, C.Y.; Ford, L.E. Shortening velocity and power output of skinned muscle fibers from mammals having a 25,000-fold range of body mass. J. Gen. Physiol. 1991, 97, 541–560. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, R.B.; Phelps, R.O. Muscle fiber type composition of the rat hindlimb. Am. J. Anat. 1984, 171, 259–272. [Google Scholar] [CrossRef]
- Coggan, A.R.; Spina, R.J.; King, D.S.; Rogers, M.A.; Brown, M.; Nemeth, P.M.; Holloszy, J.O. Histochemical and Enzymatic Comparison of the Gastrocnemius Muscle of Young and Elderly Men and Women. J. Gerontol. 1992, 47, B71–B76. [Google Scholar] [CrossRef] [PubMed]
- Velotto, S.; Crasto, A. Histochemical and Morphometrical Characterization and Distribution of Fibre Types in Four Muscles of Ostrich (Struthio camelus). Anat. Histol. Embryol. 2004, 33, 251–256. [Google Scholar] [CrossRef]
- Butler, P.J.; Turner, D.L. Effect of training on maximal oxygen uptake and aerobic capacity of locomotory muscles in tufted ducks, Aythya fuligula. J. Physiol. 1988, 401, 347–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mbow, C.; Rosenzweig, C.; Barioni, L.; Benton, T.; Herrero, M.; Krishnapillai, M.; Waha, K. Chapter 5: Food Security. IPCC Special Report on Climate Change and Land. 2019. Available online: https://www.ipcc.ch/site/assets/uploads (accessed on 17 December 2020).
- Sosnicki, A.A.; Cassens, R.G.; Vimini, R.J.; Greaser, M.L. Histopathological and Ultrastructural Alterations of Turkey Skeletal Muscle. Poult. Sci. 1991, 70, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Hafez, H.; Hauck, R. Genetic selection in turkeys and broilers and their impact on health conditions. In Proceedings of the World Poultry Science Association, 4th European Poultry Genetics Symposium, Dubrovnikm, Croatia, 6–8 October 2005. [Google Scholar]
- Roberts, T.J.; Gabaldon, A.M. Interpreting muscle function from EMG: Lessons learned from direct measurements of muscle force. Integr. Comp. Biol. 2008, 48, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Paxton, H.; Anthony, N.B.; Corr, S.A.; Hutchinson, J.R. The effects of selective breeding on the architectural properties of the pelvic limb in broiler chickens: A comparative study across modern and ancestral populations. J. Anat. 2010, 217, 153–166. [Google Scholar] [CrossRef]
- Fletcher, D.L. Poultry meat quality. World’s Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- Dransfield, E. Tenderness of meat, poultry and fish. In Quality Attributes and Their Measurement in Meat, Poultry and Fish Products; Pearson, A.M., Dutson, T.R., Eds.; Springer: Boston, MA, USA, 1994; pp. 289–315. [Google Scholar]
- Petracci, M.; Cavani, C. Muscle Growth and Poultry Meat Quality Issues. Nutrients 2011, 4, 1–12. [Google Scholar] [CrossRef]
- Sporer, K.R.B.; Tempelman, R.J.; Ernst, C.W.; Reed, K.M.; Velleman, S.G.; Strasburg, G.M. Transcriptional profiling identifies differentially expressed genes in developing turkey skeletal muscle. BMC Genom. 2011, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Cross, H.R.; Carpenter, Z.L.; Smith, G.C. Effects of intramuscular collagen and elastin on bovine muscle tenderness. J. Food Sci. 1973, 38, 998–1003. [Google Scholar] [CrossRef]
- Lokman, I.; Goh, Y.; Sazili, A.; Noordin, M.; Zuki, A. Meat Characteristics of Red Jungle Fowl (Gallus gallus Spadiceus), Malaysian Domestic Chickens (Gallus gallus Domesticus) and Commercial Broiler. Pertanika J. Trop. Agric. Sci. 2015, 38, 455–464. [Google Scholar]
- Pin, L.S.; Bakar, Z.A. Muscle Fibre Typing, Collagen Composition Analysis of Breast and Thigh Meats in Two Breeds of Chicken of Different Growth Performance. In Proceedings of the 5th Seminar in Veterinary Sciences, Serdang, Malaysia, 5–8 January 2010; Available online: https://core.ac.uk/download/pdf/20545787.pdf (accessed on 4 December 2020).
- Haus, J.; Carrithers, J.A.; Trappe, S.W.; Trappe, T.A. Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J. Appl. Physiol. 2007, 103, 2068–2076. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.J. Molecular mechanisms of ageing in connective tissues. Mech. Ageing Dev. 2001, 122, 735–755. [Google Scholar] [CrossRef]
- Kiepper, B.; Landrum, M. White Striping in processed broiler muscle tissue—A growing problem? In Proceedings of the Georgia Poultry Conference: Processing Session, University of Georgia, Athens, GA, USA, 25 September 2013. [Google Scholar]
- Nishimura, T. The role of intramuscular connective tissue in meat texture. Anim. Sci. J. 2010, 81, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Swatland, H. A Note on the Growth of Connective Tissues Binding Turkey Muscle Fibers Together. Can. Inst. Food Sci. Technol. J. 1990, 23, 239–241. [Google Scholar] [CrossRef]
- Smith, J.H. Relation of Body Size to Muscle Cell Size and Number in the Chicken. Poult. Sci. 1963, 42, 283–290. [Google Scholar] [CrossRef]
- Moss, F.P. The relationship between the dimensions of the fibres and the number of nuclei during normal growth of skeletal muscle in the domestic fowl. Am. J. Anat. 1968, 122, 555–563. [Google Scholar] [CrossRef]
- Velleman, S.G. Muscle Development in the Embryo and Hatchling. Poult. Sci. 2007, 86, 1050–1054. [Google Scholar] [CrossRef]
- Berri, C.; Le Bihan-Duval, E.; Debut, M.; Santé-Lhoutellier, V.; Baéza, E.; Gigaud, V.; Jégo, Y.; Duclos, M.J. Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens1. J. Anim. Sci. 2007, 85, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- Remignon, H.; Gardahaut, M.F.; Marche, G.; Ricard, F.H. Selection for rapid growth increases the number and the size of muscle fibres without changing their typing in chickens. J. Muscle Res. Cell Motil. 1995, 16, 95–102. [Google Scholar] [CrossRef]
- Schorger, A.W. The Wild Turkey, Its History and Domestication; University of Oklahoma Press: Norman, OK, USA, 1966; p. 625. [Google Scholar]
- Macrae, V.; Mahon, M.; Gilpin, S.; Sandercock, D.; Mitchell, M. Skeletal muscle fibre growth and growth associated myopathy in the domestic chicken (Gallus domesticus). Br. Poult. Sci. 2006, 47, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Velleman, S.G. Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Dis. 2015, 59, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Velleman, S.; Anderson, J.; Coy, C.; Nestor, K. Effect of selection for growth rate on muscle damage during turkey breast muscle development. Poult. Sci. 2003, 82, 1069–1074. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stover, K.K.; Sleboda, D.A.; Brainerd, E.L.; Roberts, T.J. Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey. Animals 2021, 11, 1850. https://doi.org/10.3390/ani11071850
Stover KK, Sleboda DA, Brainerd EL, Roberts TJ. Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey. Animals. 2021; 11(7):1850. https://doi.org/10.3390/ani11071850
Chicago/Turabian StyleStover, Kristin K., David A. Sleboda, Elizabeth L. Brainerd, and Thomas J. Roberts. 2021. "Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey" Animals 11, no. 7: 1850. https://doi.org/10.3390/ani11071850
APA StyleStover, K. K., Sleboda, D. A., Brainerd, E. L., & Roberts, T. J. (2021). Gastrocnemius Muscle Structural and Functional Changes Associated with Domestication in the Turkey. Animals, 11(7), 1850. https://doi.org/10.3390/ani11071850